
Robust Influence Maximization for Hyperparametric Models

A. Omitted Proofs
A.1. Proof of Lemma 1

Proof. Denote the solutions to the two different objec-
tives as follows: Ŝr = arg maxS:|S|≤k minp∈P

fp(S)
fp(S∗p) and

Ŝv = arg maxS:|S|≤k minp∈P fp(S).

We will prove the lemma by contradiction. Specifically, let’s
assume that there exists a set of influence functions P for
which minp fp(Ŝr) <

1√
n

minp fp(Ŝv), i.e. for this P , the
solution for the robust ratio objective is suboptimal with
respect to the total number of nodes influenced by a factor
greater than

√
n.

To ease the notation let us denote with fr the function that
achieves

Hence it holds:

√
n · fr(Ŝr) =

√
n ·min

p
fp(Ŝr)

< min
p
fp(Ŝv) = fv(Ŝv) ≤ fr(Ŝv) (3)

where the last inequality is due to the minimality of fv . Let
us denote with fm the function that has the minimum ratio
for Ŝv . That is, fm(Ŝv)

fm(S∗m) = minp
fp(Ŝv)
fp(S∗p) . Then,

1√
n
>
fr(Ŝr)

fr(Ŝv)
≥ fr(Ŝr)

fr(S∗r )

= max
S

min
p

fp(S)

fp(S∗p)
≥ min

p

fp(Ŝv)

fp(S∗p)
=

fm(Ŝv)

fm(S∗m)
(4)

where the last inequality holds due to the maximality of Ŝr.
Now we can prove a contradiction as follows:

fm(S∗m) >
√
n · fm(Ŝv) ≥

√
n · fv(Ŝv)

> n · fr(Ŝr) ≥ n

The first inequality is due to (4), the second is due to the fact
that fv(Ŝv) = arg minp fp(Ŝv), while the third is from (3).
Finally, since |Ŝr| ≥ 1 the influence function is also at least
1 (at least all the nodes in Ŝr get influenced).

Now notice that the influence of any set of nodes cannot be
more than n and as a result we have a contradiction. Thus,
minp fp(Ŝr) ≥ 1√

n
minp fp(Ŝv).

The graph in Figure 2 shows that there exist a set P for
which minp fp(Ŝr) = Ω

(
1√
n

)
minp fp(Ŝv) which con-

cludes the proof.

A.2. Proof of Lemma 3

Consider a cycle on n nodes, connected with edges of dif-
fusion probability 1− λ, and an additional center node v?

that is connected to all the nodes of the cycle. Notice that
the number of edges is m = 2n. To consider the Lipschitz-
ness of the influence function on this graph we consider the
change in the influence of v? in case that the probabilities
connecting it to the cycle are all λ and the case in which
they are all ε = n · λ.

The influence of v? in the first case is at most n(1−(1−λ)n).
For sufficiently large n:

(1− λ)n =

(
1− nλ

n

)n
≈ e−nλ ≈ 1− nλ

So, the influence is at most n2λ = nε. Once the proba-
bilities on edges connecting it to the cycle increase from
λ to ε its expected influence becomes at least n(1 − (1 −
ε)n)(1− λ)n. Using the same approximation as before for
sufficient large n, we get that the influence of v? is at least
n2ε(1− nλ) = n2ε(1− ε) = n2ε− n2ε2.

Then, |fp(v?)− fp’(v
?)| = n2ε− n2ε2 − nε. After setting

ε = 1
n , this bound becomes n2ε−2nε = (nm2 −2n)ε. Thus,

for small ε the Lipschitz constant is asymptotically achieved
with n.

Notice that this example can be simplified if we use proba-
bilities of 1 in the cycle, and 0 and ε in the the connections
of v?. The reason why we avoided the values 0, 1 is because
for some generalized linear models, e.g. in the logistic or
the probit model the values of the probabilities are strictly
in (0, 1) instead of [0, 1].

A.3. Proof of Lemma 5

In Definition 2 we defined an ε-cover of F as a set Fε ⊂ F
s.t. for any fθ ∈ F there exists a function fj ∈ Fε such that:
|fθ(S) − fj(S)| ≤ ε for all S ⊆ V . Using this definition
we can proceed as follows:

∀S ⊆ V, ∀fθ ∈ F , ∃fj ∈ Fε : |fθ(S)− fj(S)| ≤ ε

⇒ − min
fθ∈F

fθ(S) + fj(S) ≤ ε

⇒ min
fθ∈F

fθ(S) ≥ min
fi∈F

fi(S)− ε

Simultaneously it holds that:

∀S ⊆ V, min
fi∈Fε

fi(S)− min
fθ∈F

fθ(S) ≥ 0

since Fε ⊂ F . Let S∗ = arg maxS:|S|≤k minfθ∈F fθ(x)
and S∗ε = arg maxS:|S|≤k minfi∈Fε fi(x). Then it is:
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min
fi∈Fε

fi(S
∗
ε )− min

fθ∈F
fθ(S

∗) ≥

min
fi∈Fε

fi(S
∗)− min

fθ∈F
fθ(S

∗) ≥ 0

⇒ max
S:|S|≤k

min
fi∈Fε

fi(S) ≥ max
S:|S|≤k

min
fθ∈F

fθ(S)

Hence, utilizing an algorithm that guarantees an Ŝ ⊆ V
such that:

min
fi∈Fε

fi(Ŝ) ≥ α · max
S:|S|≤k

min
fi∈Fε

fi(S)

we get that for the family F it holds:

min
fθ∈F

f(Ŝ) ≥ α · max
S:|S|≤k

min
fθ∈F

f(S)− ε.

B. Lower Bound
We build a similar reduction to the one in (He & Kempe,
2016), reducing from is GAP SET COVER.

In a SET COVER instance we have a universe elements
U = {u1, u2, . . . , u`} and a collection of subsets of U ,
T = {T1, T2, . . . , TM}, where Ti ⊆ U for all i ∈ [M ].
The goal is to find a cover C ⊆ T such that ∪T∈CT = U
and the size of C is minimized. In the decision version
of the problem we are also given an integer k and we are
asked whether the optimal solution has value |C| ≤ k or
|C| > k. The GAP SET COVER is a slightly stronger
problem that asks whether there is a solution C such that
|C| ≤ k or |C| > (1 − δ) logNk, for any δ ∈ (0, 1). We
will assume that k ≤ min{M, `}, otherwise we can always
find the optimal solution by simply picking all the elements
of T or at least one set per element of U that contains it
(assuming that a set cover exists, such a set always exists
as well). Both problems are NP -hard as proved in (Karp,
1972) and (Dinur & Steurer, 2014).

For any given instance of GAP SET COVER we construct
an instance of robust influence maximization (RIM) by con-
structing a graph on n nodes, and ` different influence func-
tions. The goal is to maximize the influence with respect
to the worse influence function. Each influence function is
associated with a different set of diffusion probabilities. We
will prove that if we can find a seed set that is a better than

1
n1−ε -approximation to the maximin solution of this RIM
problem, then we can solve gap set cover.

We construct the following bipartite graph with vertex set
V = A ∪ B. The set A contains exactly M nodes, one
node aT for each T , i ∈ [M ]. The set B contains m nodes
(m to be fixed later in the proof) for each element u ∈ U :
{bu1, bu2, . . . , bum}, som` nodes in total. The total number
of nodes in the graph is n = M +m`.

We create the edges of the graph according to the the set
cover solution C. For every T ∈ C we add the directed
edges from aT to {bu1, bu2, . . . , bum} for all u ∈ T . That
is m|T | edges per element T ∈ C.

Each influence function induces different probabili-
ties on the edges. We have ` functions. For
the uth function, set the probability of the edges
{(aT , bu1), (aT , bu2), . . . , (aT , bum)} for which u ∈ T to
1− λ and the probability of the rest of the edges to λ.

There are two cases: |C| ≤ k and |C| > (1− δ) ln `k. Let
us focus on the case where |C| ≤ k first. One can easily see
that if we choose the aT s for which T ∈ C as seeds, we can
achieve expected diffusion of at least |C|+(1−λ)m on each
of the ` influence functions due to the fact that every j ∈ [`],
uj is covered by the solution C, i.e. there exists T such
that uj ∈ T . Thus, in this case maxS minj∈[`] fj(S) ≥
|C|+ (1− λ)m.

In the second case, there is no cover of size at most (1 −
δ) ln `k. However, we are allowed to choose at most (1−
δ) ln `k as seeds. Hence, for any choice of seeds there is
definitely an element uj ∈ U that is not covered. As a
result, for the jth influence function the expected number of
influenced nodes is at most (1− δ) ln `k · (1 +m(`− 1)λ).
That is because each node is connected to at mostm(`−1)λ
other nodes (since it is definitely not connected to uj) and
there are no high probability edges that are triggered in this
function. As a result maxS minj∈[`] fj(S) ≤ (1− δ) ln `k ·
(1 +m(`− 1)λ).

We want to be able to distinguish between the first and the
second case, i.e. the case where maxS minj∈[`] fj(S) ≥
|C| + (1 − λ)m and when maxS minj∈[`] fj(S) ≤ (1 −
δ) ln `k ·(1+m(`−1)λ). To this end, we consider the ratio:
(1−δ) ln `k(1+m(`−1)λ)

|C|+(1−λ)m which we want to prove that is less
than 1

n1−ε for any ε > 0. Remember that for the number of
nodes in the graph it holds n = M +m`.

Hence, if |C|+(1−λ)m
n1−ε > (1− δ) ln `k(1 +m(`− 1)λ) we

will be able to separate the two cases.

First assume min{M, `} = `:

|C|+ (1− λ)m

(M +m`)1−ε ≥ (1− λ)
1 +m

((1 +m)M)1−ε

≥ (1− λ)
mε

M1−ε

Now for m = M3/ε, λ = 1/m we have that as M grows(
1− 1

m

)
mε

M1−ε > (1− δ)M2+ε >

(1− δ)M2 lnM
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Figure 6. Number of functions needed to cover the Hyperparameter’s space.
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Figure 7. Speed of convergence of HIRO for multiple seed set sizes.

which is asymptotically larger than (1− δ) ln `k(1 +m(`−
1)λ). Choosing m = `3/ε solves the other case. Hence
setting m = (max{M, `})3/ε and λ = 1/m completes
the reduction. Hence, if we have a better than 1

n1−ε -
approximation algorithm for robust influence maximization
then we can solve gap set cover.

C. Omitted Details from Experiments
Synthetic Graphs: As we discussed in Section 6 different
graph models yield graphs with different topological prop-
erties. The ones we selected for our experiments are the
following:

• Small-World network: In this model most nodes are not
neighbors of one another, but the path from each node to
another is short. Specifically we use the Watts-Strogatz
model that is known for its high clustering coefficient and
small diameter properties. Each node is connected to 5
nodes in the ring topology and the probability of rewiring
an edge is 1/n where n is the number of nodes in the
graph. We work with graphs of sizes 100-250.

• Preferential Attachment (Barabási-Albert): The degree
distribution of this model is a power law and hence cap-
tures interesting properties of the real-world social net-
works. We took 2 initial vertices and added 2 edges at
each step, using the preferential attachment model, until
we reached 100-250 vertices.
• Configuration model: The configuration model allows us

to construct a graph with a given degree distribution. We
chose 100-250 vertices and a power-law degree distribu-
tion with parameter α = 2.

• Erdös-Rényi: We used the celebrated G(n,m) model

to create a graph with 100-250 vertices and edges with
probability p = 3/n. G(n,m) does not capture some of
the properties of real social networks, however it is a very
impactful model with variety of applications in several
areas of science.


