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Abstract

We present supplementary material for the paper
GOODE: A Gaussian Off-The-Shelf Ordinary Dif-
ferential Equation Solver (John et al., 2019).

1. Extension on Solver Comparison

This section presents additional material for comparison
of the algorithms used in Section 5 of John et al. (2019).
GOODE is used with a squared exponential kernel. An
important criterion on selecting a numerical method is the
computational effort. Figure 1 displays the run times of the
different algorithms compared in Section 5. For GOODE
the overall runtimes including hyperparameter optimization
via grid search with M grid points are plotted. Additionally,
we display these runtimes scaled by 1/M. The scaled run-
times of GOODE are comparable to the other algorithms.
As the overall runtime scales linearly with M, it is by mag-
nitude M larger as the runtimes of the other solvers, but
still within the range of a few seconds. Note that overall
runtime for GOODE might be reduced by a smaller M or
another hyperparameter optimization method, in particular
if hyperparameters are adapted online.

Note that the comparison of methods is not on equal footing.
The other codes are highly tuned and feature mesh adapta-
tion strategies tailored to the specific method. GOODE, as
presented in the main text, is a proof-of-concept implementa-
tion of an elementary method without these features. There-
fore, if the runtimes are on the same order of magnitude, it
can be expected that future improvements to GOODE will
achieve comparable runtimes at higher accuracy on adaptive
meshes.

Thus, a comparison of the mesh, i.e. number of mesh points
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N and minimum mesh width § := min{|t; — t2] : t1,12 €
A, t1 # to} are presented in Figure 2 and Figure 3. In gen-
eral, we use a larger number of mesh points N for GOODE
in comparison to the other solvers, but with an equidistant
mesh. Now, comparing with respect to §, GOODE operates
in general within the same order of magnitude as the other
solvers.

Remark: For Problem 23 all other solver have a significantly
smaller stepsize than we use for GOODE, that explains why
GOODE performs worse for problem 23 considering the
relative error.

2. GOODE with Matérn 5/2 kernel

Here, we extend the comparison of GOODE with other
solvers, by using a Matérn 5/2 kernel (consult Rasmussen
& Williams (2006) for the definition). A comparison of
GOODE, with Matérn 5/2, to the other solvers, with re-
spect to the relative error, is displayed in Figure 4. The
results are obtained in the default setting, but with N = 71
and grid search for the hyper-parameter of Matérn 5/2 in
[1.5h, 150R]. Figure 5 presents the difference of selecting
the length scale as global optimum based on the reference
or based on maximizing the log likelihood.

3. GOODE with the bvp5c mesh

As a preliminary study for the performance of GOODE
with a non-equidistant mesh A, we use the resulting mesh
from bvp5c for a specific problem and approximate the
same problem with GOODE with exactly the same mesh.
However, for a low number N of points in the bvp5c mesh,
hyper-parameter optimization for the squared exponential
kernel with global length scale seems to be problematic.
Thus, we increase for each solver the relative and absolute
tolerance to le-5 and le-8, respectively, in order to obtain a
finer mesh. Everything else is in the default setting.

A comparison of GOODE, with the bvp5c mesh, to the
other solvers, with respect to the relative error, is displayed
in Figure 6. Figure 7 presents the difference of selecting the
length scale as global optimum based on the reference or
based on maximizing the log likelihood.
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Figure 1. Computation times in seconds of several BVP solver to obtain approximative solutions for the test set.
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Figure 2. Number of mesh points N used by several BVP solver for the test set.
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Figure 3. Minimum mesh width § of the mesh A used by several BVP solver for the test set.
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Figure 4. Relative errors of the approximations obtained by several BVP solver for the test set. GOODE with Matérn 5/2 kernel.
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Figure 5. GOODE with Matérn 5/2 kernel. Comparison of global optimum (with respect to the reference) vs. log likelihood optimum,
each computed on a fine grid for the Matérn 5/2 kernel hyper-parameter.
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Figure 6. Relative errors of the approximations obtained by several BVP solver for the test set. GOODE with the bvp5c mesh.
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Figure 7. GOODE with the bvp5c mesh. Comparison of global optimum (with respect to the reference) vs. log likelihood optimum,

each computed on a fine grid for A.

4. Remark on Adaptive Mesh Refinement for
GOODE

Adaptive mesh refinement for GOODE based on the local
error estimate o (t) would be a useful extension. However,
o(t) provides information about the local error of the ap-
proximation, but no information where grid points need to
be placed to achieve a certain accuracy. Choosing an ap-
propriate mesh is typically an optimization problem in its
own right. For other methods various heuristics have been
proposed to solve this efficiently. Introducing an ad-hoc
heuristic without proper justification and testing would not
have done the topic justice. In general, mesh selection in
BVP algorithms is a more intricate problem than in IVPs
(cf. Ascher et al. (1994, Chap. 9, 28 pages) vs. Hairer
et al. (1987, Sect. 11.4, 8 pages)) as two questions (num-
ber of additional points and locations) need to be solved
simultaneously. Note that, to this date, there is only one
published probabilistic ODE solver with automatic step size
adaptation for IVPs, showcasing the difficulty even in the
simpler case of [IVPs (Schober et al., 2019).

References

Ascher, U. M., Mattheij, R. M., and Russell, R. D. Numer-
ical solution of boundary value problems for ordinary
differential equations. Siam, 1994.

Hairer, E., Ngrsett, S., and Wanner, G. Solving Ordinary
Differential Equations I — Nonstiff Problems. Springer,
1987.

John, D. N., Heuveline, V., and Schober, M. GOODE: A
Gaussian Off-the-shelf Ordinary Differential Equation
Solver. In Proceedings of the 36th International Con-
ference on Machine Learning, Proceedings of Machine
Learning Research. PMLR, 2019.

Rasmussen, C. and Williams, C. Gaussian Processes for
Machine Learning. MIT, 2006.

Schober, M., Siarkkd, S., and Hennig, P. A prob-
abilistic model for the numerical solution of initial
value problems. Statistics and Computing, 29(1):99—
122, Jan 2019. ISSN 1573-1375. doi: 10.1007/
s11222-017-9798-7. URL https://doi.org/10.
1007/s11222-017-9798-17.


https://doi.org/10.1007/s11222-017-9798-7
https://doi.org/10.1007/s11222-017-9798-7

