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Abstract

There are two types of ordinary differential equa-
tions (ODEs): initial value problems (IVPs) and
boundary value problems (BVPs). While many
probabilistic numerical methods for the solution
of IVPs have been presented to-date, there exists
no efficient probabilistic general-purpose solver
for nonlinear BVPs. Our method based on iter-
ated Gaussian process (GP) regression returns a
GP posterior over the solution of nonlinear ODEs,
which provides a meaningful error estimation via
its predictive posterior standard deviation. Our
solver is fast (typically of quadratic convergence
rate) and the theory of convergence can be trans-
ferred from prior non-probabilistic work. Our
method performs on par with standard codes for
an established benchmark of test problems.

1. Introduction

The field of probabilistic numerics (Hennig et al., 2015)
seeks numerical methods that can be interpreted as proba-
bilistic inference. Numerical algorithms should return prob-
ability distributions as a measure of uncertainty associated
with the inherit numerical approximations (Cockayne et al.,
2016) which may improve existing algorithms (e.g., Balles
et al. (2017); Mahsereci & Hennig (2015)), add novel func-
tionality (e.g., Xi et al. (2018); Hauberg et al. (2015)), or
improve operation safety (Oates et al., 2017). Good prob-
abilistic analogues exist for quadrature (Briol et al., 2019),
linear solvers (Bartels et al., 2018), and optimization (Balles
& Hennig, 2018). For an extensive list see Oates & Sullivan
(2019).

Ordinary differential equations (ODEs) appear as mathe-
matical models for many problems arising in a broad range

1Corporate Research, Robert Bosch GmbH, Renningen,
Germany “Engineering Mathematics and Computing Lab, In-
terdisciplinary Center for Scientific Computing, Heidelberg
University, Germany *Bosch Center for Artificial Intelligence,
Renningen, Germany. Correspondence to: David N. John
<david.john@de.bosch.com>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

of application areas, e.g., in dynamical systems, and op-
timal control. Recently, ODEs have also been introduced
as building blocks in machine learning algorithms (Chen
et al., 2018; E et al., 2018; Grathwohl et al., 2019; Salman
et al., 2018; Zhang et al., 2018). As most problems lack
analytic solutions, no numerical toolbox is complete without
a general-purpose numerical ODE solver.

While many probabilistic algorithms for the solution of
initial value problems (IVPs) have been proposed (Tronarp
et al., 2018; Teymur et al., 2018; Schober et al., 2019), only
few methods for the special case of linear boundary value
problems (BVPs) have been presented by Owhadi (2015;
2017) and the similar derivation by Cockayne et al. (2016).
However, many interesting applications require the solution
of nonlinear BVPs (Ascher et al., 1994; Sontag, 1998).

We present a probabilistic numerical algorithm for the so-
lution of nonlinear two-point BVPs. As many problems
can be transformed into this standard form (Ascher & Rus-
sell, 1981), this closes a significant gap in the probabilistic
numerical toolbox. The method extends earlier work of
(Owhadi, 2015; 2017; Cockayne et al., 2016) for linear
problems by reformulating older work of Bellman & Kalaba
(1965) in the context of Gaussian process (GP) regression
(Rasmussen & Williams, 2006). The algorithm is based on
the Newton-Raphson method (Deuflhard, 2011) and is of
quadratic convergence given a good enough initial guess.

Our method treats the problem as a black box and only
requires a standard interface identical to other state-of-the-
art methods (Kierzenka & Shampine, 2001). Thus, the
proposed algorithm can be considered an off-the-shelf nu-
merical method for general BVPs. The standardized API
enables a fair comparison on an established benchmark of
test problems (Mazzia, 2014).

The structure of this work is the following: Section 2 in-
troduces the considered BVPs and recaps briefly on multi-
output GP regression. Section 3 explains a GP solver for
linear BVPs. Section 4 builds on this and introduces the
concept of quasilinearization in order to solve nonlinear
BVPs, resulting in the proposed solver GOODE. Numerical
experiments and comparison to other solvers are presented
in Section 5. In Section 6, we put our work into perspec-
tive within the probabilistic numerics field. We conclude in
Section 7.
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2. Problem Formulation and Background

We consider the two-point boundary value problem (BVP)

v =rfty), a<t<h, M
0= g(y(a),y(b)),
with respect to the unknown function y : [a,b] — R%

Differentiable f : [a,b] x R — R%and g : R? x R? —
R9 are given and might be nonlinear. This is a first-order
BVP. Without loss of generality, we can assume first-order
systems (Ascher & Russell, 1981).

One way to solve (1) is by introducing unknown variables 6
for the missing initial values y(a) = 6. Standard software
for the solution of IVPs can be used in an inner loop to
find a 6* that satisfies (1) in an outer loop. Methods of this
type are called (multiple) shooting or marching methods.
They are not commonly used nowadays as they require
substantial algorithmic overhead (Ascher et al., 1994, §4) to
compensate for numerical stability issues which are often
encountered in interesting problems (Cash, 2004).

Global methods (Ascher et al., 1994, §5) consider a finite
mesh of knots A := {¢t; = a,ts,...,ty_1,ty = b} and a
suitable approximation class of functions )/, e.g. the set of
piecewise polynomials Px of degree K. The goal is to find
ay € Y such that the discretized problem

ti, (i),
):4(b)),

is solved exactly by the approximation ¢. Define the func-
tional F': Y — RUNFD) 44

§'(t1) — f(t1,9(t1))
F(j) = | )

) Vt, € A, @)
0=yg(y(a

It is clear that a root F'(§*) = 0 of (3) is a solution to the
discretized problem (2). Thus, the BVP is reduced to a
root-finding problem and may be solved with any algorithm
from the Newton-Raphson family (Deuflhard, 2011).

For a more thorough introduction, we refer the reader to
Ascher et al. (1994) and Deuflhard & Bornemann (2002).

2.1. Gaussian Processes Review and Notation

There is extensive literature on GPs and GP regression, e.g.
(Rasmussen & Williams, 2006), hence we briefly introduce
our notation for multi-output GP regression here.

Lety = f(t), fort € Rand f : R — R Con-
sider the multidimensional regression problem, where f
is unknown and only a data matrix D = [y;];=1,.. N €

RN with y; = f(t;), at the corresponding discrete
mesh A = {t1,...,in|tn € R}, ty, < t, for m < n,
is given. Denote by vec(D) € R the vectorization
of matrix D. Further, let A ® B = C denote the Kro-
necker product of A € R"*™ B € RP*Y, then C =
[Ai;Bli=1,..nj=1,..m € R"*™% For a covariance ker-
nel k(t,t'), define for two sets A, A’ containing m and
n elements, respectively, the m X n matrix Kaas with
(Kaar)iy = k(t, t)).

GP  regression

GP(f(t);

assumes a prior P(f(t)) =
m(t), k(t,t') ® V), with prior mean m(t) € R4,
a covariance kernel k(t,#') and V. € R4 posi-
tive semi-definite. For example, the trivial choice
V = I, where I; € R denotes the identity ma-
trix. Given the data, the predictive posterior GP is
P(f(t) A, D) = GP(F(); 1 (1), kep (£, '), with

Hp<t) =m(t) — (Kia ® V)G tvec(D),
kp(t,t) = Ky — (Kia @ V)G (Kapy ® V),

where G := Kaa ® V. Later, we present an example of GP
regression in Figure 1. For details see Bonilla et al. (2007).

“4)

Note that GPs are closed under linear transformations,
e.g. derivatives of GPs are again GPs, since differentia-
tion is a linear operator (Bogachev, 1998). For a covari-
ance kernel k(t,t'), define k9(t,t') = 2 k(t,t'), simi-
larly Pk (t,t') = 2k(t,¢') and kO (t,t') = 52 k(t,1').
Then, for d = 1, provided the derivatives exist,
P(Lft) = GP(f(t); Lm(t), kO (t,t')). Further-
more, cov(f(t),%f(t’)) = k9(t,t') and vice versa
cov( if(t) f(t")) = %k(t,t"). For a detailed introduction
see Solak et al. (2003).

Later, we will mainly use the squared exponential kernel
k(t,t') = exp((2A?)~1(t — t')?) with characteristic length
scale A > 0. Other covariance functions are described in
Rasmussen & Williams (2006).

3. Solving Linear BVPs with GPs

It has been shown how GPs can be used to solve linear BVPs
(Owhadi, 2015; 2017; Cockayne et al., 2016). Below, we
present the theory in our notation. Consider the linear BVP
y'(t) = A®)y(t) + q(t),
1 = Bay(a) + Buy(b),
where A : [a,b] — R ¢ : [a,b] — RY, By, B, € R4*4
and 7 € RY. Rewrite the previous equation and separate
into linear operator, function and inhomogeneous part:

[i - A(t)} y(t) = a(t),
[B. By [ZEZH =

a<t<b,
5

(6)
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Since GPs are closed under linear transformations, (6) can
be used to directly form a predictive posterior belief. Define
a discretization mesh A = {t1,...,tn |ty € [a, 0]}, t, <
t, form < nandalso OI = {a,b}. Further, y(A) € R¥*N
and vec(y(A)) := [y(t1),-..,y(ty)] € R . Denote by
A(A) € RNIXNd the block diagonal matrix composed of
A(t;) as the i-th block matrix, for all ¢; € A. Define

Q= |eaqriay] <

Y= [y@) () y(A)] € RXCHY),

_|Ba Bs 0 0 d(14+N)xd(2+2N)
H= [0 0 —A(A) IdN} €R :
(7N

Then Hvec(Y) = @ represents the discretized version of
the linear BVP in (6) as one large system of equations.

Using the previous definitions and assuming a multidimen-
sional prior GP P(y(t)) = GP(y(t);0,k(t,t") ® V) for
y(t) € RY, with positive semi-definite V' € R*? (later
V = I, the identity matrix), the predictive posterior GP,
conditional on the data D = {A(A), ¢(A), B, By, n} can
be written compactly as

P(y(t) D) = GP(y(t); pp (1), kp(t,t). (8

With the definitions

Karor  Koia KgIA
G=|Kror Kan K32, |€ R(2+2N)x(242N)
’Knor “Kan “KRa

F= I:Ktaf KtA K?A} € ]R1><(2+2N)’
FT = [Kalt' Ky 8KAt/]T S RIX(2+2N),

Gy =H(G®V)HT € RIHNXAIHN),
©)

predictive posterior mean and covariance are given as

1y(t) = (FOV)HTGH'Q € RY,

kp(t,t") = (Kw @ V) — (FRV)HTGZ H(Ff o V).
(10)

Define by o(t) := diag(kp(t,t))'/? € R the posterior

standard deviation.

Note that foreach ¢ € {1,...,d}, G is the covariance matrix
of the dimension-wise rows, i.e. the i-th row, of Y. And
G ® V is the covariance matrix for vec(Y) € RU2+2N),

Example 1: For a ¢ > 0, the ODE 2" (t) — z(t) = 0, with

z(0) = 1,2(1) = 0 is a linear BVP. The exact solution
: — exp(=t/\E)—exp((t—=2)/Ve) ;

is zex (1) = =B 1_;})(_5/\/5) £ (Mazzia, 2014). In
standard form, for y; = 2,y = 2’ and y = [y1,y0]7 it

reads
Pl fo ofsore i sfon =]

10

0.5

y1(t)

0 025 05 075 1 0 025 05 075 1
t t

(b) GP BVP

L..®
0.75 1 0 025 05 075 1
t t

(c) GP regression (d) GP regression

Figure 1. The first row shows the solution of Example 1 with a GP
BVP solver. The second row shows standard GP regression results,
if data points from the exact solution are given. Legend: p D(t)
(dashed), p1._ (t) £ 100 (¢) (dotted), exact y(t) solid line, boundary
conditions (square) and data points (square).

Figure 1 visualizes that a GP BVP solver is not just standard
GP regression. Fore = 0.1, A = {0,0.25,0.5,0.75,1}, an
approximation of Example 1 obtained with the linear GP
BVP solver in comparison to standard GP regression are dis-
played. Both results are obtained with a squared exponential
kernel and a non-optimal length-scale for visualization pur-
poses. For the BVP only y(91) (square marker in (a)) are
given as direct observations of y. The remaining information
about y and y’ are indirectly given via noise-free linear com-
binations y'(t,) + Ay(t,) = q(t,) at t, € A (vertical grey
lines in (a), (b)) with a Dirac likelihood, where only ¢(t)
and A are known. In standard GP regression, direct informa-
tion about y(t) is required. Here the data y1 (A) = 2., (A)
(square marker in (c)) is used. Note that in the black-box
setting, direct information is usually not available and needs
to be replaced by noisy numerical approximations (here sim-
ulated via additive Gaussian noise). Based on this data, (c)
displays the standard GP regression result for y; () and (d)
shows the derivative of this GP for y»(t). Also note how H
introduces a non-stationary dependence of the regression
weights (F ® V)HTG" and also on the posterior standard
deviation o (t) in contrast to standard GP regression.

Remark: As BVPs by definition are multi-dimensional (or
higher-order), a multi-output GP regression implementa-
tion is an absolute requirement for this application. Here,
computational costs are largely dominated by inversion of
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Gy which is O((d + dN)3). Unfortunately A(t) # const
in most cases, thus H cannot be reformulated as a Kro-
necker product and consequently G;{l can not be simplified
to reduce the cost of the inversion, in contrast to Hennig &
Hauberg (2014). In the few cases where A(t) = const, H
can be written as some Khatri-Rao product, which is equiva-
lent to the Kronecker product up to (unknown) permutation
and selection matrices (Liu & Trenkler, 2008).

Remark: Our formulation is for first-order BVPs in stan-
dard form. In the few cases where this form is not possible,
an analogous formulation for higher-order BVPs can be de-
rived, if higher-order derivatives of k(t,t’) exist. Then set
up Y, H,G, F, F' not just for 1, 4/, but also for all required
higher derivatives of y.

3.1. Error Analysis for Linear BVPs

The error analysis for linear problems in Cockayne et al.
(2016) is restated here in our notation. The following Propo-
sition is similar to Prop. 4.1 in Cockayne et al. (2016).

Proposition 1 (local accuracy) Let y(¢) be the exact solu-
tion of a linear BVP. Then,
vt € a,b] : —y@®l <o®lyll.  AD

Consequently, reducing o(t) improves estimation . (t).
An illustration of Proposition 1 follows later with Flgure 4.

1125 (2)

Let h := sup,¢(, ) mingealt — t'| denote the fill distance
of A. In case of an equidistant mesh h = (b — a)/2N.
Proposition 4.2 in Cockayne et al. (2016) states that o(t) <
ChP, where p = 8 — p — 1/2 depends on the Sobolev
space H” that is norm-equivalent to the Reproducing Kernel
Hilbert Space (RKHS) of the kernel k(t,t'). The parameter
p corresponds to the order of the differential operator, in our
case p = 1.

Theorem 4.4 in Cockayne et al. (2016) is a direct result of
both stated propositions. We reformulate it for our purpose.

Theorem 2 Let y(¢) be the exact solution of a linear BVP.
Then, ||, (t) — y()[|7: < C(b— a)h? with p as above
and C' > 0.

4. Solving Nonlinear BVPs by
Quasilinearization

Quasilinearization is a direct application of Newton’s
method to nonlinear BVPs (1) in order to obtain a series
of linear continuous BVPs (6). The original idea is due to
Bellman & Kalaba (1965) and a conceptual introduction can
be found in Ascher et al. (1994). The following derivation
is similar to Mazzia & Sgura (2002).

Define F(y) = y' — f(t,y) and G(y) = g(y
In the following, we will write J¢(t,y) =

—~

a),y(b)) —
f(t,y). The

«?\@

Fréchet derivative 7 of F, for a s € C1([a,b],RY), is
given by (Ascher et al., 1994, §2.3.4)

Fy)s = <(ft Iit, y)) (12)

Now, linearization of the BVP F(y) = 0, G(y) = 0 around
a given y*) € L?([a, b]) with respect to the Fréchet deriva-
tive yields Newton’s method in function space

F'(y®)s® = —F(y™),

YD) — (k) 4y 50 (13)

with v > 0. For v = 1, it can be shown that (13) is equiva-
lent to

d ,
[dt Ty (t, y(k))] y D = fty®) = Iyt y™)y®
(14)
which is, for a given initial guess y(*) € L?([a, b]), a series
of linear BVPs with the boundary conditions

k), (k
By (kD) +Bz§ )ylg +1) _ n®),

By (k) (k)

—9wa Y, )+,

) W_ 9
BY = 5.9 g, y), B = B =gy, "),

5)

™ =By +

Here, for brevity Y= y“)(a) and ylg‘) =y (b).

4.1. GOODE

Our contribution is the combination of quasilinearization
and the presented GP solver for linear BVPs, (8) and (10),
to iteratively approximate nonlinear BVPs in a probabilistic
fashion. In each iteration the GP solver is used to approx-
imate a linear BVP out of the series (14) and (15), until a
stopping criterion is reached. This yields a probabilistic
solver providing a probability distribution as solution, natu-
rally delivering uncertainty estimates, which is a novel and
unique functionality in comparison to classical nonlinear
BVP solvers. We have implemented our method in Matlab
with an almost identical interface as the Matlab BVP solvers
(Kierzenka & Shampine, 2001; 2008). Our goal is that users
should be able to apply our method without needing to un-
derstand the exact inner working, treating the algorithm as
a black-box off-the-shelf numerical method. We denote
this method by GOODE: a Gaussian Off-the-shelf Ordinary
Differential Equation solver'.

Computational costs are largely dominated by inversion of
G in each iteration which is O((d+dN)?). This is akin to
classical (global) methods (Ascher et al., 1994, §7). Using
efficient solvers, it can be hoped to achieve a speed-up via
the application of Krylov subspace methods (de Roos &
Hennig, 2017).

'Matlab code is available at https://github.com/
boschresearch/GOODE


https://github.com/boschresearch/GOODE
https://github.com/boschresearch/GOODE

GOODE: A Gaussian Off-The-Shelf Ordinary Differential Equation Solver

4.2. Error Analysis for Nonlinear BVPs

In each iteration the linear BVPs (14) and (15) are only
approximated. Due to those uncertain Newton steps the
method is an inexact Newton method in function space and
standard convergence results apply.

Define the residual +(*) := F/(y*))s®) + F(y(*)) and
the relative residual p®) = |r®)| 12 /|| F(y ")) 2. If
the condition p*) < v(¥) holds, where the forcing factors
v = min(0.5, C||F(y*¥)||2) < 1, for some constant
C > 0, then the inexact Newton method converges locally
quadratic (Dembo et al., 1982; Dean, 1992; Mazzia & Sgura,
2002). Consequently, it is not necessary to be exact in each
iteration. The accuracy and the associated computational
costs of the approximations in each iteration could be con-
trolled to satisfy only the upper bound of the condition. For
our solver this could be used in future work.

For a given tolerance tol > 0, p®) < tol or ||s™*)|| 2 < tol
can be used as stopping criterion. This is further discussed
in Mazzia & Sgura (2002).

By combining this with Section 3.1 one obtains for nonlin-
ear BVPs following: In each iteration the linear BVPs (14)
need to be solved such that the local convergence condi-
tion on p(k) is satisfied. Then GOODE, i.e. the respective
inexact Newton method, converges locally quadratic. One
strategy could be to iteratively approximate the linear prob-
lems and, if the condition on the relative residual is not
satisfied, then refine the mesh A and repeat. Currently, we
only use an equidistant mesh A, thus refinement is achieved
by increasing N. However, in future work one could ben-
efit largely from Proposition 1; i.e. the posterior standard
deviation o (t), as a local accuracy estimate, could be used
to refine the grid locally.

In the next section Figure 3 illustrates the convergence of
GOODE with respect to N and the Newton iterations.

4.3. Illustration

Example 2: For a e > 0, the ODE 2 (¢) — 2/(t)? = 1,
with 2(0) = 2¢4(0), 2(1) = ze,(1) is a nonlinear BVP. The
exact solution is 2z, (t) = 1 + & In cosh((t — 0.745)/¢).
In standard form, for y; = z,y2 = 2/, y = [y1,y2]T and

f(y2) = L(1 = (y2)?), it reads
/=il o oo [i oo =[]

Figure 2 displays the iterative approximation of Example 2
(¢ = 0.1) with GOODE in comparison to the exact solution,
for an equidistant mesh A with V = 31 points, initialized
with y(©) = 0. A squared exponential kernel, with length
scale optimization on a fine grid with respect to the error
relative to the exact solution, was used. Due to the non-

0
0 02 04 06 08 1 0 02 04 06 08 1
t t

(@ (b)

Figure 2. Iterative approximation of nonlinear Example 2 with
GOODE. (a) displays y1(t) and (b) y2(t), with their respective
approximating Newton iterations. Legend: Iteration £ = 1 dotted,
k = 2 dash-dotted, £k = 3 dashed, k = 4 solid and exact solution
solid thick (gray) line.

10° 4
102 4
i
© 1044
o
106 4
1 40 20
4 60
5 6 100 80 °
Iteration N
Figure 3. Relative error of the Newton iterations k = 1, ..., 7 for

varying number of points N for Example 2.

informative initialization y(°) = 0 iteration k = 1 is far
away from the exact solution, however ygl) already fulfills
the boundary conditions, as all next iterations do. Following
iterations k1 are initialized by y*) and converge fast to the
exact solution until the stopping criterion, ||s(*)|| > < tol
for tol = 1079, is reached. A relative error of 10~* with
respect to the L2 norm is reached for iteration k = 7 as is
displayed in Figure 3.

Note that the results can be improved for a larger N. This
can be done with the strategies presented earlier. In Figure 3
the evolution of the relative error (for Example 2 and with
respect to the reference solution) of the Newton iterations
k =1,...,7for increasing number N of equidistant points
in A is displayed. Convergence of the Newton method
improves largely for increasing NV, as the series of linear
BVPs approximating the nonlinear BVP are solved with
higher accuracy.

Figure 4 illustrates that the result of Proposition 1 also
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applies to the converged Newton iteration k = 7 approx-
imating the nonlinear Example 2. The local accuracy
[ (t) — y(t)|| and its upper bound o(t)||y| 2 are plot-
ted. At this point we emphasize that ., (t) and o(t) are
the approximation of the linear BVP in iteration £ = 7, but
y(t) is the analytical solution of the nonlinear BVP. Also
o(t) is plotted to show that it has the same magnitude as
|12, (1) — y(t)||. We note that the overall qualitative trend
has high similarity, thus confirming (at least for Example 2)
that o(¢) is valuable additional information delivered as
add-on with GP solvers. It also confirms that o(t) can be
a useful tool for local mesh refinement. Sticking to this
example, mesh refinement around ¢, ~ 0.7, due to the peak
at o2 (t,) (b), might be advisable.

I I I I
— 1073
10t N
— N P
» TN Ko ,
S 6 107° i
10—6 [ . |
| | | : | 1079 -\ | | |
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
t t
(a) (b)

Figure 4. Illustration of Proposition 1, with nonlinear Example 2.
For iteration k = 7, the local accuracy ||p,(t) — y(t)|| (dotted),
a(t)|lyll L2 (solid) and o (¢) (dash-dotted) are presented for dimen-
sions 1 in (a) and 2 in (b).

4.4. A Bayesian Probabilistic Numerical Method?

Recently, Cockayne et al. (2017) have given a rigorous defi-
nition of what it means for a probabilistic numerical method
to also be a Bayesian probabilistic numerical method. Wang
et al. (2018) present a sufficient condition on the existence of
a certain Lie group of transformations for this to be the case.
While numerical algorithms have been developed to detect
linearity (Birkisson & Driscoll, 2013), it is not clear how
the more general condition can be exploited algorithmically.

For the general nonlinear case, the existence of a suitable
Lie group cannot be expected. According to the definition
in Cockayne et al. (2017), our method is not a Bayesian
PNM. However, we suggest that GOODE is thought of as a
Laplace approximation to the true posterior density. Using
different initial guesses, this can be used to construct a GP
mixture model for ODEs with multiple solutions. This view
is explored empirically in Sect. 5.1.

4.5. Model Selection

First of all, a covariance kernel k(¢,t’), with existing par-
tial derivatives as required needs to be selected. Examples
of possible kernels are squared exponential, Matérn 5/2,
Matérn 3/2, rational quadratic (Rasmussen & Williams,

2006) and cubic spline kernels (Minka, 2000).

Based on the choice of the kernel k(t,t') the kernel hyper-
parameters § € R need to be set and optimized; e.g. for
the squared exponential kernel # = A > 0. Standard type-II
log marginal likelihood (Rasmussen & Williams, 2006)

logP(y| D) =~ LQTGH'Q ~ 1 log(det(Gn))
: 2 (16)
- i(d + dN)log(2m),
with the definitions above, is maximized via grid search
on a fine grid Ay6. Gradient based optimization would
either require differentiation of the kernel and its partial
derivatives with respect to 6 or corresponding approxima-
tions. However, as computation time is not a bottleneck for
the problems considered in this work, grid search will be
sufficient.

Remark: In the experiments later on we observe that, for
the squared exponential kernel, in some problems the accu-
racy of the method for a given N strongly depends on the
choice of A\. However, in some of those cases the maximum
of the log marginal likelihood only corresponds to the best
hyperparameter (obtained with respect to the reference), if
the number of mesh points /V is large enough.

It is known that using a universal kernel (Micchelli et al.,
2006) and a fine enough mesh, any curve can be fitted. In
this context, sub-optimal hyper-parameters might require an
exponentially larger N (van der Vaart & van Zanten, 2011),
nevertheless universality still holds.

S. Experiments

To benchmark our GP BVP solver GOODE, a comparison to
established, non-probabilistic BVP solvers TOM, bvptwp
and Matlab’s bvp4c and bvp5c on an established set of
BVP problems is carried out.

The code TOM is described in Mazzia & Sgura (2002)
and bvptwp in Cash et al. (2013). bvp4c is described in
Kierzenka & Shampine (2001) and bvp5c in Kierzenka &
Shampine (2008). These methods are considered state-of-
the-art (Cash & Mazzia, 2011). GOODE is implemented in
Matlab with standard interface.

The testset can be obtained from Mazzia (2014). A short
description is given in Mazzia & Cash (2014). It contains
33 two-point BVPs, which are in parts singularly perturbed
problems, depending on an € > 0; I.e. small € provides a
multi-scale character to the problem.

Problems 1-18 are linear and provide, except for no. 15, an
exact solution. Problems 19-33 are nonlinear, with exact
solutions only for 20 and 21. Most problems have dimension
d = 2, problems 31 and 32 d = 4 and problem 33 d = 6.
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Figure 5. Relative errors of the approximations obtained by several BVP solver for the test set.

If not stated otherwise, we will use the following default
setting to obtain the results: squared exponential kernel,
equidistant mesh A € R” including the boundary points,
with N = 31, grid search for A € [1.5h, 15h] with M =
40 logarithmic spaced grid points and € = 0.1 for all the
problems. For the problems without exact solution, we use
an approximate reference solution obtained with bvp5c
and relative tolerance of 1e-9 and absolute tolerance of le-
12 (default values are le-3 and 1e-6, respectively.).

A comparison of GOODE to the other solvers, with respect
to the relative error, is displayed in Figure 5. Overall, the
performance of GOODE is comparable, with the advantage
of a local error estimate o (t). Note that GOODE, currently
with the disadvantage of the equidistant mesh, needs slightly
more points to obtain those results. At this point we refer
to Section 4.5 and mention again that for small, fixed N,
hyperparameter optimization is essential, but fast. Runtime
and mesh comparison can be found in the supplementary
materials. For Problem 23 GOODE performs significantly
worse. This is due to the equidistant mesh A and small
N. A much larger N or an adaptive mesh would improve
results, as all other solvers have adaptive mesh selection and
locally refine at the right boundary of Problem 23, where y;
changes rapidly. Tests with non-equidistant mesh and also
with Matérn 5/2 kernel can be found in the supplements.

Figure 6 presents the difference of selecting the length scale
as the global optimum based on the reference or based on
maximizing the log likelihood (16). For some problems it is
similar, but for others, e.g. problems 2, 4, 18, and 21, there
is a significant difference. However, this can be improved by
increasing the number of points NV as presented in Figure 7.
Here, for problems 1, 2, 20, and 21, the fast convergence of
GOODE is displayed. It also shows that for IV large enough
the difference between best possible error and the error of
log likelihood model selection vanishes. Note that both axis
are in logarithmic scale.

5.1. Painlevé ODE

Nonlinear BVPs can have multiple solutions and the result-
ing probability distribution should thus be multi-modal. We
illustrate this with the nonlinear Painlevé ODE z(t)" =
z(t)? — t with boundary conditions z(0) = 0 and z(10) =
V10, see Cockayne et al. (2017, §6.2). Let y := [z, 2] to
obtain the standard form. This problem has two solutions.
To obtain both solutions the initialization () needs to be
adjusted. For one solution we use %(°) = 0 and for the other
ygo) linear between ygo)(O) = —3 and ygo)(l()) = 3, and
yéo) = 0. For this setting GOODE finds both solutions, vi-
sualized in Figure 8 by the solid (light green lines). bvp5c
only finds the first solution (with N = 65 and bvp5c er-
ror estimate 4.8e — 5 ) and fails to converge to the second
solution (with N = 1400 and bvp5c error estimate 0.65).

6. Related Work in Probabilistic Numerics

Applications of kernel methods (Wendland, 2004) to the
classical theory for BVPs (Ascher et al., 1994; Deuflhard &
Bornemann, 2002) is established (Saitoh & Sawano, 2016,
§5). Through the known equivalences of spline methods and
GP regression (Kanagawa et al., 2018; Kimeldorf & Wahba,
1970), many theoretical results are readily obtainable.

In Brugnano & Trigiante (1998), methods for initial value
problems (IVPs) are developed that focus on the application
of BVP methods to IVPs. This treatment can circumvent
in some cases unfavorable stability properties of shooting-
based spline methods for IVPs such as Loscalzo (1969);
Byrne & Chi (1972). It is an open question, how these
results can be transfered to other probabilistic IVP solvers
in the literature.

Probabilistic IVP solvers, e.g., Teymur et al. (2018); Tronarp
et al. (2018); Schober et al. (2019) could be applied in (mul-
tiple) shooting schemes (Ascher et al., 1994, §4). However,
it is not clear whether these methods are sufficiently stable
to warrant efficient integration of BVPs.
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Figure 6. Comparison of global optimum (with respect to the reference) vs. log likelihood optimum, each computed on a fine grid for A.
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Figure 7. Convergence for Problems 1, 2, 20 and 21. Dark green
circles display the best relative error, obtained on a fine grid, with
respect to the reference. Light green triangles display the rela-
tive error obtained by using the length-scale from log likelihood
maximization.

In the context of Riemannian manifolds, solvers for special-
ized BVPs have been presented in Arvanitidis et al. (2019);
Hennig & Hauberg (2014).

7. Conclusion

We have presented GOODE, a probabilistic numerical al-
gorithm for the solution of nonlinear two-point BVPs. The
solver iteratively applies the Bayesian probabilistic numeri-
cal method of Cockayne et al. (2016) in the quasilineariza-
tion process of Bellman & Kalaba (1965), which results in a
GP posterior distribution over the numerical approximation.
In this work, we have favored a more expository presenta-
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Figure 8. Two solutions of the Painlevé BVP. Solid (light green)
lines show results obtained with GOODE (A from log likelihood
maximization) =C'o1 (¢) as dotted lines, for C' = 8e4 in (a) and
C = 4e3 in (b). Dashed (magenta) lines show bvp5c results.

tion over classical convergence and stability results. Those
are readily obtainable by transferring the vast literature on
smoothing splines (Wendland, 2004) and other boundary
value methods (Ascher et al., 1994) via the known equiva-
lence with GPs (Kanagawa et al., 2018).

As most ODE problems can be reformulated in this first-
order form (Ascher & Russell, 1981), our method fills a
gap in the ever-growing toolbox of probabilistic numerical
methods. Results on a standard benchmark show that the
algorithm performs on par with state-of-the-art codes. This
performance is already achieved with the proof-of-concept
version detailed above. In particular, further improvements
may be expected through the addition of advanced func-
tionality such as automatic mesh selection and step size
adaptation.

Although the algorithm returns a probability distribution
in its current form, it may be criticized that the iterative
process is not phrased as probabilistic inference. Thus,
future work might focus on a fully probabilistic method,
e.g., by applying a general linear solver (Bartels et al., 2018)
and by probabilistic hyperparameter selection, e.g., for the
evaluation mesh (Oates et al., 2019; Chkrebtii & Campbell,
In review; Chaloner & Verdinelli, 1995).
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