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Abstract

Music score is often handled as one-dimensional
sequential data. Unlike words in a text document,
notes in music score can be played simultaneously
by the polyphonic nature and each of them has
its own duration. In this paper, we represent the
unique form of musical score using graph neu-
ral network and apply it for rendering expressive
piano performance from the music score. Specifi-
cally, we design the model using note-level gated
graph neural network and measure-level hierarchi-
cal attention network with bidirectional long short-
term memory with an iterative feedback method.
In addition, to model different styles of perfor-
mance for a given input score, we employ a varia-
tional auto-encoder. The result of the listening test
shows that our proposed model generated more
human-like performances compared to a baseline
model and a hierarchical attention network model
that handles music score as a word-like sequence.

1. Introduction

“To be or not to be, that is the question.” Imagine a profes-
sional actor speaking this sentence. Although the text itself
he or she speaks is not changed, every detail such as tempo,
accent, nuance, pause, and rhythm will be different from the
speech of the same text by non-trained people. One needs a
thorough understanding of the text and context, and skills
to evoke listeners’ emotion. The detailed difference makes
some actor “great” or “special”.

A similar difference is found in the performance of music
as well. It is the role of instrument performers to decide
the exact tempo and its subtle change, and dynamics and
articulation of every note, which are notated in the score only
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in general and qualitative directions such as Allegro, or poco
crescendo. Therefore, music performance can be regarded
as an instance of a performer’s interpretation of the given
music score. The artistic quality of interpretation is often
measured and ranked quantitatively in music competitions,
and some pianists gain international and historical fame for
their interpretation. Revealing the secret of great pianists
was one of the long-cherished goals in music performance
analysis (Widmer et al., 2003).

Modeling expressive performance with computational meth-
ods is a task that challenges the imitation of the complex and
artistic activity of expert human musicians. Starting from
the rule-based approach in early period (Sundberg et al.,
1983), many researchers have tackled this task with various
methods, such as Gaussian Process (Teramura et al., 2008),
switching Kalman Filter(Gu & Raphael, 2012), Bayesian
networks (Flossmann et al., 2013), and conditional ran-
dom fields (Kim et al., 2013). Some of recent research
employed recurrent neural network (RNN) (Lauly, 2010;
Chacén & Grachten, 2016; Malik & Ek, 2017; Jeong et al.,
2018; Maezawa, 2018). However, research using deep neu-
ral networks still lacks in this task despite of the potential
capability.

Recently, generative models using deep neural network
achieved remarkable results in visual and audio domains
such as image synthesis (Van den Oord et al., 2016; Wang
et al., 2018b), video generation (Tulyakov et al., 2018), and
speech synthesis (Van Den Oord et al., 2016; Wang et al.,
2017). There have been also notable achievements in mu-
sic generation tasks such as automatic music composition
(Huang et al., 2019), and automatic music transcription and
sound synthesis (Hawthorne et al., 2019).

One of the main issues in applying neural networks to music
data, particularly, music score data is defining the input
structure. Music score data is often handled as 1D sequential
data by ordering note events with its time position and pitch
(Simon & Oore, 2017; Oore et al., 2018; Jeong et al., 2018).
But this is dissimilar to a sequence of word or audio samples
because of distinct characteristics of musical notes. For
example, two notes can be a sequence in one voice but
also they can be in polyphony. In some cases, a rest can
be inserted between the two, or the preceding note can be
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Figure 1. The main idea of the proposed music score encoding
model. It learns note-level representations with a graph neural
network and their measure-level dependency with a recurrent neu-
ral network. Although the graph is represented for only a single
measure, it connects the entire notes in the piece regardless of the
measure boundary.

sustained while the following note begins. Representing the
two notes as an 1D sequence discards these multifaceted
relations between musical notes.

Another input representation is plotting notes as a piano-
roll-like 2D matrix by sampling the note activity in time
(Malik & Ek, 2017; Maezawa, 2018). The piano-role matrix
can be regarded as an image and so it is easy to handle
it with a convolutional neural network (CNN). However,
the sampling-based representation requires much higher di-
mensionality compared to the event-based representation of
notes. Furthermore, if the rhythm of music becomes com-
plex, the temporal dimensionality increases even more ac-
cording to the required time resolution. For example, our
music score dataset includes septuplets (seven notes for a
quarter note) and sixteenth notes. This requires at least 28
grids per quarter note to discretize the time axis. This high
dimensionality in time may hinder the model from learn-
ing long-term musical structure (Korzeniowski & Widmer,
2017).

To address this issue, we propose a model based on graph
neural network (GNN). This represents music score as a
graph that capture multifaceted relations of note events in
music score. Each note is regarded as a node in the graph
and the neighboring notes are connected with different types
of edges depending on their musical relations in the score.
As illustrated in Figure 1, we incorporate the graph neural
network into a measure-level RNN model to learn the long-
term structure. Furthermore, we suggest an iterative loop
for updating the inputs of GNN and RNN using the results
from each other.

As similar to other generative tasks, generating various types
of results for a given condition is an important goal for
modeling expressive performance. We employ variational
auto-encoder (VAE) (Kingma & Welling, 2014) to train
the model with the data that consist of the same condition

C but with different output Y, e.g., difference styles of
performances with the same music score, without teacher-
force or scheduled sampling (Bengio et al., 2015).

Note that the scope of our system focuses on generating
a performance in MIDI format for a given music score
in musicXML format. Automatic composition or sound
synthesis of performance is out of the scope. Also, this
paper will focus on the utilization of graph neural network
rather than the VAE module because of the limited space in
this paper.

1.1. Contribution

This paper presents the first attempt to apply a graph neural
network to learn note representations from music scores in
western notation. To fully exploit the temporal characteris-
tics of music data, we propose a novel method to combine
graph neural network with hierarchical attention RNN in an
iterative feedback method. Although there have been many
data-driven approaches for generating expressive piano per-
formance, this paper is first to employ a deep neural network
that covers the full expression of piano performance without
any extra manual annotation, and also includes quantitative
and qualitative evaluation.

2. Background
2.1. Graph Neural Network

While CNN and RNN achieved a significant progress in im-
age processing and sequence modeling, respectively, there
are various types of data that cannot be properly handled
with these networks and graph is one of the examples. Early
research for handling graph data with graph neural network
(GNN) was introduced by (Gori et al., 2005) and (Scarselli
et al., 2009). (Li et al., 2016) introduced gated graph neural
network (GGNN), which combines a gated recurrent unit
of modern RNN practice with GNN. While the previous
models were restricted by contraction mapping, the GGNN
model first overcame this limitation. Recent research using
GNN has achieved state-of-the-art results in various tasks
such as analyzing citation network (Kipf & Welling, 2016),
molecular structure (Jin et al., 2018), program code (Alla-
manis et al., 2018), and learning structured policy (Wang
et al., 2018a).

2.2. Variational Auto-encoder

Variational auto-encoder (VAE) is a type of auto-encoder
that compresses the input data x into a low-dimensional
vector z. VAE differs from a standard auto-encoder in that it
learns posterior p(z|x) for encoding and likelihood p(z|z)
for decoding instead of a deterministic function. Also, VAE
constrains the distribution of z to follow prior p(z), which is
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normally a Gaussian distribution (Kingma & Welling, 2014).
The loss function of VAE is as follow:

Lyag = Lrec + BDk 1[(go(2]2)||p(2)] (D

where the first term L. denotes the reconstruction error
and the second term represents Kullback-Leibler divergence
(KLD) between the posterior and the prior. 8 is a weight
of KLD in total loss which is a hyperparameter during the
training of the model (Bowman et al., 2016).

3. Model

Our model combines note-level gated graph neural network
(GGNN) (Li et al., 2016) and measure-level hierarchical
attention network (HAN) with LSTM (Yang et al., 2016) in
an iterative method. In this section, we explain how these
methods are implemented in our system.

3.1. Gated Graph Neural Network

We employ directional multi-edge-type GGNN (Li et al.,
2016) to learn note-level hidden representations from an
input music score. The input of the graph neural network
can be represented as a graph G = (V, ), where V and
& denotes nodes and edges, respectively. If the input is a
music score, a node v corresponds to a single note in the
score and an edge e corresponds to a connection between
two musically neighboring notes.

We define six edge types in musical score: next, rest, onset,
sustain, voice, and slur as shown in Figure 2. A next edge
connects a note to its following note, i.e., the following
note that begins exactly when the note ends. A rest edge
links a note with the rest following to other notes that begin
when the rest ends. If there are consecutive rests, they are
combined as a single rest. An onset edge is to connect notes
that begin together, i.e., on the same onset. Notes that appear
between a note start and its end are connected by sustain
edges. voice edges are a subset of next edges which connect
notes in the same voice only. Among voice edges, we add
slur edges between notes under the same slur. All edges
are directed except onset edges. We regard forward and
backward directions as a different type of edges. We also add
a self-connection to every note. Therefore, a total number
of edge types are twelve. Each edge type shares different
weight parameters.

Among various types of graph neural network, we employ
GGNN (Li et al., 2016) because of its advantage in learning
node-level representations in a graph. During the informa-
tion propagation, GGNN uses the propagation rule of gated
recurrent unit (Cho et al., 2014) which can be represented
as below:
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Figure 2. An example of edge types in a music score. The note in
the red box is connected with neighboring notes, having next, onset,
sustain, slur, voice edges. Another note in the red dashed-box is
connected with two notes after the rest, having rest edges.
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where A represents an adjacency matrix of graph edges, hf
denotes the hidden state of node v at the ¢-th iteration, ¢ and
® represent the sigmoid function and hadamard product,
respectively.

The model can be modified to limit the propagation to spe-
cific dimension of the hidden state, so that only a portion of
hidden states are updated and the others remain constant. In
this partial-GGNN, where the input dimension is D and the
number of updated dimension is d, the dimension of weight
matrices W?, W" U* U", and W becomes D x d instead
of D x D, and the dimension of U becomes d X d.

3.2. Hierarchical Attention RNN

Exploiting hierarchies of information is important for deep
neural network (Lecun et al., 2015). While CNN naturally
learns the hierarchies in spatial data with pooling, RNN
needs a modified architecture to explicitly learn such hi-
erarchical representations. Various types of solutions have
been proposed particularly in the field of natural language
processing where word, sentence and paragraphs are hier-
archical units in document data. They include hierarchical
RNN (HRNN) (Ling et al., 2015), hierarchical multiscale
RNN (HM-RNN) (Chung et al., 2017), and hierarchical at-
tention RNN (HAN) (Yang et al., 2016). Since music also
has a hierarchical structure such as beat, measure, phrase,
and section, some of music generation models exploited it
to improve their performance. For example, (Roberts et al.,
2018) proposed a hierarchical decoder model for music



Graph Neural Network for Music Score Data and Modeling Expressive Piano Performance

generation VAE. Our previous work (Jeong et al., 2018) em-
ployed HAN for rendering expressive piano performance.

Among various hierarchical RNN models, we employ HAN
because it is directly applicable to graph neural network. In
HRNN and HM-RNN, the hidden state in lower-level h?
is fed into higher-level h} at the hierarchical boundary t.
But if the lower-level network is GNN instead of RNN, it
is difficult to define hY because there can be several nodes
at the hierarchical boundary ¢, e.g., at the end of a measure
in a music score. Also, h; naturally includes information
of all previous state hg, h1,...ht—1 so that a single hidden
state can represent the whole previous sequence. But in
the case of GNN, the range of hidden state propagation is
limited to the number of iterations. Therefore, the number
of minimum iterations required for a single hidden state to
contain the states of all other nodes in a boundary (e.g., all
notes in a measure) is not constant. On the other hand, HAN
uses attention to summarize the lower-level representations,
hence it is directly applicable to any type of networks such
as a simple dense network, RNN, or GNN.

In our system, we compose a measure vector from notes
representations using a context attention proposed in (Yang
et al., 2016). Instead of strictly following the context at-
tention, we modify it to employ a concept of multi-head
attention as proposed in (Vaswani et al., 2017). Rather than
applying a constant weight to the whole dimension, weight
« and hidden state h,, are divided into I number of heads
with the same number of dimension, so that each head of
hidden state satisfies hi € RY, where d = D/I denotes
dimension of a single head and D denotes a dimension of
original hidden states . For each hierarchical boundary M
which can be a beat or a measure in a music score, the lower-
level hidden state h, for the node v in M is summarized
by context attention to compose a higher-level node m. The
following equations illustrates the computation:

u, = tanh(W,h, + b,)

f, = W i:(i4+1)d

b, = hy i1y

i _ exp(u;,Tu;) (3)
© X pexp(ugTuy)

m' =) "al «h

m = Concat(m’, ..., m’)

where u. denotes a context vector. The context vector repre-
sents a query for importance, and it is a trainable parameter.
The sequence of attention sum m is used for the input of the
higher-level RNN to make a sequence of higher-level hidden
state H,,, € RLm*Pm where L,,, denotes number of mea-
sures. We can span H,,, to have the same sequence length
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Figure 3. The iterative procedure of updating note-level and
measure-level representations in ISGN. Note and Measure repre-
sent note-level representations and measure-level representations,
respectively.

with the lower-level hidden units by concatenating them:
H,, ;= [h:f\éo . h;L]\iLWT |, where N; denotes the number

of notes in the i-th measure.

3.3. Iterative Sequential Graph Network

A simple way to combine the outputs from different hi-
erarchical units is concatenating them as a single vector.
However, this approach has a limitation that the lower-level
layers cannot be conditioned on long-term contexts encoded
in higher layers because the higher-level outputs do not in-
fluence lower-level layers back. In HRNN and HM-RNN,
hidden states in lower-level are fed into higher-level at the
hierarchical boundary, and vice versa. In HAN, however,
hidden state propagation is only done in the bottom-up direc-
tion. This limitation does not matter much when the target
result of the model is a single output given a sequential
input, such as in document classification which HAN was
originally applied to (Yang et al., 2016). In our application
where the musical representation is learned for each note in
a sequence-to-sequence manner, it is crucial to consider a
more extended context when calculating note-level hidden
states, so that the model can learn the role of a note not only
in a local context but also in a longer context such as phrase
or section that it belongs to. To overcome this limitation, we
propose a novel combination of GGNN and HAN that we
refer to it as iterative sequential graph network (ISGN), in
which GGNN and HAN feed their results to each other in
an iterative way as described in Figure 3.

Instead of giving only note-level representation as an input
to GGNN, we add higher-level hidden state by concatenat-
ing with the note-level data, so that each node contains both
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Figure 4. The architecture of the proposed model. The dashed lines
indicate iteration loops. The performance encoder is only used in
training phase. The performance style vector z can be randomly
generated for inference.

its note-level hidden state and the corresponding higher-
level states. At the first iteration, the higher-level states are
initialized to zero. During the GGNN propagation, only the
note-level states are updated while the higher-level states re-
main as constant parameters. After the GGNN propagation,
the model derives new higher-level states with the HAN
module. The updated higher-level states are then again con-
catenated with note-level states. This process is iterated by
K times where K is the number of iterations and a hyperpa-
rameter of the model.

There are two advantages of this combined architecture.
One is that lower-level GGNN can consider longer tempo-
ral context by taking the output of higher-level HAN as
its input during iteration. The other advantage is that em-
ploying sequential RNN can compensate for the lack of
auto-regressive decoding in GGNN. While auto-regressive
inference is a standard method in sequence generating RNN,
it is impossible for GGNN to fix an output in ¢ and predict
the next output at ¢ + 1 considering the previous outputs
from 0, 1, ..., ¢ since the graph can contain cyclic connec-
tion. Recent research showed that iterative refinement can
compensate the disadvantage of non-auto-regressive model
(Lee et al., 2018). Our proposed model can be also regarded
as an iterative refinement. On each iteration, the target loss

of predicted performance features SA(N is summed up to the
total loss, thus gradients does not have to pass through all
iterations. Although the idea of ISGN was proposed to deal
music score data in this paper, the model can be applied
to other type of data that has the property of both graph
and time sequence, such as a graph structure with temporal
progress.

4. Expressive Performance Rendering System

Figure 4 shows the entire system for expressive performance
rendering. We describe the input and output features, and
the modules of the system.

4.1. Input and Output Features

Our model exploits pre-defined score and performance fea-
tures for input and output. The feature extraction scheme
is detailed in (Jeong et al., 2019). The input features in-
clude various type of musical information such as pitch and
duration of note, tempo and dynamic markings. The input
features are all embedded in note-level. The output features
consist of tempo, MIDI velocity (loudness), onset deviation
(micro-timing of each note), articulation (duration ratio),
and seven features to handle piano pedaling.

4.2. Modules

Our system consists of three modules: a score encoder Ej,
a performance encoder, F,, and a performance decoder D,,.
For a given score input X, the score module Fs infers a
score condition C. The score module employs ISGN with
two GGNN layers and a single layer of measure-level RNN
with a long short term memory (LSTM). The initial input X
passes through the three-layer dense network. The first layer
of GGNN updates note-level features only, and measure-
level features remain fixed. The second layer of GGNN
updates the whole hidden state. The outputs of both layers
are concatenated to compose C as a skip connection.

For the encoded score condition C and its corresponding
performance features Y, the performance encoder module
encodes the performance style, Y for given C, as a latent
vector z. The input of the style encoder is the score con-
dition C concatenated with its corresponding performance
features Y. The dimension of concatenated data is reduced
with a dense layer and used for input of the performance
encoder. The performance encoder consists of a GGNN and
two-layers measure-level LSTM. The higher-level of per-
formance encoder employs HAN instead of ISGN since it
focuses on the summarization of total sequence rather than
characteristics of individual notes. During the inference, the
encoder can be bypassed by sampling z from the normal
distribution or using a pre-encoded z.

The last part of the system is the performance decoder

D :C,z, ?0 Y, which generates the performance fea-
tures Y. We employ the ISGN structure in the decoder mod-
ule as well. It infers performance parameters for each note
in the input score by the iterative method. We employed the
concept of hierarchical decoding of latent vector in VAE
introduced in (Roberts et al., 2018). Instead of directly using
the encoded z, we decode z into measure-level by concate-
nating z* Lm with measure-level representation H,,, in the
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encoded score C and feeding it to another LSTM module.
The LSTM module returns measure-level performance style
vector z,,, € REm*Pe where L,, and D, represent number
of measures and dimension of encoded vector z.

The input data of the ISGN performance decoder is a con-
catenation of score condition C, measure-level performance

<0
style vector z,,,, and initial performance parameters Y . The
hierarchical RNN of ISGN is a beat-level LSTM so that the
module can directly infer beat-level tempo from the output

of the RNN. The initial output f(o is generated by a sim-
ple dense network. The input of GGNN is concatenation

of C,z,,, ?0 with additional zero padding. The GGNN up-
dates dimensions for Y and zero-padded dimension so that
C and z,,, remain constant.

5. Related Works

Most notable recent research in music generation using deep
neural network is Music Transformer (Huang et al., 2019).
The aim of the research is generating music by combining
composition and performing as a single stage. Based on the
original Transformer model that consists of self-attention
(Vaswani et al., 2017), they proposed relative positional
embedding for pitch and time and succeeded in generating
a musical piece with long-term structure by outperform-
ing their former LSTM-based model(Oore et al., 2018).
As aforementioned, however, the task is different from the
scope in this paper. While our research focuses on inter-
preting and performing a given score, Music Transformer is
more like making improvisations.

Recently, VAE has been utilized in several music data
generation models, such as music generation (Roberts
et al., 2018), musical style transfer (Brunner et al., 2018).
(Maezawa, 2018) employed conditional VAE for expressive
music performance as we did in this work. However, the
latent vector in VAE was generated in note-level whereas
our model encodes an entire performance with VAE so
that a single latent vector can represents the performance
style throughout the piece. There has been research on au-
tomatic generation of expressive performance task using
data-driven approach including neural networks, which is
well summarized in (Cancino-Chacén et al., 2018) but they
implemented limited performance elements. For example,
they inferred only dynamics (Malik & Ek, 2017), neglected
tempo change (Lauly, 2010; Giraldo & Ramirez, 2016), as-
sumed that the melody is always in high pitch (Flossmann
et al., 2013; Kim et al., 2013), or used normalized tempo
(Grachten & Cancino Chacén, 2017). Our model aims to
implement full-blown performance elements.

Employing a graph-like connection for music data was also
utilized in generating expressive performance for jazz music
(Moulieras & Pachet, 2016). But the system was limited

Table 1. Comparison of model architectures. E, E,, and D,, in-
dicate the score encoder, performance encoder and performance
decoder, respectively, of the expressive performance rendering
system. AR LSTM indicates an auto-regressive LSTM decoder.

Model E, K, D,
BL LSTM (note)
HAN .LSTM AR
(note, voice, beat, meas.) | LSTM LSTM
GGNN + LSTM
G-HAN
(beat, meas.)
Proposed ISGN w/ meas. GGNN | ISGN

to handling monophonic melody only and the graph con-
nection was used to capture different features of notes in
monophonic melody. This is fundamentally different from
our proposed graph model than handles polyphonic music.

6. Experiment
6.1. Data

Since there was no available public data set for our task,
we created our own data set by collecting pairs of score
in MusicXML and corresponding performances in MIDI.
We collected the score files from MuseScore! and Musi-
calion?, and the performance MIDI files from Yamaha e-
competition data®. The performance data consists of human
piano performances of classical music from the Baroque to
contemporary music, which were recorded by a computer-
controlled piano (Yamaha Disklavier) during the competi-
tions. This dataset has been widely used in music generation
tasks (Huang et al., 2019; Hawthorne et al., 2019). To make
note-level score and performance data pairs, XML-to-MIDI
matching is required. We utilized an automatic alignment
algorithm (Nakamura et al., 2017) to synchronize the score
XML to performance MIDI in note-level.

In our data set, there are 227 pieces by 16 composers with
1061 performances and 3,606,930 notes, when we count
notes from different performances of a single piece sepa-
rately. We split the data set into train, validation, and test set
so that each set has the size of approximately 8:1:1 in terms
of the number of pieces, performances, and notes. We also
considered the composer distribution in the split. Since the
result of the performance rendering is mostly dependent on
the characteristics of the piece, i.e., score condition, we split
the data set in piece-wise so that each piece only belongs to
one of the subsets.

'nttps://musescore.com/sheetmusic
https://www.musicalion.com/
*http://www.yamahaden.com/midi-files
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6.2. Comparative models

We set up several comparative models to evaluate the per-
formance of our proposed model. For the comparison, we
implemented the VAE version of our previous work based
on HAN (Jeong et al., 2018) and its modified versions. The
HAN model consists of score encoder using HAN and a per-
formance decoder. The score encoder module employs note-
wise and voice-wise LSTM for note-level representations
and HAN for beat-level and measure-level representations.
All the LSTM layers are bidirectional in the score encoder.
One of the modifications as a Baseline (BL) omits HAN and
voice-wise LSTM, thereby having only note-wise LSTM
for score encoding. Another modification is replacing note-
wise and voice-wise LSTM with GGNN. This is termed as
G-HAN.

Table 1 summarizes the architectures of the compared mod-
els. BL, HAN and G-HAN models have the same architec-
ture in the performance encoder and decoder. For the perfor-
mance encoder, we use note-level LSTM encoder for a con-
catenated input (C,Y) and measure-level attention LSTM.
The decoder is composed of a single-layer auto-regressive
unidirectional LSTM. To employ the LSTM structure, the
input notes was represented as an 1D sequence using the
time position and pitch of individual notes.

6.3. Training

We trained all models using the Adam optimizer (Kingma &
Ba, 2015) with a learning rate of 0.0003, weight decay of le-
5, and dropout of 0.1. For the training batch, the notes were
sliced at the end of measure that include the 400-th note. We
tried both classification and regression for the output, but the
output quality was better in regression. Therefore, we used
mean square error for the loss, and the output features were
all normalized with y = 0,0 = 1. The loss was calculated
note-wise except the tempo loss, which was calculated in
beat-wise. Since human performances can include missing
notes compared to the music score, some of the input notes
X do not have the corresponding output feature Y. These
non-matched notes were excluded in loss calculation. The
number of parameters of each model was about 4M.

Training an RNN-based VAE model is a challenging prob-
lem because the latent vector z can be by-passed in the
decoder RNN (Bowman et al., 2016). This is especially
more crucial to our model because the decoder takes not
only latent vector z but also score information as a condition.
As (Widmer et al., 2003) pointed out, there are common-
alities between human performances of the same music.
Therefore, the model can reproduce reasonable performance
Y without the latent vector z, i.e., neglecting the style of
the specific performance. Therefore, we employed a KLLD
weight annealing, which starts from zero up to 0.02 or 0.003,
0.0003 depending on the model.

Table 2. Reconstruction loss of each model on the test set by the
output features. The loss is represented as mean square errors
(MSE) of each output feature (tempo, velocity, onset deviation,
sum of seven pedal features and articulation, and the KLD of

p(z|z).

Model Tempo Vel Dev Pedal KLD

BL 0.2721 | 0.6011 | 0.7678 | 0.8056 | 2.2581
HAN 0.2380 | 0.6290 | 0.7938 | 0.7681 | 13.666
G-HAN | 0.2785 | 0.6212 | 0.7705 | 0.8092 | 7.1113
Proposed | 0.2379 | 0.5877 | 0.7978 | 0.7544 | 3.7247

6.4. Evaluation
6.4.1. RECONSTRUCTION LOSS

One of the metrics for the quantitative evaluation in per-
formance modeling is the mean square error of the output
features between a “target” human performance and the
generated one (Cancino-Chacén et al., 2018). Unlike other
generative tasks, performances of the same piece are easily
comparable by examining how they performed the notes in
the same context with different performance features. Since
there are many valid ways for playing the given piece, it
might be arbitrary to directly compare the generated per-
formance with a “target” performance. But in our case, the
comparison is reasonable because our system encodes the
“style” of given target performance and generates complete
performance for the encoded style.

We measured the reconstruction loss in terms of the mean
square error of each output features and KL divergence
of p(z|z) using our score input and corresponding human
performances in the test set, which is the same definition for
calculating loss in the training and validation steps. For a
given score and performance pair in the test set, the model
encoded the score and performance style of the piece and
reconstructed the output. The result is shown in Table 2. The
errors are represented in the average of piece-wise MSE loss
of 21 pieces in the test set.

The proposed model showed the best results in tempo, ve-
locity and pedal estimation, while the baseline was better
in onset deviation and KL divergence. The small loss in
the reconstruction error indicates that the model is capable
of predicting human-like performance features for given
scores even in the unseen data. The high KL divergence of
the HAN model indicates that the model worked more like
an ordinary autoencoder, rather than limiting the p(z|x) into
the normal distribution of ;+ = 0 and o = 1. The divergence
could be reduced if we applied higher KLD weight dur-
ing the training but we failed to find a proper KLD weight
without model collapse.
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Table 3. The result of tempo correlation between the generated
performances and human performances in the selected 50 excerpts.
r denotes the maximum value of correlation coefficients between
each model performance and human performances. r > x repre-
sents the number of excerpts that satisfied the condition.

Model avgr | r>09 | r>0.7 | r>0.5
BL 0.6604 18 29 36
HAN 0.6943 19 34 40
G-HAN | 0.6994 21 32 41
Proposed | 0.6821 18 35 42

6.4.2. CORRELATION

Another metric is measuring the correlation between gen-
erated performances and human performances, which sev-
eral previous works used (Cancino-Chacén et al., 2017;
Flossmann et al., 2009). As suggested in recent work on
evaluating automatic music composition (Yang & Lerch,
2018), we investigated the intra-set correlation in human
performances and the inter-set correlation between gener-
ated performances and human performances.

We first measured the correlation in beat tempo between
different human performances of the same piece. Among
the various pieces in the test set, we sorted out the excerpts
in which the human performances showed strong common-
alities, i.e., min(r) > 0.75, where r denotes Pearson cor-
relation coefficient. Each piece was cut into excerpts with
at least 30 beats included. Among the test set, 28 excerpts
satisfied the condition of correlation coefficient. Then, we
generated the performance of given pieces with each model,
with the z sampled from the A/(0, 1). We measured the cor-
relation coefficients between the generative performance
and each human performance. We counted only the maxi-
mum correlation coefficient for each excerpt.

The results are presented in Table 3. The proposed model
achieved the highest number of excerpts for » > 0.7 and
r > 0.5, showing that it generates human-like tempo curve
for most various patterns of input score. However, the
marginal differences among models indicate that we still
need further research on quantitative evaluation for perfor-
mance modeling.

6.4.3. LISTENING TEST

For the qualitative evaluation, we conducted a pairwise lis-
tening test to judge the quality of output performance of
our model. Among the 21 pieces in the test set, we selected
6 pieces for the listening test considering the composer of
the piece. We generated the performance MIDI files of each
piece using three different models including BL, HAN, and
ISGN (the proposed). The performance style vector z was
sampled from N'(0, 1).

Total Wins Wins to Human

i
. | I

A s, & A, Human Human Human
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ISGN BL HAN
Human ISGN Baseline HAN

Figure 5. The number of wins on pair-wise comparison across hu-
man performance and performance rendering models (left) and the
number of wins on pair-wise comparison between human perfor-
mance and each of performance rendering models (right). Higher
scores represent better musical quality to participants in the listen-
ing test.

The generated performances and the human pianist perfor-
mances in Yamaha E-competition data were recorded in au-
dio by performing the MIDI files with a computer-controlled
piano. In the experiment, we used only 30 seconds of each
recording*. We asked the subjects to listen to a pair of per-
formance of the same piece and choose a performance with
better musical quality. We recruited a group of subjects
among college students for the listening test. The total num-
ber of subjects was 40. Each participant evaluated half of
all possible combinations and we collected 720 responses
in total. Each model was involved in 360 evaluations.

Figure 5 shows the statistics of the listening test. The pro-
posed ISGN model recorded the highest number in total
win among the generative models, and also highest win rate
when each of generated performance was compared with hu-
man performance. However, further investigation is needed
because the difference between ISGN and the others was not
significant in the total wins, and there is a large fluctuation
depending on the piece.

7. Conclusion

We proposed an iterative sequential graph network which
combines gated graph neural network and hierarchical at-
tention RNN for modeling expressive piano performance
for the given music score. The quantitative and qualitative
evaluation showed that the proposed model made a notable
improvement compared to the previous models. For future
work, we will investigate more on evaluating the expressive
performance models quantitatively.

* Audio files are available in the supplementary file
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