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1. Influence as Mutual Information
The causal influence of agent k on agent j is:

DKL

[
p(ajt | akt , zt)

∥∥∥p(ajt | zt)] , (1)

where zt represents the conditioning variables at timestep
t, zt = 〈ujt , s

j
t 〉. The influence reward to the mutual infor-

mation (MI) between the actions of agents k and j, which
is given by

I(Aj ;Ak|z) =
∑
ak,aj

p(aj , ak|z) log p(aj , ak|z)
p(aj |z)p(ak|z)

=
∑
ak

p(ak|z)DKL

[
p(aj |ak, z)

∥∥∥p(aj |z)],
(2)

where we see that the DKL factor in Eq. 2 is the causal
influence reward given in Eq. 1.

By sampling N independent trajectories τn from the en-
vironment, where k’s actions akn are drawn according to
p(ak|z), we perform a Monte-Carlo approximation of the
MI (see e.g. Strouse et al. (2018)),

I(Ak;Aj |z) = Eτ
[
DKL

[
p(Aj |Ak, z)

∥∥p(Aj |z)]∣∣∣z]
≈ 1

N

∑
n

DKL
[
p(Aj |akn, z)

∥∥p(Aj |z)] . (3)

Thus, in expectation, the social influence reward is the MI
between agents’ actions.

Whether the policy trained with Eq. 1 actually learns to
approximate the MI depends on the learning dynamics. We
calculate the intrinsic social influence reward using Eq. 1,
because unlike Eq. 2, which gives an estimate of the sym-
metric bandwidth between k and j, Eq. 1 gives the directed
causal effect of the specific action taken by agent k, akt . We

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

believe this will result in an easier reward to learn, since it
allows for better credit assignment; agent k can more easily
learn which of its actions lead to high influence.

The connection to mutual information is interesting, because
a frequently used intrinsic motivation for single agent RL is
empowerment, which rewards the agent for having high mu-
tual information between its actions and the future state of
the environment (e.g. Klyubin et al. (2005); Capdepuy et al.
(2007)). To the extent that the social influence reward ap-
proximates the MI, k is rewarded for having empowerment
over j’s actions.

The social influence reward can also be computed using
other divergence measures besides KL-divergence. Lizier
& Prokopenko (2010) propose local information flow as
a measure of direct causal effect; this is equivalent to the
pointwise mutual information (the innermost term of Eq. 3),
given by:

pmi(ak; aj | Z = z) = log
p(aj | ak, z)
p(aj | z)

= log
p(ak, aj | z)

p(ak | z)p(aj | z)
. (4)

The PMI gives us a measure of influence of a single action
of k on the single action taken by j. The expectation of the
PMI over p(aj , ak|z) is the MI. We experiment with using
the PMI and a number of divergence measures, including
the Jensen-Shannon Divergence (JSD), and find that the
influence reward is robust to the choice of measure.

2. Sequential Social Dilemmas
Figure 1 depicts the SSD games under investigation. In
each of the games, an agent is rewarded +1 for every apple
it collects, but the apples are a limited resource. Agents
have the ability to punish each other with a fining beam,
which costs −1 reward to fire, and fines any agent it hits
−50 reward.

In Cleanup (a public goods game) agents must clean a
river before apples can grow, but are not able to harvest
apples while cleaning. In Harvest (a common pool resource
game), apples respawn at a rate proportional to the amount
of nearby apples; if apples are harvested too quickly, they
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Figure 1: The two SSD environments, Cleanup (left) and Harvest (right). Agents can exploit other agents for immediate
payoff, but at the expense of the long-term collective reward of the group. Reproduced with permission from Hughes et al.
(2018).

(a) Cleanup (b) Harvest

Figure 2: Schelling diagrams for the two social dilemma tasks show that an individual agent is motivated to defect, though
everyone benefits when more agents cooperate. Reproduced with permission from Hughes et al. (2018).

will not grow back. Both coordination, and cooperation
are required to solve both games. In Cleanup, agents
must efficiently time harvesting apples and cleaning
the river, and allow agents cleaning the river a chance
to consume apples. In Harvest, agents must spatially
distribute their harvesting, and abstain from consuming
apples too quickly in order to harvest sustainably. The
code for these games, including hyperparameter settings
and apple and waste respawn probabilities, can be found
at https://github.com/eugenevinitsky/
sequential_social_dilemma_games.

The reward structure of the games is shown in Figure 2,
which gives the Schelling diagram for both SSD tasks under
investigation. A Schelling diagram (Schelling, 1973; Perolat
et al., 2017) depicts the relative payoffs for a single agent’s
strategy given a fixed number of other agents who are coop-
erative. These diagrams show that all agents would benefit
from learning to cooperate, because even the agents that are
being exploited get higher reward than in the regime where
all agents defect. However, traditional RL agents struggle to
learn to cooperate and solve these tasks effectively (Hughes
et al., 2018).

3. Additional experiment - Box Trapped
As a proof-of-concept experiment to test whether the influ-
ence reward works as expected, we constructed a special
environment, shown in Figure 3. In this environment, one
agent (teal) is trapped in a box. The other agent (purple) has

Figure 3: The Box trapped environment in which the teal
agent is trapped, and the purple agent can release it with a
special open box action.

a special action it can use to open the box... or it can simply
choose to consume apples, which exist outside the box and
are inexhaustible in this environment.

As expected, a vanilla A3C agent learns to act selfishly; the
purple agent will simply consume apples, and chooses the
open box action in 0% of trajectories once the policy has con-
verged. A video of A3C agents trained in this environment
is available at: https://youtu.be/C8SE9_YKzxI,
which shows that the purple agent leaves its compatriot
trapped in the box throughout the trajectory.

In contrast, an agent trained with the social influence re-
ward chooses the open box action in 88% of trajectories,
releasing its fellow agent so that they are both able to
consume apples. A video of this behavior is shown at:

https://github.com/eugenevinitsky/sequential_social_dilemma_games
https://github.com/eugenevinitsky/sequential_social_dilemma_games
https://youtu.be/C8SE9_YKzxI
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https://youtu.be/Gfo248-qt3c. Further, as Fig-
ure 4 reveals, the purple influencer agent usually chooses
to open the box within the first few steps of the trajetory,
giving its fellow agent more time to collect reward.

Most importantly though, Figure 5 shows the influence re-
ward over the course of a trajectory in the Box trapped
environment. The agent chooses the open box action in
the second timestep; at this point, we see a corresponding
spike in the influence reward. This reveals that the influence
reward works as expected, incentivizing an action which
has a strong — and in this case, prosocial — effect on the
other agent’s behavior.

Figure 4: Number of times the open box action occurs at
each trajectory step over 100 trajectories.

Figure 5: Influence reward over a trajectory in Box trapped.
An agent gets high influence for letting another agent out of
the box in which it is trapped.

4. Implementation details
All models are trained with a single convolutional layer with
a kernel of size 3, stride of size 1, and 6 output channels.
This is connected to two fully connected layers of size 32

each, and an LSTM with 128 cells. We use a discount factor
γ = .99. The number of agents N is fixed to 5.

In addition to the comparison function used to compute
influence (e.g. KL-divergence, PMI, JSD), there are many
other hyperparameters that can be tuned for each model.
We use a random search over hyperparameters, ensuring
a fair comparison with the search size over the baseline
parameters that are shared with the influence models. For
all models we search for the optimal entropy reward and
learning rate, where we anneal the learning rate from an
initial value lr init to lr final. The below sections
give the parameters found to be most effective for each of
the three experiments.

4.1. Basic influence hyperparameters

In this setting we vary the number of influencers from 1− 4,
the influence reward weight β, and the number of curricu-
lum steps over which the weight of the influence reward
is linearly increased C. In this setting, since we have a
centralised controller, we also experiment with giving the
influence reward to the agent being influenced as well, and
find that this sometimes helps. This ‘influencee’ reward is
not used in the other two experiments, since it precludes
independent training. The hyperparameters found to give
the best performance for each model are shown in Table 1.

4.2. Communication hyperparameters

Because the communication models have an extra A2C out-
put head for the communication policy, we use an additional
entropy regularization term just for this head, and apply a
weight to the communication loss in the loss function. We
also vary the number of communication symbols that the
agents can emit, and the size of the linear layer that con-
nects the LSTM to the communication policy layer, which
we term the communication embedding size. Finally, in the
communication regime, we experiment to setting the weight
on the extrinsic reward E, α, to zero. The best hyperparam-
eters for each of the communication models are shown in
Table 2.

4.3. Model of other agents (MOA) hyperparameters

The MOA hyperparameters include whether to only train
the MOA with cross-entropy loss on the actions of agents
that are visible, and how much to weight the supervised loss
in the overall loss of the model. The best hyperparameters
are shown in Table 3.

https://youtu.be/Gfo248-qt3c
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Cleanup Harvest

Hyperparameter A3C
baseline

Visible actions
baseline Influence A3C

baseline
Visible actions
baseline Influence

Entropy reg. .00176 .00176 .000248 .000687 .00184 .00025
lr init .00126 .00126 .00107 .00136 .00215 .00107
lr end .000012 .000012 .000042 .000028 .000013 .000042
Number of influencers - 3 1 - 3 3
Influence weight β - 0 .146 - 0 .224
Curriculum C - - 140 - - 140
Policy comparison - - JSD - - PMI
Influencee reward - - 1 - - 0

Table 1: Optimal hyperparameter settings for the models in the basic influence experiment.

Cleanup Harvest

Hyperparameter A3C
baseline

Comm.
baseline

Influence
comm.

A3C
baseline

Comm.
baseline

Influence
comm.

Entropy reg. .00176 .000249 .00305 .000687 .000174 .00220
lr init .00126 .00223 .00249 .00136 .00137 .000413
lr end .000012 .000022 .0000127 .000028 .0000127 .000049
Influence weight β - 0 2.752 - 0 4.825
Extrinsic reward
weight α - - 0 - - 1.0

Curriculum C - - 1 - - 8
Policy comparison - - KL - - KL
Comm. entropy reg. - - .000789 - - .00208
Comm. loss weight - - .0758 - - .0709
Symbol vocab size - - 9 - - 7
Comm. embedding - - 32 - - 16

Table 2: Optimal hyperparameter settings for the models in the communication experiment.

4.4. Communication analysis

The speaker consistency metric is calculated as:
N∑
k=1

0.5[
∑
c

1− H(p(ak|mk = c))

Hmax

+
∑
a

1− H(p(mk|ak = a))

Hmax
], (5)

where H is the entropy function and Hmax is the maximum
entropy based on the number of discrete symbols or actions.
The goal of the metric is to measure how much of a 1:1
correspondence exists between a speaker’s action and the
speaker’s communication message.

5. Additional results
5.1. Basic influence emergent communication

Figure 6 shows an additional moment of high influence in
the Cleanup game. The purple influencer agent can see the
area within the white box, and therefore all of the apple
patch. The field-of-view of the magenta influencee is out-
lined with the magenta box; it cannot see if apples have
appeared, even though it has been cleaning the river, which
is the action required to cause apples to appear. When the
purple influencer turns left and does not move towards the

apple patch, this signals to the magenta agent that no apples
have appeared, since otherwise the influence would move
right.

Figure 6: A moment of high influence between the purple
influencer and magenta influencee.

5.2. Optimizing for collective reward

In this section we include the results of training explicitly
prosocial agents, which directly optimize for the collective
reward of all agents. Previous work (e.g. Peysakhovich &
Lerer (2018)) has shown that training agents to optimize
for the rewards of other agents can help the group to obtain
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Cleanup Harvest

Hyperparameter A3C
baseline

MOA
baseline

Influence
MOA

A3C
baseline

MOA
baseline

Influence
MOA

Entropy reg. .00176 .00176 .00176 .000687 .00495 .00223
lr init .00126 .00123 .00123 .00136 .00206 .00120
lr end .000012 .000012 .000012 .000028 .000022 .000044
Influence weight β - 0 .620 - 0 2.521
MOA loss weight - 1.312 15.007 - 1.711 10.911
Curriculum C - - 40 - - 226
Policy comparison - - KL - - KL
Train MOA only
when visible - False True - False True

Table 3: Optimal hyperparameter settings for the models in the model of other agents (MOA) experiment.

(a) Cleanup (b) Tragedy

Figure 7: Total collective reward obtained by agents trained
to optimize for the collective reward, for the 5 best hyperpa-
rameter settings with 5 random seeds each. Error bars show
a 99.5% confidence interval (CI) computed within a sliding
window of 200 agent steps.

better collective outcomes. Following a similar principle, we
implemented agents that optimize for a convex combination
of their own individual reward ekt and the collective reward
of all other agents,

∑N
i=1,i6=k e

i
t. Thus, the reward function

for agent k is rkt = ekt + η
∑N
i=1,i6=k e

i
t. We conducted the

same hyperparameter search over the parameters mentioned
in Section 4.1 varying the weight placed on the collective
reward, η ∈ [0, 2].

As expected, we find that agents trained to optimize for
collective reward attain higher collective reward in both
Cleanup and Harvest, as is shown in Figure 7. In both
games, the optimal value for η = 0.85. Interestingly, how-
ever, the equality in the individual returns for these agents
is extremely low. Across the hyperparameter sweep, no
solution to the Cleanup game which scored more than 20
points in terms of collective return was found in which all
agents scored an individual return above 0. It seems that in
Cleanup, when agents are trained to optimize for collective
return, they converge on a solution in which some agents
never receive any reward.

Note that training agents to optimize for collective reward
requires that each agent can view the rewards obtained by
other agents. As discussed previously, the social influence
reward is a novel way to obtain cooperative behavior, that

does not require making this assumption.

5.3. Performance comparison between models and
related work

Table 4 presents the final collective reward obtained by each
of the models tested in the experiments presented in the
paper. We see that in several cases, the influence agents are
even able to out-perform the state-of-the-art results on these
tasks reported by (Hughes et al., 2018), despite the fact that
the solution proposed by (Hughes et al., 2018) requires that
agents can view other agents’ rewards, whereas we do not
make this assumption, and instead only require that agents
can view each others’ actions.

5.4. Collective reward and equality

It is important to note that collective reward is not always
the perfect metric of cooperative behavior, a finding that
was also discovered by Barton et al. (2018) and emphasized
by Leibo et al. (2017). In the case, we find that there is a
spurious solution to the Harvest game, in which one agent
fails to learn and fails to collect any apples. This leads to
very high collective reward, since it means there is one fewer
agent that can exploit the others, and makes sustainable
harvesting easier to achieve. Therefore, for the results shown
in the paper, we eliminate any random seed in Harvest for
which one of the agents has failed to learn to collect apples,
as in previous work (Hughes et al., 2018).

However, here we also present an alternative strategy for as-
sessing the overall collective outcomes: weighting the total
collective reward by an index of equality of the individual
rewards. Specifically, we compute the Gini coefficient over
the N agents’ individual environmental rewards ekt :

G =

∑N
i=1

∑N
j=1 |eit − e

j
t |

2N
∑N
i=1 e

i
t

, (6)

which gives us a measure of the inequality of the returns,
where G ∈ [0, 1], with G = 0 indicating perfect equality.
Thus, 1−G is a measure of equality; we use this to weight
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Cleanup Harvest
A3C baseline 89 485
Inequity aversion (Hughes et al., 2018) 275 750
Influence - Basic 190 1073
Influence - Communication 166 951
Influence - Model of other agents 392 588

Table 4: Final collective reward over the last 50 agent steps for each of the models considered. Bolded entries represent
experiments in which the influence models significantly outperformed the scores reported in previous work on inequity
aversion(Hughes et al., 2018). This is impressive, considering the inequity averse agents are able to view all other agents’
rewards. We make no such assumption, and yet are able to achieve similar or superior performance.

the collective reward for each experiment, and plot the re-
sults in Figure 8. Once again, we see that the influence
models give the highest final performance, even with this
new metric.

5.5. Collective reward over multiple hyperparameters

Finally, we would like to show that the influence reward is
robust to the choice of hyperparameter settings. Therefore,
in Figure 9, we plot the collective reward of the top 5 best
hyperparameter settings for each experiment, over 5 random
seeds each. Once again, the influence models result in higher
collective reward, which provides evidence that the model
is robust to the choice of hyperparameters.
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(a) Cleanup - Basic influence (b) Harvest - Basic influence

(c) Cleanup - Communication (d) Harvest - Communication

(e) Cleanup - Model of other agents (f) Harvest - Model of other agents

Figure 8: Total collective reward times equality, R ∗ (1 − G), obtained in all experiments. Error bars show a 99.5%
confidence interval (CI) over 5 random seeds, computed within a sliding window of 200 agent steps. Once again, the models
trained with influence reward (red) significantly outperform the baseline and ablated models.
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(a) Cleanup - Basic influence (b) Harvest - Basic influence

(c) Cleanup - Communication (d) Harvest - Communication

(e) Cleanup - Model of other agents (f) Harvest - Model of other agents

Figure 9: Total collective reward over the top 5 hyperparameter settings, with 5 random seeds each, for all experiments. Error
bars show a 99.5% confidence interval (CI) computed within a sliding window of 200 agent steps. The influence models
still maintain an advantage over the baselines and ablated models, suggesting the technique is robust to the hyperparameter
settings.


