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Supplementary Materials

A. Further Specification of Experiments and Additional Results
A.1. Generation of Black-Box Adversarial Examples

Parameter selection for algorithms under comparison. For ZO-SGD and ZO-SVRG-Ave, we adopt the implementations?
from Liu et al. 2018b. As recommended by Liu et al. 2018b, we set the epoch length ¢ = 10 for ZO-SVRG-Ave, and select
the mini-batch size | S| from {5, 10, 50} and the stepsize 7 from {1, 10, 20, 30, 40} /d for both ZO-SGD and ZO-SVRG-Ave,
and we present the best performance among these parameters, where d = 28 x 28 is the input dimension. For SPIDER-SZO,
we set the parameters by Theorem 8 in Fang et al. 2018. Namely, we choose the epoch length ¢ from {30, 50, 80}, mini-batch
size | S| from {5, 80, 700}, and 7 from {0.1,0.01}/||v*||, and we present the best performance among these parameters.
The parameters chosen for our ZO-SVRG-Coord-Rand, ZO-SVRG-Coord (based on our new analysis, which allows a larger
stepsize with performance guarantee) and ZO-SPIDER-Coord are listed in Table 4. For all algorithms, we choose |S;| = n,
and set the smoothing parameters 5 = 0.01 and § = 0.001.
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Figure 3. Comparison of different zeroth-order algorithms for generating black-box adversarial examples for digit “4” class

Table 3. Generated adversarial examples for digit “4” class, where image distortion is defined as % ' lagdr — a2
Image ID Image distortion
.
70-SGD i "'; ; |-’ ﬁ: q f,{ 11.46
Classified as

Classified as

Classified as

A.2. Nonconvex logistic regression

Parameter selection for algorithms under comparison. For all algorithms, we choose fixed mini-batch sizes |S1| = n
and |Sz| = 128, the epoch length ¢ = n/128 for german dataset, and choose fixed mini-batch sizes |S;| = 50 * 256
and |Sa| = 256, the epoch length ¢ = n/256 for ijennl dataset. In addition, we set the learning rate for all algorithms

3https ://github.com/IBM/Z0SVRG-BlackBox—Adv
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Table 4. Parameter settings for ZO-SVRG-Coord-Rand (left), ZO-SVRG-Coord (middle) and ZO-SPIDER-Coord (right).

Parameters n =10 n =100 Parameters n =10 n =100 Parameters n =10 n =100
q 50 80 q 30 50 q 30 50
|Sa| 80 700 |S2| 5 70 |Sa| 5 70
i 0.102 0.663 7 0.102 0.255 n 0.064 0.255

according to their convergence guarantee. In specific, we choose 7 = 0.8 for ZO-SVRG-Coord-Rand, ZO-SPIDER-Coord,
Z0-SVRG-Coord, and choose 7 = 0.8/d for ZO-SGD, ZO-SVRG-Ave, and set 7 = 0.84/€/||vg|| for SPIDER-SZO, as
specified in Fang et al. 2018.

B. Zeroth-Order Nonconvex Nonsmooth Composite Optimization

Zeroth-order optimization has been studied for nonconvex and nonsmooth objective function in (Ghadimi et al., 2016),
where a zeroth-order stochastic algorithm named RSPGF has been proposed. Here, we propose a zeroth-order stochastic
variance-reduced algorithm for the same objective function, and show that it order-wisely outperforms RSPGF.

B.1. PROX-ZO-SPIDER-Coord for Composite Optimization

In this subsection, we extend our study of ZO-SPIDER-Coord to the following nonconvex and nonsmooth composite
problem

x€R4

min W(x) = [(x) + h(), f() = = 3 i) (15)
i=1

where each f;(x) is smooth and nonconvex, h(x) is a nonsmooth convex function ( e.g., h(x) = A||x]|1, A > 0). To address
the nonsmooth term h(x) in the objective function (15), we propose PROX-ZO-SPIDER-Coord algorithm, which replaces
line 8 in Algorithm 2 by a proximal gradient step

k+1

1 .
xF = arg m]ithli {(vF,x) + —|x —x"||” + h(x) }.
pS

2n
Similarly to Ghadimi et al. 2016, we define
1
G(x,Vf(x),n) = ; (x —x*) (16)

as a generalized projected gradient of W(-) at the point x and use it to characterize the convergence criterion, where the
point x™ is given by the proximal mapping

1
= in ¢ (V —|lz—x|*+/ :
= arg i {(9160,2) + o - x1? 4 h(a) |
Based on the above notations, we provide the following convergence guarantee for PROX-ZO-SPIDER-Coord.

Theorem 5. Let Assumption 1 hold, and we choose the same parameters as in Corollary 3. Then our PROX-ZO-SPIDER-
Coord satisfies E||G(x%, Vf(x%),n)[|> < (60Ay, L + 80 + 6902) /K + 138/ K2, where 0 < Ay, = ¥(x°) — (x*) < o0
and X* = arg min,cga 1(x).

To achieve E||G(x¢, V f(x°),n)||? < € the number of function queries is at most O (min {n'/2de~!, de=3/2}).

Let us compare our PROX-ZO-SPIDER-Coord algorithm with the randomized stochastic projected gradient free algorithm
RSPGEF, introduced by Ghadimi et al. 2016. Casting Corollary 8 in Ghadimi et al. 2016 to the setting of our Theorem 5 yields

E|G(xS, Vf(x%),n)|* <O (}% + fi) , where K is the total number of function queries. Thus, RSPGF requires at most
K

O(d/€?) function queries to achieve E||G(x¢, V£(x¢),n)||? < € < 1. As a comparison, the function query complexity of

PROX-ZO-SPIDER-Coord outperforms that of RSPGF (Ghadimi et al., 2016) by a factor of O(max{e~'n=1/2 ¢=1/2}).
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C. Zeroth-Order Variance-Reduced Algorithms for Convex Optimization

In this paper, we have proposed two new zeroth-order variance-reduced algorithms ZO-SVRG-Coord-Rand and ZO-
SPIDER-Coord, and have studied their performance for nonconvex optimization. In this section, we study the performance
of these two algorithms for convex optimization, where each individual function f;(-) is convex. We note that there was no
proven convergence guarantee for previously proposed zeroth-order SVRG-based and SPIDER-based algorithms for convex
optimization.

C.1. ZO-SVRG-Coord-Rand-C Algorithm

In this subsection, we explore the convergence performance of ZO-SVRG-Coord-Rand for convex optimization. To fully
utilize the convexity of the objective function, we propose a variant of our ZO-SVRG-Coord-Rand, which we refer to
as ZO-SVRG-Coord-Rand-C. Differently from ZO-SVRG-Coord-Rand, the outer-loop iteration (i.e., k& mod ¢ = 0) of
Z0-SVRG-Coord-Rand-C chooses x* from {x*~4,...,x*~1} uniformly at random, which is a typical treatment used in
convex first-order optimization (Reddi et al., 2016a; Nguyen et al., 2017a). In the meanwhile, the inner-loop iteration of
Z0-SVRG-Coord-Rand-C is the same as single-sample ZO-SVRG-Coord-Rand, which computes v = Vyanafi, (x; u¥) —
@mnd fis (quo cuP )+ viko with a single sample i; drawn from [n] and a smoothing vector u” drawn from the uniform
distribution over the unit sphere. .

The following theorem provides the function query complexity for ZO-SVRG-Coord-Rand-C.

Theorem 6. Under Assumption 1, let n = 1/(27dL), 8 = €/(cgdL),8 = ¢/(csV/dL),q = cyd/e, h = logy(cp/€)) and
|S| = min{n, [¢s/€]|}, where ¢, cp,, cg, cs and cs are sufficiently large positive constants. Then, to achieve an e-accuracy
solution, i.e., E(f(xX) — f(x*)) < ¢, the number of function queries required by ZO-SVRG-Coord-Rand-C algorithm is at
most O(dmin{n, 1/e}log(1/e)).

Let us compare our result with that of ZO-SGD given by Ghadimi & Lan 2013. Casting Corollary 3.3 in Ghadimi & Lan
2013 under the setting of our Corollary 6 implies that the function query complexity of ZO-SGD is O(d/e?), which is worse
than that of our ZO-SVRG-Coord-Rand-C by a factor of O(max{e 2n=1, ¢ 1}).

C.2. ZO-SPIDER-Coord-C Algorithm

In this subsection, we generalize our ZO-SPIDER-Coord to solving convex optimization problem, and proposes the ZO-
SPIDER-Coord-C algorithm. ZO-SPIDER-Coord-C has the same outer-loop iteration as ZO-SVRG-Coord-Rand-C, but
updates v* in a different way by v¥ = Veoora fi,. (X¥) — Veoora fi, (x¥71) + v¥~1 at each inner-loop iteration.

Based on Lemma 6, we obtain the following complexity result for ZO-SPIDER-Coord-C.
Theorem 7. Under Assumption 1, let 1 = 1/(24L),q = c,/e, h = logy(cn/€)),6 = €/(cgVdL) and |S| =

min{n, [cs/€|}, where cq, ¢, and c, are sufficiently large positive constants. Then, to achieve an e-accuracy solution, i.e.,
E||V f(x5)||? < €, the number of function queries required by ZO-SPIDER-Coord-C is at most O(dmin{n, 1/} log(1/¢))

Note that ZO-SPIDER-Coord-C achieves the same function query complexity as that of ZO-SVRG-Coord-Rand-C, and

improves that of ZO-SGD (Ghadimi & Lan, 2013) by a factor of O(max{e~2n~1, e~1}) w.r.t. stationary gap E||V f (x%)||2.
The detailed comparison among our algorithms and other exiting algorithms is summarized in Table 5.

Table 5. Comparison of zeroth-order algorithms in terms of the function query complexity for convex optimization.

Algorithms Function query complexity  Function value convergence
7Z0-SGD (Ghadimi & Lan, 2013) 0(%) v
7ZSCG (Balasubramanian & Ghadimi, 2018) 0(%) v
M-ZSCG (Balasubramanian & Ghadimi, 2018) 0(%) v
Z0-SPIDER-Coord-C (This work) O(min{dn, ¢}log (1)) X
Z0O-SVRG-Coord-Rand-C  (This work) O(min{dn, ¢} log (1)) v
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Technical Proofs

D. Proof for ZO-SVRG-Coord-Rand
D.1. Auxiliary Lemmas

Before proving our main results, we first establish three useful lemmas.

Lemma 3. For any given smoothing parameter § > 0 and any x € R%, we have

[Veoora.f(x) — VF(x)[|* < L*d6>.

Proof. Applying the mean value theorem (MVT) to the gradient V f(x), we have, for any given § > 0,

d
~ 2
Vewors () = VI = |5 Do2beiel T+ (20— 1)den)) — V)| for 0. <t < 1,

(')d )
25

d .. d
<> HVf(x+ (2t; — 1)de;) — Vf(x)H2 2 S lI@t - 1)del])* < L2ds”
=1

i=1

eiel (Vf(x + (21~ Die) ~ V()|

where (i) follows from the definition of e; and Euclidean norm, and (ii) follows from Assumption 1. O

Lemma 4. For any given ko < | K/q|, we have

3](‘81| < n)
S

E|[ve*¥o — Veoora f (x7F0) 1% < (2L%d6? + 0?)

where I(-) is the indicator function.

Proof. To simplify notation, we let z; = ?Coordfj(quo) — @coordf(quﬂ) and I; = I(j € S1), where I(-) is the indicator
function. First note that E(I7) = % and ELI; = Cfs, | /Ch = %%151),2’ # j. Then, based on the above equalities,
we have

Zj

2

+ZEIi1j<Zi7Zj>>
i#]

1 (]S 4 sl |51\—1)Z<

e ) (20 7)

&P( w1 2

1 |S1| \51 |S1‘—1 \51 |S1‘—1

- (12 1B S Il

N 1 n
]E”quo - vcoordf(qum)”2 = W (Z ]EIJ2
j=1

)

=1

_ on=1S I~ 12, (S =1
_(n—1)|81|n; z| * n—1|51 Z
18] <m) 1
- & n&=IT
Jj=1

n . 2
- Ml Z Veoord [ (quo) _ vcoordf(quo)

‘S1| n

j=1

) S (I ) = T () + [V () = 7o)
j=1

3[(‘S1| < n)
|S1]

where the last inequality follows from Assumption 1 and Lemma 3. Then, the proof is complete. O

Voo (x740) = T F (xH0)|”) < (20748% +0%),
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Lemma 5. Ler f3(x) = Eyu, (f(x + fu)) be a smooth approximation of f(x), where Ug is the uniform distribution
over the d-dimensional unit Euclidean ball B. Then,

() |f5(x) = F)| < E and |V f5(x) = V()| < 252 for anyx € R?

(2) Eg (IS i Z|S2| Vrandfa] (x;uf )) V f5(x), where x is either x* or xko

. R 2
(3) Bk || Viana o, (555 05) = Ve f, (7505 )|
< BPE(V o, (xF) — T, (x740), ub)? 4 285

< 3dL2|xF — xtho |2 4 BLLE

>

where the shorthand Ej,(-) = E(- |x°, ....,x*).

Proof. The proof of item (1) directly follows from Lemma 4.1 in Gao et al. 2014.

We next prove item (2). Based on the equation (3.4) in Gao et al. 2014, we have

V) “Buev, (516 + pu) © Eue, (g (70 ) = )

=Eu~usp(i;g(fi(xk+ﬁu) fi) u) = ZEUNUS( filx 4 Bw) = fi(xM) u),  (7)

where the random vector u is independent of x*, Ug, is the uniform distribution over the unit sphere .S, and (i) follows from
the fact that Ey~ ug, (f(x*)u) = 0. To simplify notation, we let Ex(-) = E(-|x!, ..., x¥). Conditioned on x°, ...., x* and

noting that the random samples in Sy and u ,j =1,...,|S2| generated at the k" iteration are independent of x°, ...., x*, we
have
d |S2| |S2|
B (g D O+ 50) = £, (64t ) = > = (5 5 ) = o, )
o] & 18] &
| Sz

= 15 25 (B (0 0 ) 1, 80 )

p 1 1~d
2 7211% (fi(x" + puf) = fi(x"))uf
S j=1 = h
W 1 |Sa|
@ L kYY) k 1
5] ;(Vfa(x ) = V"), (1)
where (i) follows from the definition of the set S; and (ii) follows from (17). Taking steps similar to (18) and conditioning
onx’, ..., x"* we have
d |Sz|
. (xR0 4 u; o (xF u’?) = V f5(x7%0). 19
21 g 20 U 0%+ 90 o (0 ) = V1) (19

Our final step is to prove item (3). Note that

2

| A0, O 4 Bu) = fu, (5)) o dlfa, (0 + Buf) — fu, (x))
g kN g "
k kY _ kY _ k k k
:dQEkH (faj (X + ﬂllj) faj (Xﬁ) <Vfaj (X )v ﬁllg >)u] + (<Vfaj (Xk)7 u§>u§ _ <Vfaj (quo)7 u?)u;‘)

2

- (fa, 5™ 4 Buf) — fa, (x7%) — (V o, (x*), Buf))uf
B

(20)
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Then, using the inequality that f,, (y) — fa, (x) — (Vfa,(x),y — x) < £|ly — x||? in (20) yields

U4 ) ) (4 ) )
u: — u;
g ’ g ’
292132
SOV fu, (cH) b = (9 o, (), i+ 2
gng]Ek <Vf(l/j (Xk) - Vfaj (quo)v u?>2 =+ w
=3 (V£ () — ¥, (50)) B Qb (u)7) (9, (064) — 91, et + 20 e

where (i) follows from the fact that [u}|| = 1. Based on the definition of u} , we rewrite u§ = r/||r|| and define a matrix
U = IE(ugC (u?)T), where r is a d-dimensional Gaussian standard random vector. Let r(i) denote the i‘" entry of r, and
U(i, ) denote (i,7)"" entry of U. Then, we have, fori = 1,...,d

o r(@)’ mhee?
UG, i) = / S dr(1) - dr(d) 22)

Since r(i),7 = 1, ..., d are i.i.d. standard Gaussian random variables, we have

d
i r)?
U(1,1) = ---U(d,d), and > U(i,i) :/e— S de(1) - -dr(d) = 1,

i=1
which implies that U(4,4) = 1/d for all i = 1, ..., d. In addition, for any ¢ # j, we have

v = S r(0)? e

which, noting the symmetry between r(i) and r(j), implies that U(, j) = 0. Combining the above two results yields that

U= éId, where 1 is a d-dimensional identity matrix. Thus, plugging E(uéC (uf)T) =U= éId in (21) yields

2

d(faj (Xk +ﬁu§) - faf (Xk)) k d(f(lj (quo +6u§) - faj (quo))
) 24232 T.2d2 32
SBAIY fo, () — Vo, (c80) 2+ ST < a2 et — o2 4 220 3)
which finishes the proof. O

D.2. Proof of Lemma 1

Using Lemmas 3, 4, 5, we now prove Lemma 1. Based on the updating step of Algorithm 1, we obtain

|Sa|
vh =V f5(x") :ﬁ 3 (fay (xF 4 Bul) — fo, (xXF)ul =V f5(x")
j=1
d |Sa|
~ Bisy] (fa; (x?Fo 4 511?) ~ fa, (quo))u§? + V f(x%0) 4 viko — ¥ fg(xk0), (24)
j=1

To simplify notation, we define

_d

H;(x) 3

(faj (x+ 511;6) — fa; (X))U§, x = x" or x9ko,
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and use the shorthand E(-) to denote E(- | x, ..., x*). Then, using (24), we obtain

Ep v = Vo (x")I* <o ]EkHHj(Xk) = Hj(x™) — (Vf(x") = V f5(x"™))|”

|S2
+2) B (Hi(xF) — Hi(x™0) = (Vf5(x") = V f3(x?)), H;(x*) — H;(x?)
i#]
— (Vf3(x*) = V fa(x70))) + 2[|vi* — ¥ f(x%0)||?
O BRI () = H () = (V15 (x4) = V15 )|
+ 2| vt — ¥ f(xM) |2 (25)

where (i) follows from the fact that a; and u¥ are independent of a; and u? for any ¢ # j, and from the following equalities

BL(H; (") = By (16 + fuul) = V5

i (H (x7)) = E (4

3 F(x%%0 + Bub)u ) V f5(x0). (26)

Then, we further simplify (25) to obtain

Exllv¥ =V f5(x")|? ﬁ(]EkIIH( ") = Hj(xT0)|? + Ex[|V f5(x") = V fa(x™)[|?)

4

_ @Ek <Hj(Xk) — ]:Ij(xq}’fo)7 Vfﬁ(Xk) _ Vfﬁ(qu0)>
+ 2||VQko _ vfﬁ(quo)HQ

i 2

Smﬁkllﬂj(xk) = Hj(x™0)||* + 2||v?* — ¥ f5(x™)|?

e |EkllH 5(xF) — H (x50 |2 4 6] v — Vegora f (x7%)|
+ 6||Vf5(qu0) - vf(XQkO)Hz + 6||Vf(qu°) - @coordf(quo)HQ
|1

(..

|S|]Ek||H( ") = Hy(x ™) +

(2L2ds* + o?)

3ﬂ2L2d2

+ 6L%d6% + 5

27

where (i) follows from (26) and (ii) follows from Lemmas 5, 3 and 4. Then, based on item (3) in Lemma 5, we obtain

A, O+ Buf) = fu, () dlfa, (7 + Bub) — fu, ()

8 u; 8 J
312423
—

Exl|H;(x") — H;(x%)||> = By

< 3dL%||x* — xko||2 4 (28)
Combining (27) and (28) finishes the proof.

D.3. Proof of Theorem 1

Since K = gh and V fg(x) is L-Lipschitz, we have, for gm < k < g(m+1)—1,m=0,...,h—1

k+1 k kY k+1 k L772 k(2 k k\ <k L772 k2
Fo(x™77) < fo(x®) +{Vf(x"), x"" = x%) + == |[V¥[I" = fo(x) = n{V f5(x7), v7) + —=[Iv"]I"
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Taking the expectation over the above inequality and noting from Lemma 5 that E(v* | x0, ..., x*) = V f5(x*) =V f5(x9™)+
v?™ we have

(1) <Ef3(") — nE(V £5(x5) = V£5(¢™) + 07, ¥ 5 () + g v 2
<E £y () — MBI F5 )|+ nE(Y F56e™) — v, 9 £ + LB
<E £ () — nEIV 15 )2 + DBV £5(™) v |2 + B £y |+ LR
<y () — TBI o) 2 + TV 15 m) — w2 4 E g2

n (1 BELAd?N 7 - m Ln?
<Efs(x") - 2 (2|Vf(x’€)|2 - + S EIV (™) = v 1?4+ TEHV’“H2 (29)

where (i) follows from the inequality that [[a||? > ||b||? — ||b — al|2. Using an approach similar to (27), we obtain

E[V f5(x™) = vI™ || <3[[VI™ = Veoora f (XT™)||? + 3||V f5(x7™) — V £(x7™) |2
+ 3|V f(xI™) - @coordf(xqm)”Z
<9](|81| <n)
Y

2712 32
(2L2d5% + 02) + BL2d0? + SB#, (30)

which, in conjunction with (29), implies that

Efs(x*+1) <Efg(x*) — g]EHVf(x’“)H? + g (52L2d2 + W (2L%d6* + 0%) + 3L2d52>
1
3L k k2 k k(2 ky |2
+ 5 E(IVFa(x") = vFIP + [V fo (") = VFEN)* + IV F()I1?)
0) 2
<Efs(x*) - (Z - LLQ” ) E|[Vf(x")|? + g <ﬂ2L2d2 + 91("?; ‘< ™) (2L2d8* + o) + 3L2d52)
1
3772L3d262 3L’I’]2 9 X 9 3L2ﬂ2d2
3dL“E —xm _—
Ln? (181 2L%a?
SL0” (18IS <) (o2 452 4 62y 4 1205 4 22T 31)
2 |S1 | 2
where (i) follows from Lemma 1. To simplify notation, we define
y =prra 4 2o <n) “‘i;' |< %) (2L%d6* + o*) + 3L*do? (32)
1
which, in conjunction with (31), implies that
. 3Ln? 9dL3n? 3n°L (L2d?B?  3L2d?*j3?
E k+1 <E k _ ﬂ _ E k12 ]E k _ amy2
ol 1) <Bfs () = (] = S5 ) BIV )| + T Bl = 4 20 (2] 5
n 2
n (2 3Ly )x- (33)

We introduce a Lyapunov function R)" = E (fz(x*) + ¢[|x* —x%™||) for gm < k < q(m +1),m = 0,...,h — 1,
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where {c"} are constants such that ¢f, ;) = 0. Then, we obtain that for any gm < k < q(m +1) — 1

q(m+1
T =E (foOh) 4 ol x5 = xP 4 xF = x71?)
<Efs(x") + el BIVFI? +  Bllx® — x| = 260 nE(vF, x* — x™)
OEf5(x 1) + e n?ElVF || + ey El|x® — x| — 26 nE(V f5(xF) — V fa(xT™) + v, xF — x7™)
(i)
<Efa(x") + B VF I + (i + lang) Blx" — x|

2 n m m
%E IV F ) + IV Fa(x*™) = v |?)

, B2L2d2
<Efs (") + it n’E (2||v’“ = VIsGMI? + =5 ) + (e + il ing) Ellx* — x|

cn pB2L2d2 2¢m
k+171 I k+177X
g
(i) 12¢ n?L2%d
ZEfy () + (cz;l T g+ ’TS|) Ellx* — x| 4 172 (4x ;

4
+ '“T“nIEIIVf(X’“)IF +

6L262d2)
|52

cgl+17762L2d2 4 202”+177X

4cm
+ ’“T”’Enww)n? + ;

(34)

where (i) follows from the fact that E(v | x°, ....,x*) = Vf3(x*) — Vf5(x9™) + v4™, (ii) follows from the fact that
—2(a,b) < ||al|?*/g + g|/b||? holds for any constant g > 0 and (iii) follows from Lemma 1. Combining (33) and (34), we
obtain that

et 3L
Rty <B ) - (1 - 2R S gy ey
4 g 2
12¢™ . n?L2d  9dL3n?
+ (C;cn-«—l + ciang + k17 + U ) E||x* — x9™|?
|S2| |S2|
n , 2¢54m mo 2 2) <3772L (1 3 ) CZL+177> 2 12 p2
+(2+ +4c + 3Ly + )+ L2d2B2. (35)
(2 g k—‘rllrl ] X 9 4 ‘S2| g ﬂ

We define the following recursion for gm < k < g(m+1)—1,m=0,....h—1

12¢" n*L2d  9dL>n?

=iy g + Sl S (36)
which, in conjunction with (35), implies that
rizy <hp - (4 “i”’ - 31:;7) IV )|
I ) (O () 1) e
<rp - (2- ”;*" - B s
+ (Z + 26%177 + 4l an® + 3Ln2> X+ (6772L + k;n> L*d*B° (37)

where the last inequality follows from the fact that 1/4 + 3/|Sz| < 4. Letting § = ng + 12n?dL?/|Sz| and noting that

Cotm1y = 0, we obtain from (36) that for gm < k < g(m +1) = 1,m =0,...h — 1

o g L (14 0)7 1
TN o
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which, in conjunction with (37) and the parameter selection in (3), implies that
T SR = AE[VF(P) 2+

Telescoping the above inequality over & from gm to g(m + 1) — 1 and noting that R}, = Efz(x?™) and R
Ef5(x9(m+1)), we obtain

a(m+1) =

q(m+1)—1
Efs(x1")) <Efs(x™) =X Y B[V + g

k=gqm

Then, telescoping the above inequality over m from O to h — 1, we obtain

K
Efs(x") <Efs(x°) = A E[Vf(x")|? + KT,
k=0

which can be rewritten as

K 0 *
1 fo(x") = fa(xp) 7
_ - N'E ky2 « 2207 JPATE) T 38
R 2 EIOIE < T e e G8)
where X% = arg miny f3(x). Since the output x¢ of Algorithm 1 is generated from {x°, ....,x** } uniformly at random, we
have
| K
E ¢\ 12 — AP
9561 = g 2 VSO

which, in conjunction with (38), finishes the proof.

D.4. Proof of Corollary 1
We prove two cases with n < K and n > K, separately.

First we suppose n < K. In this case, we have |S;| = n. Recall from (4) that

9dL3n2 (1+6)7 — 1
TS 0 &

where § = ng + 12n*dL?/|Ss|. Based on the parameter selection in (6), we have

M 1 311 1 1
<e—4-—-——<-and 0> —. 40
_2q+100qq qan 2q 0
which, in conjunction with (39), yields
18(e — 1)dL3n? - 1)L
o< Ble=1)dLl%"q _9(e—1) @1

= 5] =7 200
where (i) follows from the fact that (1 4+ )7 < (1 + 1/¢)? < e and e is the Euler’s number. Since g = 4000dn?L3q/|Sa|,
we obtain from (41) that ¢/g < 9(e — 1)/2000. Then, we obtain from (3) that

4
)\ Z 01447’]7 X = E,T S f,

which, in conjunction with (5), implies that

BV ) < HEEBUEL S0 B < o (1)), @)
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We choose K = Ce~!, where C'is a positive constant. Then, based on the above inequality, we have, for C large enough,
our Algorithm 1 achieves E|| f(x¢)||? < ¢, and the total number of function queries is

K 2/3 2/3 2/3
[qw nd+K|52|d§(9(nd—|— nd_ n d) =O(nd+” d) so(” d) so(d) (43)
€

ent/3 € € €5/3

where the last two inequalities follow from the assumption that n < K = Ce™ 1.

Next, we suppose n > K. In this case, we have |S;| = K. Similarly to the case when n < K, we obtain

9(e—1) 902 +4 18
< ———, A >0.144 = —
/9 55000 A2 1, X T TR
18  90%+4 n 18y (902 +5)n
<n(= S Gt I S A
7'_77<K2+ = )+K_K2 = (44)

which, in conjunction with (5), implies that

H40L(fs(x°) — fo(x3)) 125 6302 + 35
E+1) T K

E|Vf(x)|* <

We choose K = Ce™ !, where C > 0is a positive constant. Then, based on the above inequality, we have, for C large
enough, our Algorithm 1 achieves E|| f(x¢)||? < ¢, and the total number of function queries is

K
[W Kd+ K|Sp|d < Kd+ K°/3d + K°3d + Kd = 2K°/3d 4+ 2Kd < O(K°/3d)
q
< O(de /%) < O(e~'n?/3d),

where the last inequality follows from the assumption that n > K > Ce™ !,
Combining the above two cases finishes the proof.
D.5. Proof of Corollary 2
We prove two cases with n < [(K/d)*/®] and n > [(K/d)®/°], separately.

First we suppose n < [(K/d)*/®], and thus we have |S;| = n and ¢ = nd. Based on (4), we have

1460)7-1
e = oarty? HO L (45)
where § = ng + 12n2dL?. Based on the parameter selection in (7), we have,
1 3 1 1 1
0= —4+ ——<—-<-andf > —. 46
2 T Toon g g™ 2 (46)
Combining (45) and (46) yields
9(e—1)L
< 18(e — 1)dn*qL® < ——=. 47
c<18(e —1)d"qLl® < = (47)

Since g = 4000dn?qL?, we obtain from (47) that ¢/g < 9(e — 1) /2000, which, in conjunction with (3) and (7), implies that

4n?/3

A>0.144n, x =

4,,,}‘2/3,'7 n2/377 577”2/3
<
TS Tk STk

which, in conjunction with (5), implies that

140Ldn?/3 0y — p 2/3 2/3
n*?(fa(x") — fo(x3)) , 35dn SO(dn )

<6
BV /(x| < = & a

(48)
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Let K = [Cdn*®¢~1] for a constant C' > 0, which, in conjunction with the assumption that n < [(X/d)3/®], implies that
n < ©(e~1). Then, we have, for C large enough, E||V f(x¢)||? < ¢, and the number of function queries is

2/3 2/3 2/3
Wﬂ nd+K|Sz|d<O<nd+nd+n€d) :o<nd+” d) <0<" d) <0<5d/3> (49)
€

enl/3 € €

where the last two inequalities follow from the assumption thatn < [(K/d)*/°] < O(e™1).

Next, we suppose n > [(K/d)®/°], and thus we have |S;| = [(K/d)*/®]. Similarly to the case when n < [(K/d)3/?],
we obtain

(B )
which, in conjunction with (5), implies that
EHVf(XC)HQ §140Ld|81|2/3(fﬁ(xo) _ fﬁ(xg)) N (6302 + 35)d|S, [/ 1954
K K K|Sl|1/3
=0 <d|SI1(|2/3> (51

where the first inequality follows from |S;| = [(K/d)?/®]. Let K = Cde~°/3, where C' > 0 is a large constant. Then,
using (51) , we have, for C' large enough, E||V f(x¢)||? < ¢, and thus the number of function queries is

2/3
5 Sld+K§O 81d+581d+K §0K3/5d2/5+K §0d675/3 SO n d (52)
q q .

where the last two inequalities follow from K = Cde~/3 and the assumption that n > [(K/d)%/>| = C3/5¢~1.

Combining the above two cases finishes the proof.

E. Proof for ZO-SVRG-Coord
E.1. Proof of Lemma 2
For any gko < k < min{q(ko + 1) — 1,qh}, kg = 0,..., h, based on (11), we obtain

EHVk - @coordf(xk)HZ
< 2E|IvF = v — (Veoraf (%F) = Veoord f (x7%0))||? + 2E[|v7*0 — ¥ oora f (x770)]|2. (53)

To simplify notation, we denote

|S2|
1 - N
G$2 (X) = § vcoordfaj (X) and Hj (X) - vcoordfaj (Xt)7 (54)
] et

which, in conjunction with (53), implies that

E”Vk - @coordf(xk)”2 =2FE (]E||G52 (Xk) - GSQ (quo) - (ﬁcoordf(xk) - ﬁcoordf(quo))nz |X07 R Xk)

P
+ 2Equk0 - @coordf(quo)n? (55)
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Conditioned on x°, ..., x*, we next provide an upper bound on the conditional expectation term P in (55). Using the
shorthand Ej(+) to denote E(- | x!, ..., x*), we have

Exl|Gs, (x*) = Gisy (x™°) = (Veoora f (") = Veoora f (x**)) |

|S2| ,
=Ex |812| Z (HJ' (Xk) — Hj (qu()) — (@mrdf(xk) _ ﬁcoordf(quo)))
|S2| ) ) .
\52|2 ZEk H — Hj(x™) — (Veoora f (x") — Vcoordf(quo))H
-2 ZEk H; X - Hi(quO) - (@coordf(xk) - @coordf(quo))a
oy
Hj (Xk) — Hj (quo) - (@coordf(xk) — @coordf(quo))>
|S2|
= ‘52|2 ZE’f H — Hj(x™) = (Veoora f (x") — @Coordf(quO))HQ 56)

where (i) follows from the facts that a; is independent of a; for any i # 7, Ex.(H;(x*)) = Veora f (x*) and Ej, (H; (x9%0)) =
Veooraf (x9%0). Then, we further simplify (56) to

5B HH — Hy (™) (Veona f () — Verora (7)) |

|$2 o HH — H, (x|

‘S||\Vwordf( ") = Veoora f () |*

- mEk <HJ’ (Xk) — H; (ngo)v Vcoordf(x ) — Vcoordf(XQkO)>

2 1 - -
O L g [a1,) — H )| — e () — T )
|S2 | |S2
< 2 B[ G, () = iy )| B [, () — P, (et |
|82| k coord aj aj |S| k a; a;
k gk 2
|S |]Ek chourdfa ( a O) vfaj (X O)
(i) 6L2d82 3L2 ko2
< x* — x| 57
|S2| IS |Sa]

where (i) follows from the fact that Ey(H;(x*)) = Veooraf(x*) and Ej,(H;(x%0)) = Veooraf(x™ 1), (ii) follows
from the inequality that |la + b+ c||* < 3(||al|* + ||b||*> + ||c||?)., and (iii) follows from Lemma 3 and Assumption 1.
Combining (55), (57), Lemma 4 and unconditioned on x°, . ..,x", we have

+ —x 2L2d6% + o),
AN s )

E”Vk - @coordf(xk)H? <

which finishes the proof.

E.2. Proof of Theorem 2
Since K = gh and V fz(x) is L-Lipschitz, we have, forgm < k <g(m+1)—1,m=0,..,h —1

k+1 k ky (k+1 _ Lk L7772 k2 _ ky Ey ok Lfﬁz k2
FETT) < F(xT) +(Vf(xF),x x) + == V7 = f(xF) = a(VF(xT), v5) + —=[IvEI1%
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Taking the expectation over the above inequality and noting that E(v¥ | x°, ..., x*) = Veoord f(xk) — Veoord f(xI™) 4+ vim,
we have

2
Ef(xk+1) SEf(X ) nE< coordf( ) - @coordf(xqm) + quv vf(xk» + LT??EHVICH2

R R 2
<Ef(x") = nE|V f(x")|I> + nE(V f(x") = Veooraf (x*) + Veoora f (x7™) — vI™, V f(x*)) + LTUEHV]"HQ
<Ef(x*) = nE[[V f(x")|]* + gEHVf(x’“) — Veoord f (") + Vioora f (x7™) — vI™ |2

7 Ln?
+ §E|\Vf(xk)|\2 + TEIIVkII2

N ~ Ln?
<Ef(x*) = DIV S () + B VF (65) = Veooraf ()2 + 7| Veooraf (x7™) = v |2 + 2 E [

3’17[(|31| < n)

(]
SES(x) = JIVSGOP +n12as + ==

2 152 2 L k) 2
(2L%d6* + 0%) + TEHV I (58)
where (i) follows from Lemmas 3 and 4.

We introduce a Lyapunov function R" = E (f(x*) + ¢ |x* — x4™||?) for gm < k < g(m+1),m =0,...,h — 1, where
{ci'} are constants such that cj, . ;) = 0. Then, we obtain that for any gm < k < ¢(m +1) — 1

R’y =E (f(x k“) [T = xP - xm?)

<Ef(x*Y) + anPElVFIP + 2 Ellx® — x| = 267 nE(vF, x" - x™)

(l)]E ( ) + CIc+17721E:||Vk”2 + C;cn—',-lEHXk - quH2 - 20k+177E< coord.f( ) - @coordf(xqm) + vqm’xk - qu>
k

Ef(x") + lam?EIVEI? + (el + e ang)BlIx® — x|

2¢ 1 R )
+ %]E (choordf(xk)”2 + ||Vcoordf(xqm) _ qu||2>

(i)
SEf(xY) + an®EIVFIP + (el + e amg) Ellx® — x|

Acm 12¢m . I(|8y] <
+7’“g“n (E|Vf(x")|? + L2ds?) + SEURI ﬁ; n)
1

where (i) follows from the definition of v* and (ii) follows from Lemma 2. Combining (58) and (59), we obtain
o <B70) = (= SET) 06y 2 4 (5 ) PEIV R + (s + clbang Bl - x|

4 126" (8
i %LZW +nL2ds? + ( Cl;ﬂn + 3’7) (l |19| \< ") (1245 + 7). (60)
1

(2L7d8” + 07) . (59)

Based on Lemma 2, we obtain

E[[v¥]|? <3E[vF — Veoora f (x¥)]|% + 3E||V £ (x*) — Veooraf (xF)||* + 3E||V f(x*) |2
BOL2A0 18L2 e, 18181 <)
Y |Sa| |S1|

which, in conjunction with (60), implies that

4m
o <Bre) - (2= 25Ty (T )op) 192

(2L2d8% + 02) + 3L2d0* + 3E||V £ (x*)||%,

g
18L2 m m
+ (e +etme + g (54 kﬂ)n)Enxk—xq &

12¢ I(
+ <;;+177 +3n+18 < + ck+1> 7;2) Sg <n) (2L%d6* + o?)
1

4¢
’“+177L2d52 +nL2ds? + ( + 3) <L + c,m) 2L2ds>. (61)
g |Sa| 2
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372 252
Let ¢’ := (14 0)cy, + Q‘S—Z’l’ where 6 = ng + 18|52‘7’

R <mp - (3250 (D)o ) BIVSGP

g
12¢ L (]S
+ ﬂ +3n+18( =+ n? M (2L2d(52 + 02)
4™ 36 L
4 2%l pagse 4 r2gs? o <S| + 3) (2 + cg@H) n2L2ds2. (62)
2

Note that for gm < k < ¢(m+1)—-1,m=0,....,h—1

9L3% (14 0)7 —1

clt<c=
b |52 0
To simplify notation, we define
_n A (L 2
A= 5 p 3 (2 + c) M
1 L I(|S
Y= ( A 43y +18 ( +c> n2) HS1<m) 512452 4 62)
g 2 S
L
T= (C + 1) nL2ds* + (36 + 3) < + c> n*L2ds?, (63)
g |Sa| 2

which, in conjunction with (62), implies that
i <RI — B[V f(x")1?+ 7+ x.

Telescoping the above inequality over k from gm to g(m + 1) — 1 and noting that Ry}, = Ef(x?") and R}
Ef(x9m+1)), we obtain

q(m+1) —

g(m+1)—1
Ef(x1m)) SEfx™) =X > B[V +qr +qx

k=qm

Then, telescoping the above inequality over m from 0 to h — 1, we obtain
Ef(x") <Ef(x AZEHW ) + K7+ Kx,

which, in conjunction with the definition of x¢, implies that

AT+
B[V < 5 + 5= (64)
where A := f(x°) — f(x*).
Let g = 1/(2nq). Then, based on the selected parameters in (9) and the definition of 6, we have
1, 1,211
2¢ T2 25¢q " q
which, in conjunction with the definition of ¢, implies that
. 18(e — 1)L3n?q < 2(e—1)L 65)

- |82| - 25¢q ’
and ¢/g < 0.02.
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Next, we prove two cases when n < K and n > K, separately. First suppose n < K. In such a case, we have |S;| = n and
q = [n'/3]. Then, based on (63), (9) and (65), we obtain

on
A>0.22 =0 —
= X , T < K’
which, in conjunction with (64), yields
69A + 23 1
E P < —=<0(=). 66
V56| < === < (K) (66)

Let K = Ce™!, where C is a constant. Then, we have, for C' large enough, E||V f(x¢)||? < ¢, and the number of function

queries is
K 2/3 2/3 2/3
—|nd+ K|S|d< O nd + 2" <0 dn < O min n—d,i (67)
p p c c ' e5/3

where the last two inequalities follow from the assumption that n < K = Ce™ !,

Next, we suppose n > K. In this case, we obtain

5n (2
A20.22n,X§K(K+0—2>,7§

which, in conjunction with (64), yields

69A + 23+ 2302 46

E|[VF x| < = %z (68)

Let K = Ce 1, where C is a constant. Then, we have, for C' large enough, E||V f(x¢)||? < ¢, and the number of function
queries is

K 2/3d d
[W Kd+ K|Sy|d < O (dK5/3> <0 <min {n m}) (69)
q € €

where the last inequality follows from the assumption that n > K = Ce™ 1.

Combining the above two cases finish the proof.

F. Proofs for ZO-SPIDER-Coord

F.1. Auxiliary Lemma

The following lemma provides an upper bound on the error of v* for estimating the second moment of || v* — Veoora f (x*) .
Lemma 6. For any given ko < | K/q| and gko < k < min{q(ko + 1) — 1, K'}, we have

2 37]2[12 g 112 6L2d62 3[(|Sl| < TL) 2,2 2
E[[v® = Veoora f(xF)||? < E|v')? + (k — qk 2L%d6* + %) . (70)
u SOOI < S X BN+ (= aho) i o ( )
where we define Zgioq;gl E||vt||? = 0 for simplicity.
Proof. First we consider the case when k& > gkg + 1. For gkg + 1 < m < k, we have
m
v — vcoordf(xm) = quo - V(:oordf(quo) + Z (Vt - Vtil - (vcoordf(xt) - vcoordf(xtil))) (71)
t=qko+1
Recall that v¢ is given by
1 |S2| 1 |S2|

vi= — @coor fa- x") — — ﬁcoor fa' xi! +Vt_1~ (72)
‘82|j2::1 d J( ) |82|J§::1 d J( )
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We then have for any gkg <t < m ,E(vt — YFI — (VeooraS (%) = Vieoora f (x171)) X, ..., x* ) = 0, which, in conjunction
with (71), implies that the sequence (v¢ — Veoora f (x?),t = gko, ..., m) is a martingale. Then, based on the property of
square-integrable martingales (Fang et al., 2018), we can obtain, for gky +1 < m < k,

E[v™ — @coordf(xm)HQ :E”quo - ﬁcoordf(quo)HQ

—+ Z EHVt — Vt71 — (@comdf(xt) - @coordf(xtil))uz

t=qko+1
The above equality further implies that
Eva - @Coordf(xm)HQ
=E[v™ - vl — (ﬁcoordf(xm) - @coordf(xmil))nz +E[lv™Tt - @coordf(xm71)||2~ (73)

Based on (72) and using the same notations as in (54), we have v — v"~1 = Gg,(x™) — Gs,(x™1), which, in
conjunction with (73), implies

BV — Veowraf ()P = (Bl Gs, (") = G, (") = (Teoona (6™) = Veamra ("2, . x™)

Q
+ E[[v™! = Veoora f(x™ 1) |12 (74)

Conditioned on x°, ..., x™, we next provide an upper bound on the conditional expectation term () in (74). Using the
shorthand [E,, (+) to denote E(- | x!, ..., x™), we have

Em”GSz (Xm) - GSQ (Xm_l) - (ﬁcoordf(xm) - @coordf(xm_l))HQ
|S2|

:EmH|S12| Z (Hj (Xm) - Hj(xm_l) - (@coordf(xm) - ﬁcoordf(xm_l)))

|S2

:@ z:l]Em HHj(Xm) — Hj(x™") = (Veoora f (x™) — @comdf(xmil))HQ
j=1

-2 Z Em <H7(Xm) - Hi(xmil) - (@coordf(xm) - @coordf(xmil)%

i
H;(x™) — H; (Xm_l) - (@coordf(xm) - ﬁcoordf(xm_l)»
, Sz . R 9
2@ ZEm HHj(Xm) - Hj(xm_l) - (Vcoordf(xm) - vcoordf(xm_1>)H
Jj=1

where (i) follows from the facts that a; is independent of a; for any i # j, E,,(H;(x™)) = Veoord f(x™), and
B (H;(x™ 1)) = Veooraf (x™1). Then, we further simplify the above equation to

1 B R . . . )
@Em HHJ(Xm) — Hj(xm’ 1) _ (Vcoordf(x ) — Vcoordf(X 1))”
1 m m— 2 ]. ~ m N e
= —E, ||Hj(X ) — Hj(x 1)” + —— | Veoordf (X™) = Veoora f(x™ )2
S| |52
2 m m—1y ¥, m v m—1
_ @Em <Hj(X ) — Hj(x™ ™), Veoordf (X™) — Vieoora f (x )>
@ 1 m m—11112 1 ~ m ~ 12
& B [ Hy(x™) — Hy(x™)||” = == Veoord / (X™) = Vieoora f (x™1)]|
52| S|

1 -
S 157 B [ H; (™) — H;(x™ ]|

2
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(i)

m m—1y||2
< |82 E.. choordfa]( vfaJ H |S ‘ mvaaj(X )_vfaj(x )H
2
m—1 xm— 1
|S| mHVcoordfa]( ) Vfaj( )H
i) 6L2d6% 32 1. 6L%d8%  3p2L% . ..,
NIRRT - R "

where (i) follows from the fact that E,,,(H;(x™)) = Veeoraf(x™) and E,,, (H;(x™ 1)) = Veooraf (x™ 1), (ii) follows
from the inequality that ||a + b + ¢||? < 3(||a|* + ||b||* + ||c||?), and (iii) follows from Lemma 3 and Assumption 1.
Combining (73) and (75) and unconditioned on x°, ..., x™, we obtain

6L°d° | 3L?
|Sa| |Sa|

E[v™ = Veooraf(x™)[|* < V™M 4+ BV = Veoora f (x™H)]1%. (76)

Telescoping the above inequality over m from gkg + 1 to k, we obtain

. 3PL? & B 6L2do>
EIV* — Veooraf ()2 < Tm S0 BV + (k — gho)
Sa| 4 |52
=qko+1
+ B[V — Vegora f (x77) ||, (77)
Using Lemma 4 and (77) yields (70). For the case when k = gk, it can be checked that (70) also holds. O]

F.2. Proof of Theorem 3
Noting that f(-) has a L-Lipschitz gradient, we have, for any given ko < | K/q| and gko < m < min{q(ko +1) — 1, K},

) < F) + (V™) xmH - xm) 4 2

5 ||Xm+1 _ xm||2
2
m m m m m 77 m
= FOT) = (V™) =V ) = v 4 =l
2
< PO 4 GIVIE™) = v 2+ I = mlv™ P+ =)

L 2
= F™) + LIV = v = (5= 25 e

Taking the expectation over the above inequality yields

EF6™) < B1(¢") + 1 (B[ Veonaf (") — v |+ BV £6™) — Fasorafe)2) = (24 = )2

m - m m n L77 m
< EF(x™) 41 (B[ Veooraf (x™) = v |2 + L26%) — (3 = = B[V,

which, in conjunction with Lemma 6, implies that

3L2 m—1 L2 2 T
Ef(xm+1) <Ef(Xm) + 377 Z E||th2_|_ (m_ko)Gn do + 377 (|Sl| < Tl) (2L2d52 +02) —|—’I7L2d52

- Sl S |Sa| S
(0 Ly gy
(5 - 5 BV (78)
To simplify notation, we define
3I(|S
w(81,6) = SIS <) 92452 L 62y 4 12452, (79)

|S1
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Then, telescoping (78) over m from gk to k yields

t1—1 2 7¢2
6 L=d)
Ef (") <Ef(x0) + E[v'2|* + Z (t1 — gko) ”| 5
t1=qko ta=qko t1=qko 2
_ (1 Iy S g
+ (k= gho + Dnr(81,0) = (5 = =) D EIVHI™
t1=qko
) _
SEf(quO 3|I:S'7 Z Z EH t2|| + ko)Tg | ko + 1) 3"7L2d52
t1=qko t2=qko 2
_ (1LY NS g
+ (k= gho + r(81,0) = (5 — =) D EIVYI™
t1=qko
2 k _
<Ef(x7) + 3L%n° (k — ko + 1) Z E|v* — qko)(k — gko + 1)377L2d52
|S2 R |S2 |
k
_ _(n_1Lw k12
+ (k= gko + Dnm(81,0) = (5 — =) D EIV'I”
t1=qko
2 2 3 k
n n°L 3Ln°(k—ko+1)
<foc) - (1= 1F - E|lv!
2 2 |S2 t%ﬂ
L kmako)(B=ako+ 1) g 25 L (5 — gko + 1)nm(Sh, 0). (80)

|S2|

where (i) follows from the fact that Zi;;;ko E[lviz|? < Zg:qko E|v'2||? for t; — 1 < k — 1 < k. Without loss of
generality we suppose k*q < K < (k* + 1)q — 1, where k* = | K/q|. Then, based on (80), we have, after K iterations,

7)<y - (1 2P ZRY N e (00 g
t=qk*
.
+ (K = gk"nm(S1,0) + 3 (EF(x'1) ~ Ef(xD1)) 81)
t=1

The term Ef(x*9) — Ef(x*~19) in the above inequality can be upper-bounded by

gy @ 2L 3LPg\ &
Ef(x') — Ef(x 1>Q)<(727—772— |an> Y BV + 5 |3nL2d52
2 t1=(t—1)q
+ (81, 6), (82)

where (i) is obtained by letting ky = (¢ — 1) and k = tq — 1 in (80). Combining (81) and (82) yields

2L 3L%Pq) K — qk*
Ef(x") <Ef(x") - (" - e q) S w2 4 Ko ISZ| 931245
t=0

37]L2d§2 + Knr(8y,9)
Y

9 9 3 \ K-1
n n°L 3Ln’q Kq
<Ef(x%) - (4 - 1= E:]E U2 + =+ 3nL2ds>
<Ef(<) (2 2 |Sa| >t_0 oAl + |Sa| "

+ Knn(81,0), (83)
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which, in conjunction with (79), yields

2L 3L%*p3q
Ef(x*) <Ef(x° —(77—’7— ) Ellvt|? + 254, 12452
) <Bf ) = (- T =2 Z IV + gt

+ K <?’I(|‘|5:;||<m (2L%d8? + o2) + L2d52) : (84)
1

Plugging the notations in Theorem 3 into (84) yields

31(/S1| < n)

K
3(K +1)q
E|lvi||? < A+ =——2nL2%ds% + (K + 1 (
¢>§ [vi]]® < n ( n 1]

t=0 [S2

where A := f(x°) — f(x*) with x* := arg miny f(x).

(2L2d6* + 0°) + L2d52> , (85)

As ( is generated from {0, ..., K } uniformly at random, we have the output x¢ satisfies

ENF )] <3E (1) ~ Feooraf )2+ [ comdf<x<>|\2+uv<||2)

K
3 N
<3L2d6% + ——— Y E||vF — Veoor 24 E||v*|? 86
<3 +K+1k§zo V¥ = Veoora f (x")|| K+1§ (V"= (86)

(A)
We next upper-bound the second term (A) in the above inequality. First note that

k*—1(p+1)g—1

K
1 A
K+1ZE“VC°°fdf <)Vl | 5 L BVl 00 P 3 Bl () - VP
= =q
Applying Lemma 6 to the above equation yields
K K )
DBl Voo f (<) = 1| = 37 El[Veoora (x') = v*|”
t=0 Pt
k*—1(p+1)g—1 o o t-1 .
3L 612ds
<Z > TS™ BV 4 (- pg) e + 7(S1,0)
- 1Sl 45 2]
t=pq t1=pq
kr—1 (p+1)g—1
3qL2 2 L2d5?
SZ |32|77 Z E[v'|* 4+ q(q —1) S + g7 (81, 0)
p=0 t1=pq

9 k*—1(p+1)g—1

2d62
3 X EMP 1)k R(S1.0),
= t1=pq

3qL2
S

which, by applying Lemma 6 to Zt: gk E||Veooraf (x!) — vt||2, yields

K K
A 3qL>n? K — qk*)q + ¢*k*
3 El|Veooraf (x*) — V|| < an ZE||th2+( 4 S)q TF 372482 + (K + 1)7(S1,8).  (87)
=0 [S2| = [S2|

The above inequality can be further simplified to

K

3qL?n* 1 3q
E[[Vcoor < — STEV + 2128 + 5).
Z ¥ ') =1l <= g LBV + 75 n(S1,9) (89)

K +1
Combining (85), (86) and (88) yields

9gn* L* A
1) <tas” + 1 (ML 1a) (L5 4o+ 12a) ) + a0

which finishes the proof.
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F.3. Proof of Corollary 3
We prove two cases when n < K and n > K, separately.

First we suppose n < K. Under the selection of parameters in (14), we have |S;| = n, ¢ = |S1| = [n'/?], and thus obtain
1 1 3 3 3
=pl-—- 2 )= p=2
o= (2 8 16) 16 T K
which, in conjunction with (13), yields
3 16 9 16 A 4 9 T6AL + 88 1
E P < = 4+ ) (= — = < i
e < e+ (gmia ) (5 0 (&)) o= =0 (k)

We choose K = Ce~ !, where C' > 0 is a constant. Then, based on the above inequality, we have, for C' large enough, our
Algorithm 2 achieves E|| f(x¢)||? < ¢, and the total number of function queries can be bounded as

K
{w nd + K|Sa|d < Kn'?d 4+ nd + Kn'/?d 4+ Kd < O(nd + ¢ 'n'/?d) < O(e 'n'/2d) < O(de™®/?),  (89)
q

where the last two inequalities follow from the assumption that n < K = Ce~ 1.

Next, we suppose n > K. In this case, we have |S;| = K, q = |S;| = [K''/?], and

which, in conjunction with (13), yields

3 19/A 44302 6 9  T6AL+88+570% 114 1
E s 22 (2 - 4+ — = = < = .
”f(x)||K+n<K+”( K +K2>) K K +K2*O K

We choose K = Ce~!, where C' > 0 is a constant. Then, for C' large enough, our Algorithm 2 achieves E|| f(x¢)||? < e,
and the total number of function queries can be bounded as

K
[W Kd+ K|Sp|d < Kd+ K3%d + K*?d + Kd = 2K*?d 4+ 2Kd < O(K*/d)
q
< O(de™3/?) < O(e~nt/24), (90)

where the last inequality follows from the assumption that n > K > Ce™ !,

Combining (89) and (90) implies that the number of function queries required by Algorithm 2 is at most
O (min{e~'n'/2d, de=3/2}).

F.4. Proof of Corollary 4
We prove two cases when n < [K?/%] and n > [K?/3], separately.
First we suppose n < [K?/3], and thus we have ¢ = |S;| = n,n = 1/(4L+/n),é = 1/(L\/nKd). Then, we obtain

which, in conjunction with (13), yields

76y/nLd 66 22 76,/[S/[Lé 66 22 VIS
EHf(XC)HQS%Jr L2 _T6VISiI 66 <(’)< |1>.

K ' nK K K ' |Si|K K
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Let K = Cy/ne~! for a positive constant C, which, combined with n < [K?2/3], implies that n < O(¢~1). Then, our
Algorithm 2 achieves E|| f(x¢)||? < ¢, and the total number of function queries can be bounded as

nt/2d
€

K
{qw nd+ Kd < nd+2Kd< O (nd + ) <O(e'n'?d) <0 (;i?) , 1)
€

where the last two inequalities follow from the assumption that n < O(e~1).

Next, we suppose n > [K?/3]. In this case, we have |S;| = [K?/3], and thus

1 1 3 3 , 3 6 302
¢Z77<>>,9K+K7/3+K2/3a 92)

which, in conjunction with (13), yields

1/3 )
Bl <0 (5] <o <V'S> ,

K

where the last inequality follows from the assumption that [ K2/3] < n. Let K = C'e=%/2, where C' > 0 is a constant. Then,
for C large enough, our Algorithm 2 achieves E|| f(x¢)||? < ¢, and the total number of function queries can be bounded as

1/2
Hﬂ |S1|d+Kd<2Kd+|S1d<3Kd<(9<d) <0(” d) )

€3/2 €

where the last inequality follows from the assumption that n > [K?2/3] = C?/3¢71,

Combining the above two cases finishes the proof.

G. Proof for ZO-SPIDER-Coord under PL Condition
G.1. Proof of Theorem 4
Let x* = arg miny f(x). Then, for any gko < m < g(ko+1) —1,kg =0,....,h — 1 (h = K/q), we have

flm

< O (TF), X X 4 R X

= 16 = 2w ) = v vm) = D = 2 o) = Vo) — D9 e 2+ E e

< 160 + LI v = D = 2w g 2+ K oy

= 1)+ 2 ey = v = (2= B o = 2w g 2

2 160+ 19 ) v (2= ) e - FRUCORC) ©4)

where (i) follows from Definition 1. Taking expectation over the above inequality and using Lemma 6, we have

3r2 m 2752
E m+1\ * 1— W)E my _ * 377 L E t)2 —ak 677L dé L2d52
(o) = ) < (1= 2 ) B - ) + 2 EIVI + (m —gko) e
L 2
-3~ Ly



Improved Zeroth-Order Variance Reduced Algorithms and Analysis for Nonconvex Optimization

To simplify notation, we let « := 1 — 7/(4~). Then, telescoping (95) over m from gk to q(ko + 1) — 1 yields

q(ko+1)—1 332 m
E(f(x/®0tD) — f(x*)) < o'B(f(x™) = f(x*) + Y rTaq(kOH)*m*l > EV?
m=qko 2| t=qko
q(ko+1)—1 b P, n L2 q(ko+1)—1 PN ,
+ Y <Bi+1>oﬂ(°+)m nLd(S—(Z—T) Y qutkethomoig)ym
m=qko m=qko

3773L2 q(ko+1)—1q(ko+1)—1

= E(f(e) — O + g Do 3ttt T g

m=qko t=m
q(ko+1)—1 12 q(ko+1)—1
+ Z <Bv n 1) kot D=m=1,72;52 (g _ 777 Z kot )—m—1p ) ym2
m=qko v m=qko

where the first inequality follows from the fact that (m—qko)/|Sa| < ¢/(B,YL) < b, /B.,. Noting that o(ko+1)=m=1 > qa

and S 90t qalho+1)—t=1 — (1 _ gatkot)=m) /(1 — o) < 1/(1 — @) = 4/n, we obtain from the above inequality
that

E(f(x?*0+D) — f(x"))

o 12yppp2 e
<a"E(f(x70) — f(x ”*KQT S EvT?

m=qko

1—af (b L2y ‘D
+3 _O; <B” +1> nL2ds* — (g - i) 3 QB

v 2 m=qko
. (ko+1)—1
() oy 1202017 m
CaIE(f(x) ~ fO) 4 Tt Y B
R m=qko
(k‘ngl)*l
1—af (b, 2 ;52 n Ly by o m2

m=qko

o 1-a (b 1 b \¢ 30\
—atB(f )~ fx) 4 o (g 1) 0 (G (1-4) <) X BT
v

8 16¢ B,
1—a? (b
<a? qko\ __ * Y 2 352
<alE(f(x?%) — f(x*)) + I —a (B7+1>77L do

m=qko

(96)

where (i) follows from the facts that ;4 < v and |Sz| = [yLB, | and the last inequality follows from the condition that
1 b, \? 3
5 (1 wq) B, >0

E(f(=") — f(x")) < (1 - ”)K () = Fc)) + 3 ko L2 (bw i 1) 12d5?
= 4y ~" 1-a\B K
—(1--L K(f(xo)—f(X*))Jrl_akl_aq b—”+1 L2ds?
N 4 l—a?l-a \ B, K
<(1- L K(f( 0) — f(x*) +4 by +1) L%ds? 97)
= 161 x x "\ B, ‘

From (97), we require the total number K = O(vylog (1/€)) and § = O(\/e/(L+/vd)) to achieve E(f(xX) — f(x*)) < e.
Thus, the total number of function queries is [%-‘ nd+ K|Sz|d = O (d(yn*/? + +2)log (1)). Then, the proof is complete.



Improved Zeroth-Order Variance Reduced Algorithms and Analysis for Nonconvex Optimization

H. Proofs for PROX-ZO-SPIDER-Coord

H.1. Auxiliary Lemma

We first prove the following useful lemma.

Lemma 7. Let Assumption I hold, and define

n Ln*  3q 5.,
=42 A3
2" 2 8"
I
c=" (|‘|S;| |< ") (21248 1 0?) + 212d6°. (98)
1
Then, we have,
A 3q n 12qL>n? Aw 3q
E||G(xS, Vf(x5),n)|? (“’+L2d52+c>+ + 22482 4+ 1o
1G( J&x),n)|IF < < 5] 5 Sl 1S]” 5
+ —L2d62 +4C, (99)
|Sa|

where Ay, = 1(x°) — 1 (x*) with x* = arg miny cga ¥(x).
Proof. We first introduce the following notation for our proof
Glxgm) = (x ~ %), wh in | (g,2) + o lla —xII* + h(z) (100)
X = —(x — x4), where x, = arg min z)+ —l|z—x z) .
, 8,7 0 g)s g g B g, oy

Note that when g = V f(x), G(x, g, n) becomes the generalized projected gradient of the objective ¥(-) at x. The following
lemma provides important properties of G(x, g, n) by Lemma 1 and Proposition 1 in Ghadimi et al. 2016.

Lemma 8. For any g, g, and g> in R, we have
(i) (g, G(x,g,1)) > |G(x,g,n)|* + (h(x4) — h(x))/n, where x4 is defined by (100).
(i) |G(x,81,m) — G(x,82,n)[| < [lg1 — g2l

Based on the above results, we now prove Lemma 7. Using an approach similar to Lemma 6, we obtain, for any given
ko < [K/q| and gko < k < min{q(ko +1) — 1, K},

. 302 1 6L2d5%  3I(|Sy| < n)
E k_ 2 E t+1 t 2 k— ok 1 2L2d52 2
||V vcoordf( H |S ‘ t% HX || +( q 0) |52| + ‘S1| ( +o ) )

which, based on the proximal gradient step and (100), implies that x* — x*+1 = nG(x*,v¥*, 7). Thus

. 3[2p2 kol 6L2d52
Ev" — Veoraf (x| <2 ST EIG(x!, v, )1 + (k — gko) o
Sl 2 |52
3I(|S1| < n) 2 72 2
S =Y (2L02d8? + 07)
s )

which, in conjunction with (3), implies that

E|[vF = VI (¢M)]? <2EIVF — Veouraf (6¢5)]1? + 2V F (") = Veauraf (6]

622 2 1212052
<=L " EIGE, v n)|? + (k — gho) —
Y It |Sa|
qko
SIS <™ (572452 4 62) 1 212462 (101)

IS
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Recalling that the gradient V f(x) is L-Lipschitz, we have, for any kg < | K/q| and gko < k < min{q(ko + 1) — 1, K},

FOH) <70H) + (), x5 — ) 4 2 - x|
— ) = n(VF ), GOt v )+ Gt ) 2
2
:f(xk) - 77<Vf(xk) - Vka G(kavkvn» - 77<Vk7 G(kavkan» + LTH”G(XkaVkan)”z

L 2
SFOE) + LIVFE) =2 4 ZIG O vE m) |2 = n(vh, Gt vE ) + S Gt v )|,

which, in conjunction with Lemma 8, implies that

L
FOHHY) < £ + VA = v 2 - (;7 - ") |GGE I = () = heh). (102)
Let 1)(x) = f(x) 4+ h(x). Then, taking expectation over (102) yields
i L
B ) < Evlo) + DIV 0) — 7 - (1 - B ) BlG0 v
Telescoping the above inequality yields, for gko < k < min{q(ko +1) — 1, K},
k 0 D\ <&
By < B + 1 3 BIVS) - v - (2= ) 3 BlGe vl
t=koq t=kogq
which, recalling the definition of C' in (98) and using (101), implies that
k+1 k n ¢ 6L%n° < 2 4 12L%d5”
Ey(x <E(x"09) 4+ = ( E||G(xP,vP, n k+C)
0q Pp=4qko
. k
2
< - 2) Z x5 v
t=koq
A - 12L2d5?
<E)(x"9) Z Z E[|G(xP, v, n)|* + Z( ko)T
t=Fkoq p=qko t kogq 2
k
n n 2
w1y C—(—) S 60, vl
t=koq t=koq
203 k-1 k— D(k —
<D ) + S (— koq +1) Y BJGG v g2 ¢ 2B 0 DR ) e
|52 p,qko |Ss|
+ 2k — gko + 1O — Q—— ZHGX vt )12 (103)
2 b

t=koq
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Using the above inequality and letting K* = | K/q|, we obtain

K+
E’L/J(XK) — Et/)(xo) SEQb(XK) _ E’l/J(XqK*) T Z (Ew(xqi) _ E¢(Xq(i71)))

K-2

(K —qK*) Y E|GE", v, n)|” +
p=qK*

n * n 2
S s | ST

t=qK*

3L2’I73
=[S

3(K — gK*)(K — qK* — 1
|Sa|

)T]L2d(52

ol

3L G , 3¢%nL2ds>
+Z( I R | e LLugug e
perl N p=q(i—1) 52|

1—1
n Ly &
~(3-) X e val)
t=q(i—1)
K—-2
(K —gK*
(K —qk*) Y EIG, v, )| + Wnﬂdéz
2
p=qK*

K —qxyc— (1L 3 Gt vt )2
(K =K"= (- 25) 37 66 v )

t=qK*

3L2773

+

N3

. K*—1

3PL2q ! o, 3K*¢*nL2d6?  K*qn
E|G(x?, vP C

TS ,;0 IGG P + =+ =3

gK*—1

2
(-5 X e

t=0

K-1
n  Lp®  3np°L%q 2 3Kq 5.  Kn
=" £ < : 104
< (2 2 |Ss | )tz: |G(x, v,77)H+|8| dé? + 20 (104)

Kq
)ZEHGX vin)|? <A¢,+?|)S—| L2dé* + 2"0, (105)

where Ay, = 1(x%) — 1(x*) with x* = arg minycga 9 (x). To simplify notation, we define

Then, (105) is simplified to
K—
A 1/ 3¢q
G( 2oy o 2+ o). 106
; Bl vl < 2+ 7 (anrta + (106
2 we have

E|G(xS, VF(x*),n)|* < 2B|G(x, v, n)||* + 2E[|G(x¢, v¢, ) — G(x*, VF(x°),m)|*. (107)
To upper-bound the first term of the right side of (107), we have

Using the inequality that ||x + y||? < 2||x]|?

K
E||G(xS, v, n)|)? = Z]EHGX vinl® < =2 + (ﬂnmauﬂc). (108)
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For the second term of (107), we have

E[G(xS,v6,n) — G, V() )12 SEvS — V)2 < ZEHv—Vf O

@ 6gL%*n? 1 2 2 162
< E|G(x", v, n)|l +—L dé +C
o K Z Sz

t=0

L2n? (A
<6q n ( w+ 3q L2d62 20)

N |52|7' |32|
69 9,0
+ @L dé* +2C (109)

where (i) follows from Lemma 8, (ii) follows from (101) and the last inequality following from (106). Combining (107), (108)
and (109) yields

BIGOS, V) )P <2 (52 + Shorta + 2o)

K
12¢L%n? (Aw 3¢ oo N )
+ —— + —nL?dé* + =C
|52|T 152" 2
b 2rgsr 4C, (110)
|Sa|
which finishes the proof. O

H.2. Proof of Theorem 5
Based on Lemma 7, we next prove our Theorem 5. We prove two cases with n < K and n > K, respectively.

First we suppose n < K. Based on the selected parameters, we have |S;| = n,q = |S1| = [n'/2], and thus obtain

3n 2 qL*n? 1
T = =— = —

16"~ K’ |S)| 16

which, in conjunction with (99) in Lemma 7, implies that

A 4 4 (A 4 20 _ 60A, + 80 1
¢ 2 < ) 4l * ) 4l Y <
E||G(X,Vf(x) n)|° < 377( +>+77<F +P'>+F (9( )

We choose K = Ce!, where C is a positive constant. Then, based on the above inequality, for C' large enough, our
PROX-ZO-SPIDER-Coord achieves an e-approximate stationary point, i.e., E||G(x¢, V£(x¢),n)||? < ¢, and the total
number of function queries is

K
[W nd + K|Sy|d < Kn'/?d +nd + Kn'/?d + Kd
q
< O(nd+ e nt2d) < O(e 'n'/2d) < O(de™3/?), (111)

where the last two inequalities follow from the assumption that n < K = C'e™!

Next, we suppose n > K. In this case, we have |S;| = K, q = |S;| = [K'/?], and

3n 602 4+2 12 qL?n? 1
_8 et _ 1 112
1w T Tk TR s T (112)
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which, in conjunction with (99), implies that

32 (Ay  4n  3no®  6n
1G (xS, V£(x€), )| (K Tk TR TR

4 (Ay 4n  3no? 6n 20 + 2402 L 48
K K K K2 K K2

2
SGOA,/,L—I—SO—FGQU 138 0 ( 1 ) .

— <
K TR

K

(113)

We choose K = Ce !, where C > 0 is a constant. Then, based on the above inequality, for C' large enough, our

PROX-ZO-SPIDER-Coord achieves E||G(x¢, V f(x%),7)||? < ¢, and the total number of function queries is

Fﬂ Kd+K|S|d < Kd+ K*?d+ K*?d+ Kd = 2K*?d + 2Kd < O(K>/?d)
< O(de™®?) < O(e 'n'/24),

where the last two inequalities follow from the assumption that n > k > Ce™ 1.

Combining (111) and (114) in these two cases finishes the proof.

I. Proof for ZO-SVRG-Coord-Rand-C

Based on (3) in Lemma 5, we first establish the following key lemma.

Lemma 9. Under Assumption 1, we have, for any qgko < k < min{q(ko + 1) — 1,qh}, ko =0, ..., h,

E[|v¥|[* <18ALE(f(x") — f(xj) + f(x™) = f(x5))
57120 271(|S| < n)

2 752
+ 9L=dé" + 1 ]

(2L%d6* + 0%)
where x5 = arg miny fz(x).

Proof. To simplify notation, we define

ES i (X ub) — fi (x
szk(X):d(flk( +5ﬁ) flk( ))uk

Based on the definition of v¥ in ZO-SVRG-Coord-Rand-C, we have

B[ VF2 =B fiy (x5) — ¥ fi, (x7¥) 4 v 2

23E\|§fu (x*) = V£, (<5)* + 3E[|V f;, (x7) — V £, (x5) = (Vfa(xT0) = V f5(x5))|?
+ 3E[[v?Fo — ¥ f5(x17)||?

(‘<1)EA k_/\_ *\ (12 EA' qko_A_ *\ (12 E qko qko\ |12

SBE(V fi,, (x7) = Vi, ()17 + 3E[V fi, (x97°) = V i, (x3)[|” + 3E[|v V(x|

9124232 9L2d% 3
2

(iii)
<SOE||V fi,, (xF) — V£, (x5)[12 + 2

+ 9dE[|V fi, (x") = V fi, (x5) 1 +
+ 3E[[v* — V f5 (x|

(114)

ASALE(f5, (") — F1, (x3)) + 18ALE(fy, (x7%0) — f, (x})) + OLd6” + BE[ v — ¥ f(x)

=18dLE(f(x") — f(xp) + f(xT°) — f(x})) + 9L?d* B + 3E[|va* — V f5(x7*)||?
) 45B2L2d2
ASALE( (<) — Foxh) + Fx50) — Foxh)) + 91287 + 20
n 27I(|S| < n)

5] (2L%dé* + 0?)

(115)
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where (i) follows from the equality ||a 4+ b + c||* < 3(||a]|* 4 [|b[|* + [[c[|*) and the fact that V f5(x7;) = 0, (ii) follows
from the inequality E||a — E(a)||*> < E|la||?, (iii) follows from item (3) in Lemma 5, (iv) follows from Lemma 5 in (Reddi
et al., 2016a) that for convex and smooth function f;, (-),

valk (X) - vflk (}’)”2 < 2L(flk (X) - fik, (y> - <vflk (X), X = y>)7
and (v) follows from (30). 0

Based on Lemma 5, we provide the following useful lemma as follows.
Lemma 10. let Assumption 1 hold, and define the quantity

4562 L2 d? N 271(|S| < n)

_ 2 502
/\777(9Ld5+ 1 ]

(2L%ds* + 02))

27292
+252L+2\/3L2d52+ 36 f d I, (116)

where I' = maxo<k<x E||x* — x| Then, ZO-SVRG-Coord-Rand-C satisfies

E(f(x") = f(x7)) <a™(f(x") = f(x5) = A) + A+ L, (117)
where x* = arg miny f(x), a = 18dn>L/(2n — 18dn>L) and A is given by
_ larnr (1 N l&inL)
2n — 18dn?L 2n — 36dn>L
Proof. Forgm <k <g(m+1)—1,m =0,.....h — 1, we obtain the following sequence of inequalities
E[x"*! — x5l =n’E|v*|* + E|x* — x5/® — 2nE(v"*,x* — x})

="E||v*||* + E[x" — x5[|* — 2nE(V f5(x*) — Vfﬁ(xqm) + v, x" —xp)
—nPEIVE]2 + Ellxt — x5 — 20E(V £ (), % — x5) + 2E(V f5(x) — v, x* — x5)
SV 2 + Efjxt - x5 — 2nE(f5(x*) — fo(x5)) + 2nE[IV f5(xT™) — v@™[||x* — x|
2E|x" - x5 % + 18dn* LE(f (x*) — f(x5) + f(x™™) — f(x5)) — 2nE(f5(x") — f5(x5))

27242 27272
+ Zn\/3L2d52 - Sﬁ#r + 7’ <9L2d62 + 86 4L i 27I(|‘?9|| <n) (2L%do* + 0—2)>

CRxt — x5 + 18d2 LE(F(x) — F(x5) + F(™) — F(x5)) — 20B(F(x) — F(x5))

382242
4

+ 2nB%L + 217\/3L2d52 + r
4562 L2d? N 271(|S| < n)

4 S|

+n° <9L2d52 + (2L%d6* + 02)) (118)

where (i) follows from the convexity of f3(-) (see (c) of Lemma 4.1 in Gao et al. 2014), (ii) follows from Lemma 9, (iii)
follows from item (1) in Lemma 5. Then, telescoping (118) over k from gm to ¢(m + 1) — 1, we obtain

q(m+1)-1
(2n—18dn°L) Y E(f(xF) = f(xp)) <E(x™™ — x5]% — [x1" D — x5]%) + qnA

k=gqm
+18dgn* LE(f (x4™) — f(x3))- (119)
Based on ZO-SVRG-Coord-Rand-C, we have

q(m+1)—1

Ef(xq(m“)):% S Efx)

k=qm
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which, in conjunction with (119), implies that
* P2 m *
(2n — 18’ L)E(f(x*"+V) — f(x3)) < 7 AT 18P LE(f (™) — f(x5)): (120)

Then, based on the selection of o« and A in Theorem 10, we obtain from (120) that

E(f(x1mT)) — f(x5)) — A < a (E(f(x?™) — f(x})) — A).

Telescoping the above inequality over m from 0 to A — 1, we obtain

E(f(x") = f(x5)) — A < o"(E(f(x°) — f(x3)) — A). (121)

Based on (1) in Lemma 5 and the definition of xg, we have

o) — £0c3) = o) - L gy - = g,
which, in conjunction with (121), yields
E(f(x") = f(x) = A = 2L < o"(E(F(x°) — f(x5)) — A). (122)
Then, the proof is complete. O

L.1. Proof of Theorem 6
Based on Lemmas 5 and 10, we now prove Theorem 6. We prove two cases with n < [c¢s/€]| and n < [cq/€], separately.

First suppose that n < [¢;/€], and thus |S| = n. Then, applying the parameters selected in Corollary 6 in Theorem 10, we
obtain & = 1/2 and

5= €2 n 5e2 n 2¢2 Lor 3¢z 3¢
- 3c3dL - 12¢3dL - 3d*L g 4ck’
3 /T2 3 [ 27LI%¢ €? 5e2 2¢2 32 3e2
A=2(Z4a) <t or, |25 4+ 25
2 (qu - ) -2 ( Cq * 3c2dL * 12c¢3dL * c3d?L + c? i 4c%>
which, in conjunction with (117), implies that
(F(X°) = f(x5))e 3 [27LI% 5e2 2¢2 3¢2  3e2
E By - f(x*) < 2 or, [25 4 2%
(F67) = 16x7) < Ch T3 Cq + 3c2dL + 12c3dL + c3d?L + 3 + 4c3
2
. 123
+ c3d?L (123)

For ¢y, ¢q, ¢g, ¢s large enough, we obtain from (123) that E ( F(xE) - f (x*)) < ¢, and the number of function queries
required by ZO-SVRG-Coord-Rand-C is at most

K

[q—‘ nd + K = hnd + hq = logy(cn/€)nd + logy(cn/e)cqd/e < O (d(n + 1/€)log(1/¢))
< O(dmin{n,1/e}log(1/¢)),

where the last inequality follows from the assumption that n < [¢;/€].

Next, suppose n > [cs /€], and thus |S| = [¢4/€]. Then, we obtain

5= €2 N 5e? n 2¢? Lor g+3762+263+026
 3c¢2dL 120?3dL c%d2L 3 40% csdL

F2 2LF2 2 2 22 2 2 23 2
A:3<+/\)§2<7 2 Lo 36+36+6+”>

2 \ qn Cq 3cgdL  12c3dL  c3d*L g 4ch csdL
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which, in conjunction with (117), implies that

3 [ 27LT 2% €2 5e? 2¢?
E Ky _ * <2
(F65) = £0x) <3 ( ¢, 3L " T23dL T &L

(f(x%) — f(x3))e €2
e c%dQL'

32 3e2 263 4o
+20 |5 + A
()

13 " Tedr

+

(124)

For cp, ¢4, s, ¢s, ¢5 large enough, we obtain from (123) that E ( f(xE)y—f (x*)) < ¢, and the number of function queries
required by our ZO-SVRG-Coord-Rand-C is

K
{q—‘ |S|d + K = h|S|d+ hq < O (d(1/e)log(1/e)) < O(dmin{n, 1/e}log(1/¢)),
where the last inequality follows from the assumption that n > [c/€].

J. Proofs for ZO-SPIDER-Coord-C

J.1. Auxiliary Lemma

To prove the main theorem, we first establish two useful lemmas.

Lemma 11. For any gko < m < q(ko+1),ko =0,....,h — 1, we have

k
E[[v* — Veooraf (")||* <6(k — qko)L?d6* +3 Y~ ElIVfi, (x™) = Vfi, (x™1)|?
m=qko+1
3ol <) (SJS|< ") (21248 + o).

where we define Zgi?;;ol E|[vt||? = 0 for simplicity.

Proof. Using an approach similar to (76) in Lemma 6 with |Sz| = 1, we obtain, for gko + 1 < m < k,
EIV™ = Voo ()2 < 6128 + 3V 1, (™) = Vi, (X" I + BV = Ve f (™) 2

Telescoping the above inequality over m from gko + 1 to k yields

k
E[v* = Veoora(x*)[|* <6(k — gko)L?d5* +3 > ||V fi, (x™) = Vi, (x™ 1|
m=qko+1

+ EHquO - ﬁcoordf(quo)HQ
which, in conjunction with Lemma 4, finishes the proof. O

Lemma 12. For any gko < m < q(ko +1),ko =0, ...., h — 1, we have

k
. . L
Z E”vcoordfim (Xm) - vcoordfim (Xm71)||2 S %EHVW«)”Q- (125)
m=qko+1 n

Proof. Define a smoothing function of f(x) with regard to its i*" coordinate as f; 5(x) = Eyu(—s,8) (f(x + ve;)), where
U(—4, §) denotes the uniform distribution over the range [—d, §]. Then, based on Lemma 6 in (Lian et al., 2016), the function
fi,5(x) has the following three useful properties:

(1) eief Vfis(x) = 35 (F(x +de;) — f(x + dei)) e;
(2) If f(x) has the L-Lipschitz gradient, then f; 5(x) also has the L-Lipschitz gradient.
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(3) If f(x) is convex, then f; 5(x) is convex.

Based the above preliminaries, we next prove Lemma 12. Recall from ZO-SPIDER-Coord-C that

v = @coordfim (Xm) - ﬁcoordfim (Xm_l) + Vk_la (126)

where we recall that for x = x™ and x™ !

d

Veoord fin (X™) =D %(fim (x + 8e;) — fi,, (x — de;)) Z eie] V fi,.i5(x). (127)

=1 =1
Then, based on (126), we have
va||2 :va_l H2 + H@coordfim (Xm) - ﬁcoordfim (Xm_1)||2
+ 2 < coordfz,”< ) - ﬁcoordfim (Xm_1)7 Vm_l) - (128)
()

We next upper-bound the term (I) in the above equation using the convexity of function f;, (+). In specific, we have
MH=- <Zel (Vfinio(X™) = Vi as(x™ 1)), x™ — xm1>

i 1
g- Z . (Vfinislee] x™) = Vi is(ee]x™ 1) ee] x™ —e;e] x™ 1)

(11)
- Z — Hszm is(eielx™) = Vi i s(eel x|

S T T

= [P () = Ve )| (129)

where (i) follows from the definition of e;, (ii) follows from the convexity of f;  ; s(-) and Theorem 2.1.5 in (Nesterov,
2013), and the last inequality follows from the definition of e; and the /5-norm. Combining (128) and (129) implies that

I = I (1 ) o 57) = Ve ()P
Telescoping the above inequality over m from gkg + 1 to k and taking the expectation, we finish the proof. O

Based on Lemmas 11 and 12, we next prove the following useful lemma.
Lemma 13. Under Assmption 1, we define

2 752 2
Iy 5 (2L%dé* + 0?) . (130)

Then, our ZO-SPIDER-Coord-C satisfies

1—al

B[V < a"BIVFE)* + T——A,

with the parameters satisfying o = 6L(n + 2Ln*)(2 — Ln)~1(1/2 — Ln)~! and

r 1+2L77A

A=— +
a(3 — Ln?) — Ly

(131)

where T' = maxo<p<p{E (f(x%) — f(x*))} withx* = arg miny f(x)
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Proof. Since f(-) has the L-Lipschitz gradient, we have, for gko < m < q(ko +1),ko =0,.....,h — 1,

FEmH) < )+ (T, X4 x4 x|

L 2
= (™) = V™ = V"), V™)) =l V)2 + S v
< SO+ V) =V = LIV + L™ = V)P + Lo V)2
= £ + (5 4+ L) V™) = v |2 = (5 = Ln?) IV £ (™),
< S+ (14 220) (Voo f (™) = V72 + [ V(™) = VeonraS () [2) = (2 = Ln?) [V £ ™) |2

Taking expectation over the above inequality and using Lemmas 3, 11 and 12, we have

Ef(x™ ) SEF™) + (n+200) (B Veooraf(x™) = v |2 + L2d8?) — (2 — Lo )E|V £(x™)||
k
<SES(™) + (14 2L7) (6(k — ako) L2d6% + L2d6* +3 Y E|Vfi,, (x™) = Vfi,, (x|
m=qko+1

31(|S1] <n) 2 752 2 n 2 my[2
S (21745 4o )) = (5 - L )EIVSx™)|
) 3L 3I(|S| <
<Ef(x™)+ (n+2Ln*) (G(k; — qko)L?do* + L?d6* + 2_727’]]«:”%’“0 1% + w (2Lds* + o) )

— (5 = L) EI VG

where (i) follows from Lemma 12. Noting that vi¥0 = Veoord f(x%%0) and telescoping the above inequality over m from
gko to q(ko + 1) — 1, we obtain

q(ko+1)—1 n

Z (5 — an)EHVf(Xm)”? < Ef(quo) _ Ef(XQ(k0+l))

m=qko
6qL 6qL 3qI(|S| <
+ (n+2Ln?) (3q2L2d52 +3 . L7777E|\VJ”(><"’“°)II2 + o7 4 LnnLQdé2 + Q(||S”) (2L2d82 + o) ) (132)
Combining (130) with (132) implies that
q(ko+1)-1 n 2 my (|2 qko " 9 6qLn dkon (2
> (5 - L)EIVA™)|? < Ef(x) — Ef(x") + (n -+ 2Ln?) (2_LnEHVf<x )2 +qr),
m=qko

which, in conjunction with the fact that x(ko+1) is generated from {x%0 ..., x4(ko+1)=11 yniformly at random and (131),
yields

E[[Vf(x/MFD)|? < aB||Vf(x)|* + A,
Telescoping the above inequality over kg from 0 to A — 1 yields

1— h
- _O; A, (133)

E[Vf(x")|? < "BV (%)) +
which finishes the proof. O

J.2. Proof of Theorem 7

Using Lemmas 11, 12 and 13, we prove Theorem 7. We prove two cases with n < [cs/€] and n < [cg/€], separately.
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First suppose that n < [cs /€], and thus |S| = n. Then, applying the parameters selected in Corollary 7 in Theorem 13, we
obtain o < 1/2 and A < O(e/c,) which, in conjunction with (117), implies that

E(|Vf(x5)|? <O (6 + 6) . (134)
Ch C,

q

For cp,, ¢, large enough, we obtain from (134) that E||V f (x)||? < ¢, and the number of function queries required by our

Z0O-SPIDER-Coord-C is at most
’VI;-‘ nd + Kd = hnd + hgd = logy(cp/e)nd + logy(cn/€)cgd/e < O (d(n + 1/€)log(1/e€))
< O(dmin{n, 1/e}log(1/e)),
where the last inequality follows from the assumption that n < [c;/€].

Next, suppose n > [c;/€], and thus |S| = [¢s/€]. Then, we similarly obtain

E[Vf(x")|? <O ( Ly ) |
C Ch

q Cs

Then. for cp, ¢g, ¢ large enough, we obtain from (123) that E||V f (x€)||? < ¢, and the number of function queries required
by ZO-SPIDER-Coord-C is given by

Vﬂ S|d + Kd = hS|d + hdg < O (d(1/€) log(1/€)) < O(dmin{n, 1/} log(1/e)),

where the last inequality follows from the assumption that n > [c,/€].



