Robust Influence Maximization for Hyperparametric Models

A. Omitted Proofs
A.1. Proof of Lemma 1

Proof. Denote the solutions to the two different objec-
: L& : fp(5)

tives as follows: S, = arg maxg.|g|<x Minpep fpp(is;;) and
S, = arg maxg.|s|<x Minpep fp(S).

We will prove the lemma by contradiction. Specifically, let’s
assume that there exists a set of influence functions P for
which ming, f5(S;) < ﬁ ming fp(Sy), i.e. for this P, the
solution for the robust ratio objective is suboptimal with
respect to the total number of nodes influenced by a factor

greater than \/n.

To ease the notation let us denote with f;. the function that
achieves

Hence it holds:
\/ﬁ' fr(gr) = \/ﬁ : mpinfp(‘gr)
<min fp(S) = fo(S0) < [(S) B3

where the last inequality is due to the minimality of f,,. Let
us denote with f;,, the function that has the minimum ratio

for 5”,,. That is Sm(So) _ ming o(5u) Then,
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where the last inequality holds due to the maximality of S,.
Now we can prove a contradiction as follows:

fm(S:;m) > \/ﬁ fm(Sv) > \/ﬁfv(gv)
>n: fr(gr) >n

The first inequality is due to (4), the second is due to the fact
that f,,(S,) = argminp, fp(S,), while the third is from (3).
Finally, since |S,.| > 1 the influence function is also at least
1 (at least all the nodes in .S, get influenced).

Now notice that the influence of any set of nodes cannot be
more thanAn and as a result weAhave a contradiction. Thus,
ming fp(S,) > ﬁ ming fp(Sy).

The graph in Figure 2 shows that there exist a set P for
which ming, f(S,) = Q (i) min,, fp(S,) which con-

\/ﬁ
cludes the proof.
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A.2. Proof of Lemma 3

Consider a cycle on n nodes, connected with edges of dif-
fusion probability 1 — A, and an additional center node v*
that is connected to all the nodes of the cycle. Notice that
the number of edges is m = 2n. To consider the Lipschitz-
ness of the influence function on this graph we consider the
change in the influence of v* in case that the probabilities
connecting it to the cycle are all A and the case in which
they are alle =n - \.

The influence of v* in the first case is at most n(1—(1—\)™).
For sufficiently large n:

)\ n
(1,\)”(1"> ~e ™1 —n)
n

So, the influence is at most n2\ = ne. Once the proba-
bilities on edges connecting it to the cycle increase from
A to € its expected influence becomes at least n(1 — (1 —
€)™)(1 — A\)™. Using the same approximation as before for
sufficient large n, we get that the influence of v* is at least
n2e(1 —n)) = n2e(1 — €) = ne — n2e2.

Then, | fp(v*) — fpr(v*)| = n%e — n?e? — ne. After setting
€ = L, this bound becomes n?e —2ne = (n’g —2n)e. Thus,
for small € the Lipschitz constant is asymptotically achieved
with n.

Notice that this example can be simplified if we use proba-
bilities of 1 in the cycle, and 0 and € in the the connections
of v*. The reason why we avoided the values 0, 1 is because
for some generalized linear models, e.g. in the logistic or
the probit model the values of the probabilities are strictly
in (0,1) instead of [0, 1].

A.3. Proof of Lemma 5

In Definition 2 we defined an e-cover of F as a set . C F
s.t. for any fg € F there exists a function f; € F, such that:
|fo(S) — f;(S)] < eforall S C V. Using this definition
we can proceed as follows:
VS CV,Vfg € F, 3f; € Fe:|fo(S) — fi(9)] <e
— mi . <
= —min fo(5) + f;(5) < e
}gleﬂ}fe( ) = min f (5)—e€

Simultaneously it holds that:

C in £,(S) — mi >
VS CV, min fi(S) }Zleu}f"(s) >0

since F. C F. Let §* = argmaxg.|s|<; ming,cr fo(z)
and S = argmaxg.|g|<p ming,cr, fi(). Then it is:
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min £,(7) = miy fo(S") >

fi€Fe
in f;(S*) — mi S*) >0
f?élfflef (S%) gleu}fe( ) >

= max min f;(S)> max min S
S:|S|<k fi€F. 1i(8) = S:\S\gkfge]:fe( )

Hence, utilizing an algorithm that guarantees an Scv
such that:

in fi(8)>a- in fi(S
min f;(S) > a sﬂns?’ékf?é%f( )

we get that for the family F it holds:

S) —e.

min f(S) > a- max min
feEJ:f< )_ S:ISISkfoe]:f(

B. Lower Bound

We build a similar reduction to the one in (He & Kempe,
2016), reducing from is GAP SET COVER.

In a SET COVER instance we have a universe elements
U = {uy,us,...,us} and a collection of subsets of U,
T ={N,Ts,..., Ty}, where T, C U for all i € [M].
The goal is to find a cover C' C T such that UpccT = U
and the size of C is minimized. In the decision version
of the problem we are also given an integer k and we are
asked whether the optimal solution has value |C| < k or
|C| > k. The GAP SET COVER is a slightly stronger
problem that asks whether there is a solution C' such that
|C] < kor|C|> (1-0)logNk, foranyd € (0,1). We
will assume that & < min{M, ¢}, otherwise we can always
find the optimal solution by simply picking all the elements
of T or at least one set per element of U that contains it
(assuming that a set cover exists, such a set always exists
as well). Both problems are N P-hard as proved in (Karp,
1972) and (Dinur & Steurer, 2014).

For any given instance of GAP SET COVER we construct
an instance of robust influence maximization (RIM) by con-
structing a graph on n nodes, and ¢ different influence func-
tions. The goal is to maximize the influence with respect
to the worse influence function. Each influence function is
associated with a different set of diffusion probabilities. We
will prove that if we can find a seed set that is a better than
#-approximation to the maximin solution of this RIM
problem, then we can solve gap set cover.

We construct the following bipartite graph with vertex set
V = AU B. The set A contains exactly M nodes, one
node ay for each T', i € [M]. The set B contains m nodes
(m to be fixed later in the proof) for each element u € U:
{bu1,bu2, - -, bum > s0 mf nodes in total. The total number
of nodes in the graph is n = M + m/.

We create the edges of the graph according to the the set
cover solution C. For every ' € C' we add the directed
edges from ar to {by1,bu2, ..., bum} forall u € T. That
is m|T'| edges per element T' € C.

Each influence function induces different probabili-
ties on the edges. We have ¢ functions. For
the u'" function, set the probability of the edges
{(ar,bu1), (a7, bu2), . - -, (aT, bum)} for which u € T to
1 — X and the probability of the rest of the edges to A.

There are two cases: |C| < k and |C] > (1 — §) Inlk. Let
us focus on the case where |C| < k first. One can easily see
that if we choose the ars for which T' € C' as seeds, we can
achieve expected diffusion of at least |C|+(1—\)m on each
of the ¢ influence functions due to the fact that every j € [¢],
u; is covered by the solution C, i.e. there exists T such
that u; € T'. Thus, in this case maxg min;epy f;(S) >
IC] 4+ (1 = X)m.

In the second case, there is no cover of size at most (1 —
) In (k. However, we are allowed to choose at most (1 —
) In ¢k as seeds. Hence, for any choice of seeds there is
definitely an element u; € U that is not covered. As a
result, for the j th influence function the expected number of
influenced nodes is at most (1 — ) In ¢k - (1 + m(£ — 1)N).
That is because each node is connected to at most m(£— 1)\
other nodes (since it is definitely not connected to u;) and
there are no high probability edges that are triggered in this
function. As a result maxs minje(g f;(S) < (1—9)Inlk-
(L+m(—1)N).

We want to be able to distinguish between the first and the
second case, i.e. the case where maxg min;epy f;(S) >
|C| 4+ (1 — A)m and when maxg minjc f;(S) < (1 —
0)Inlk-(1+m(€—1)A). To this end, we consider the ratio:
(1=96) In k(14+m(£—1)N)
[CT+(T=X\)m
than nl% for any € > 0. Remember that for the number of
nodes in the graph it holds n = M + m/.

which we want to prove that is less

Hence, if |C’\+n(1%)\)m > (1=0)Inlk(1+m(f —1)\) we
will be able to separate the two cases.

First assume min{M, ¢} = ¢:

[Cl+ (1= X)m 1+m
A miy— =@y
Z(I—A)%;

Now for m = M?3/¢, X\ = 1/m we have that as M grows
YR P
m ) M1—€

(1—0)M?In M
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Figure 6. Number of functions needed to cover the Hyperparameter’s space.
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Figure 7. Speed of convergence of HIRO for multiple seed set sizes.

which is asymptotically larger than (1 — &) In £k(1 +m(£ —
1)A). Choosing m = £3/¢ solves the other case. Hence
setting m = (max{M,¢})3/¢ and A = 1/m completes
the reduction. Hence, if we have a better than #—
approximation algorithm for robust influence maximization
then we can solve gap set cover.

C. Omitted Details from Experiments

Synthetic Graphs: As we discussed in Section 6 different
graph models yield graphs with different topological prop-
erties. The ones we selected for our experiments are the
following:

o Small-World network: In this model most nodes are not
neighbors of one another, but the path from each node to
another is short. Specifically we use the Watts-Strogatz
model that is known for its high clustering coefficient and
small diameter properties. Each node is connected to 5
nodes in the ring topology and the probability of rewiring
an edge is 1/n where n is the number of nodes in the
graph. We work with graphs of sizes 100-250.

o Preferential Attachment (Barabdsi-Albert): The degree
distribution of this model is a power law and hence cap-
tures interesting properties of the real-world social net-
works. We took 2 initial vertices and added 2 edges at
each step, using the preferential attachment model, until
we reached 100-250 vertices.

o Configuration model: The configuration model allows us
to construct a graph with a given degree distribution. We
chose 100-250 vertices and a power-law degree distribu-
tion with parameter o = 2.

e Erdis-Rényi: We used the celebrated G(n,m) model

to create a graph with 100-250 vertices and edges with
probability p = 3/n. G(n, m) does not capture some of
the properties of real social networks, however it is a very
impactful model with variety of applications in several
areas of science.



