
Supplementary Material:
Learning What and Where to Transfer

A. Network Architectures and Tasks
For small image experiments (32×32), we use TinyImageNet1 as a source task, and use CIFAR-10, CIFAR-100 (Krizhevsky
& Hinton, 2009) and STL-10 (Coates et al., 2011) datasets as target tasks. CIFAR-10 and CIFAR-100 have 10 and 100
classes containing 5000 and 500 training images for each class, respectively, and each image has 32× 32 pixels. STL-10
consists of 10 classes, with 500 labeled images per each class in the training set. Since the original images in TinyImageNet
and STL-10 are not 32× 32, we resize them into 32× 32 when training and testing. We use a pre-trained 32-layer ResNet
(He et al., 2016) on TinyImageNet as a source model, and we train 9-layer VGG (Simonyan & Zisserman, 2015), which is
the modified architecture used in Srinivas & Fleuret (2018), on CIFAR-10/100 and STL-10 datasets.

For large image experiments (224× 224), we use a pre-trained 34-layer ResNet on ImageNet (Deng et al., 2009) as a source
model, and consdier Caltech-UCSD Bird 200 (Wah et al., 2011), MIT Indoor Scene Recognition (Quattoni & Torralba,
2009), Stanford 40 Actions (Yao et al., 2011) and Stanford Dogs (Khosla et al., 2011) datasets as target tasks. Caltech-UCSD
Bird 200 (CUB200) contains 5k training images of 200 bird species. MIT Indoor Scene Recognition (MIT67) has 67 labels
for indoor scenes and 80 training images per each label. Stanford 40 Actions (Stanford40) contains 4k training images of 40
human actions. Stanford Dogs has 12k training images of 120 dog categories. For these target fine-grained datasets, we train
18-layer ResNets.

B. Optimization
All target networks are trained by stochastic gradient descent (SGD) with a momentum of 0.9. We use a weight decay
of 10−4 and an initial learning rate 0.1 and decay the learning rate with a cosine annealing (Loshchilov & Hutter, 2017):
αt =

1
2 (1 + cos t

T π) where αt is the learning rate at epoch t, and T is the maximum epoch. For all experiments, we train
target networks for T = 200 epochs. The size of mini-batch is 128 for small image experiments, e.g., CIFAR, or 64 for
large image experiments, e.g., CUB200. When using feature matching, we use β = 0.5. For data pre-processing and
augmentation schemes, we follow He et al. (2016). We use the ADAM (Kingma & Ba, 2015) optimizer for training the
meta-networks fφ, gφ with a learning rate of 10−3 or 10−4, and a weight decay of 0 or 10−4. In our meta-training scheme,
we observe that T = 2 is enough to learn what and where to transfer. We repeat experiments 3 times and report the average
performance as well as the standard deviation.

C. Ablation Studies
C.1. Comparison between the meta-networks and meta-weights

Table 1. Classification accuracy (%) of transfer learning using meta-networks or meta-weights.

Target task CUB200 MIT67 Stanford40

meta-weights 61.75 64.10 58.88
meta-networks 65.05 64.85 63.08

The weights, channel importance wm,n and connection importance λm,n, decide amounts of transfer given a sample to
meta-networks. One can also learn directly wm,n and λm,n as constant meta-weights using suggested bilevel scheme without
meta-networks. Here, we compare the effectiveness of using meta-networks, which gives different amount of transfer for
each sample, to learning meta-weights directly, giving the same importance over all the samples. For fair comparison, we use
same hyperparameters as described in Section A and B, except the meta-parameters. As reported in Table 1, the performance
of target models using meta-networks outperforms the one using meta-weights up-to 4.2%, which supports the effectiveness
of using selective transfer depending on samples.

1https://tiny-imagenet.herokuapp.com/



C.2. Comparison between the proposed bilevel scheme and original one

To validate the effectiveness of the suggested bilevel scheme, we perform experiments comparing the performance of target
models trained with meta-networks, using the proposed and original bilevel scheme. For a fair comparison, we use T = 2
for both methods, and the other hyperparameters, model architectures and the source task are same with the ones in Section
A and B. The original scheme obtains significantly lower accuracies than the proposed bilevel scheme (Table 2). With much

Table 2. Classification accuracy (%) of transfer learning using the original or proposed bilevel schemes.

Target task CUB200 MIT67 Stanford40

Original 35.38 54.18 53.47
Ours 65.05 64.85 63.08

larger T , e.g., 5∼100, a target model with the original bilevel scheme does not succeed to obtain comparable performance
with our bilevel scheme. Moreover the meta-training time for meta-networks is increasing linearly as T increases, thus
the original scheme is not applicable to practical scenarios. These results show that the proposed bilevel scheme is more
effective for learning meta-networks for selective transfer.
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