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A. Some Information Theoretic Results

We will need the following technical results for our analysis. The first is a version of Pinsker’s inequality.

Lemma 4 (Pinsker’s inequality). LetX,Z ∈ X be random quantities and sup f−inf f ≤ B. Then,
∣∣E[f(X)]−E[f(Z)]

∣∣ ≤
B
√

1
2KL(P (X)‖P (Z)).

The next, taken from Russo and Van Roy (2016b), relates the KL divergence to the mutual information for two random
quantities X,Y .

Lemma 5 (Russo and Van Roy (2016b), Fact 6). For random quantities X,Z ∈ X , I(X;Z) = EX [KL(P (Y |X)‖P (Y ))].

The next result is a property of the Shannon mutual information.

Lemma 6. Let X,Y, Z be random quantities such that Y is a deterministic function of X . Then, I(Y ;Z) ≤ I(X;Z).

Proof. Let Y ′ capture the remaining randomness in X so that X = Y ∪ Y ′. Since conditioning reduces entropy, I(Y ;Z) =
H(Z)−H(Z|Y ) ≤ H(Z)−H(Z|Y ∪ Y ′) = I(X;Z).

B. Proofs

B.1. Notation and Set up

In this subsection, we will introduce some notation, prove some basic lemmas, and in general, lay the groundwork for our
analysis. P,E denote probabilities and expectations. Pt,Et denote probabilities and expectations when conditioned on
the actions and observations up to and including time t, e.g. for any event E, Pt(E) = P(E|Dt). For two data sequences
A,B, A ]B denotes the concatenation of the two sequences. When x ∈ X , Yx will denote the random observation from
P(Y |x, θ).

Let Jn(θ?, π) denote the expected sum of cumulative rewards for fixed policy π after n evaluations under θ?, i.e. Jn(θ?, π) =
E[Λ(θ?, Dn)|θ?, Dn ∼ π] (Recall (1)). Let Dt ∈ Dt be a data sequence of length t. Then, Qπ(Dt, x, y) will denote the
expected sum of future rewards when, having collected the data sequence Dn, we take action x ∈ X , observe y ∈ Y and
then execute policy π for the remaining n− t− 1 steps. That is,

Qπ(Dt, x, y) = λ(θ?, Dj ] {(x, y)}) + EFt+2:n

[ n∑
j=t+2

λ(θ?, Dj ] {(x, y)} ] Ft+2:j)

]
. (4)

Here, the action-observation pairs collected by π from steps t+ 2 to n are Ft+2:n. The expectation is over the observations
and any randomness in π. While we have omitted for conciseness, Qπ is a function of the true parameter θ?. Let dtπ denote
the distribution of Dt when following a policy π for the first t steps. We then have, for all t ≤ n,

Jn(θ?, π) = EDt∼dtπ

[ t∑
j=1

λ(θ?, Dj)

]
+ EDt∼dtπ

[
EX∼π(Dt)[Q

π(Dt, X, YX)]
]
, (5)

where, recall, YX is drawn from P(Y |X, θ?). The following Lemma decomposes the regret Jn(θ?, π
?
M)− Jn(θ?, π) as a

sum of terms which are convenient to analyse. The proof is adapted from Lemma 4.3 in Ross and Bagnell (2014).

Lemma 7. For any two policies π1, π2,

Jn(θ?, π2)− Jn(θ?, π1) =

n∑
t=1

EDt−1∼dt−1
π1

[
EX∼π1(Dt−1) [Qπ2(Dt−1, X, YX)]− EX∼π2(Dt−1) [Qπ2(Dt−1, X, YX)]

]
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Proof. Let πt be the policy that follows π1 from time step 1 to t, and then executes policy π2 from t+ 1 to n. Hence, by (5),

Jn(θ?, π
t) = EDt−1∼dt−1

π

[ t−1∑
j=1

λ(θ?, Dj)

]
+ EDt−1∼dt−1

π1

[
EX∼π1(Dt−1)[Q

π2(Dt−1, X, YX)]
]
,

Jn(θ?, π
t−1) = EDt−1∼dt−1

π

[ t−1∑
j=1

λ(θ?, Dj)

]
+ EDt−1∼dt−1

π1

[
EX∼π2(Dt−1)[Q

π2(Dt−1, X, YX)]
]
.

The claim follows from the observation, J(θ?, π1)− J(θ?, π2) = J(θ?, π
n)− J(θ?, π

0) =
∑n
t=1 J(θ?, π

t)− J(θ?, π
t−1).

We will use Lemma 7 with π2 as the policy π?M which knows θ? and with π1 as the policy π whose regret we wish to bound.
For this, denote the action chosen by π when it has seen data Dt−1 as Xt and that taken by π?M as X ′t. By Lemma 7 and
equation (4) we have,

Eθ? [Jn(θ?, π
?
M)− Jn(θ?, π)] =

n∑
t=1

EDt−1

[
Et−1

[
Qπ

?
M(Dt−1, X

′
t, YX′t)−Q

π?M(Dt−1, Xt, YXt)
]]

= E
n∑
t=1

Et−1

[
qt(θ?, X

′
t, YX′t)− qt(θ?, Xt, YXt)

]
, (6)

where we have defined

qt(θ?, x, y) = Qπ
?
M(Dt−1, x, y). (7)

Note that the randomness in qt stems from its dependence on θ? and future observations.

B.2. Proof of Theorem 2

We will let P̃t−1 denote the distribution of Xt given Dt−1; i.e. P̃t−1(·) = Pt−1(Xt = ·). The density (Radon-Nikodym
derivative) p̃t−1 of P̃t−1 can be expressed as p̃t−1(x) =

∫
Θ
p?(x|θ? = θ)p(θ? = θ|Dt−1)dθ where p?(x|θ? = θ) is the

density of the maximiser of λ given θ? = θ and p(θ? = ·|Dt−1) is the posterior density of θ? conditoned on Dt−1. Note
that p?(x|θ? = θ) puts all its mass at the maximiser of λ+(θ,Dt−1, x). Hence, Xt has the same distribution as X ′t; i.e.
Pt−1(X ′t = ·) = P̃t−1(·). This will form a key intuition in our analysis. To this end, we begin with a technical result, whose
proof is adapted from Russo and Van Roy (2016b). We will denote by It−1(A;B) the mutual information between two
variablesA,B under the posterior measure after having seenDt−1; i.e. It−1(A;B) = KL(Pt−1(A,B)‖Pt−1(A)·Pt−1(B)).

Lemma 8. Assume that we have collected a data sequence Dt−1. Let the action taken by πPS

M at time instant t with Dt−1

be Xt and the action taken by π?M be X ′t. Then,

Et−1[qt(θ?, X
′
t, YX′t)− qt(θ?, Xt, YXt)] =

∑
x∈X

(
Et−1[qt(θ?, x, Yx)|X ′t = x]− Et−1[qt(θ?, x, Yx)]

)
P̃t−1(x)

It−1(X ′t; (Xt, YXt)) =
∑

x1,x2∈X
KL(Pt−1(Yx1

|X ′t = x2)‖Pt−1(Yx1
)) P̃t−1(x1)P̃t−1(x2)

Proof. The proof for both results uses the fact that Pt−1(Xt = x) = Pt−1(X ′t = x) = P̃t−1(x). For the first result,

Et−1[qt(θ?, X
′
t, YX′t)− qt(θ?, Xt, YXt)]

=
∑
x∈X

Pt−1(X ′t = x)Et−1[qt(θ?, X
′
t, YX′t)|X

′
t = x]−

∑
x∈X

Pt−1(Xt = x)Et−1[qt(θ?, Xt, YXt)|Xt = x]

=
∑
x∈X

Pt−1(X ′t = x)Et−1[qt(θ?, x, Yx)|X ′t = x]−
∑
x∈X

Pt−1(Xt = x)Et−1[qt(θ?, x, Yx)]

=
∑
x∈X

(
Et−1[qt(θ?, x, Yx)|X ′t = x]− Et−1[qt(θ?, x, Yx)]

)
P̃t−1(x) .
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The second step uses that the observation Yx does not depend on the fact that x may have been chosen by πPS

M ; this is
because πPS

M makes its decisions based on past data Dt−1 and is independent of θ? given Dt−1. Yx however can depend on
the fact that x may have been the action chosen by π?M which knows θ?. For the second result,

It−1(X ′t; (Xt, YXt)) = It−1(X ′t;Xt) + It−1(X ′t;YXt |Xt) = It−1(X ′t;YXt |Xt)

=
∑
x1∈X

Pt−1(Xt = x1) It−1(Xt;YXt |Xt = x) =
∑
x1∈X

P̃t−1(x1) It−1(X ′t;Yx1
)

=
∑
x1∈X

P̃t−1(x1)
∑
x2∈X

Pt−1(X ′t = x2) KL(Pt−1(Yx1
|X ′t = x2)‖Pt−1(Yx1

))

=
∑

x1,x2∈X
KL(Pt−1(Yx1

|X ′t = x2)‖Pt−1(Yx1
)) P̃t−1(x1)P̃t−1(x2)

The first step uses the chain rule for mutual information. The second step uses that Xt is chosen based on an external source
of randomness and Dt−1; therefore, it is independent of θ? and hence X ′t given Dt−1. The fourth step uses that Yx1

is
independent of Xt. The fifth step uses lemma 5 in Appendix A.

We are now ready to prove theorem 2.

Proof of Theorem 2: Using the first result of Lemma 8, we have,

Et−1[qt(θ?, X
′
t, YX′t)− qt(θ?, Xt, YXt)]

2

=

(∑
x∈X

P̃t−1(x)
(
Et−1[qt(θ?, x, Yx)|X ′t = x]− Et−1[qt(θ?, x, Yx)]

))2

(a)

≤ |X |
∑
x∈X

P̃t−1(x)2
(
Et−1[qt(θ?, x, Yx)|X ′t = x]− Et−1[qt(θ?, x, Yx)]

)2
(b)

≤ |X |
∑

x1,x2∈X
P̃t−1(x1)P̃t−1(x2)

(
Et−1[qt(θ?, x1, Yx1

)]− Et−1[qt(θ?, x1, Yx1
)|X ′t = x2]

)2
(c)

≤ |X |
∑

x1,x2∈X
P̃t−1(x1)P̃t−1(x2)EYx1

[(
Et−1[qt(θ?, x1, y)|Yx1

= y]− Et−1[qt(θ?, x1, y)|X ′t = x2, Yx1
= y]

)2]
(8)

(d)

≤ |X |
2

∑
x1,x2∈X

τn−tP̃t−1(x1)P̃t−1(x2)EYx1
[
KL(Pt−1(Yx1

|X ′t = x2, Yx1
= y)‖Pt−1(Yx1

|Yx1
= y))

]
(e)

≤ |X |
2

∑
x1,x2∈X

τn−tP̃t−1(x1)P̃t−1(x2)KL(Pt−1(Yx1
|X ′t = x2)‖Pt−1(Yx1

))

(f)
=

1

2
|X |τnIt−1(X ′t; (Xt, YXt))

(g)

≤ 1

2
|X |τnIt−1(θ?; (Xt, YXt))

Here, step (a) uses the Cauchy-Schwarz inequality and step (b) uses the fact that the previous line can be viewed as the
diagonal terms in a sum over x1, x2. Step (c) conditions on Yx1

= y and applies Jensen’s inequality. Step (e) uses the
definition of conditional KL divergence. Step (f) uses the second result of Lemma 8, and step (g) uses Lemma 6 and the
fact that X ′t is a deterministic function of θ? given Dt−1. For step (d), we use the version of Pinsker’s inequality given in
Lemma 4 in conjunction with Condition 1. Precisely, we let H in Condition 1 to be Dt−1 ] {(x, y)}. Now using (7) and (4),
and the fact that π?M is deterministic, we can write,

qt(θ1, x, y)− qt(θ2, x, y)

= λ(θ1, Dt−1 ] {(x, y)})− λ(θ2, Dt−1 ] {(x, y)}) +
n∑
j=1

EY,t+1:n|θ1
[
λ(θ1, Dt−1 ] {(x, y)} ] Fj,1)

]
− EY,t+1:n|θ2

[
λ(θ2, Dt−1 ] {(x, y)} ] Fj,2)

]
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≤ 1 +

n∑
t=1

εt ≤
√
τn−t.

Here, Fn,i is the data collected by π?M when θ? = θi, having observed H , and Fj,i is its prefix of length j. The last step uses
Condtion 1. Hence, by Lemma 4, the term with the squared paranthesis in (8) can be bounded by τn−tKL(Pt−1(Yx1

|X ′t =
x2)‖Pt−1(Yx1

)).

Now, using (6) and the Cauchy-Schwarz inequality we have,

E[Jn(θ?, π
?
M)− Jn(θ?, π

PS

M )]2 ≤ n
n∑
t=1

1

2
|X |τnIt−1(θ?; (Xt, YXt)) =

1

2
|X |τnI(θ?;Dn)

Here the last step uses the chain rule of mutual information in the following form,∑
t

It−1(θ?; (Xt, YXt)) =
∑
t

I(θ?; (Xt, YXt)|{(Xj , YXj )}t−1
j=1) = I(θ?; {(Xj , YXj )}nj=1).

The claim follows from the observation, I(θ?;Dn) ≤ Ψn.

B.3. Proof of Theorem 3

In this section, we will let D??
m be the data collected π?G in m steps and D?

n be the data collected by π?M in n steps. We will
use the following result on adaptive submodular maximisation from (Golovin and Krause, 2011).

Lemma 9. (Theorem 38 in Golovin and Krause (2011), modified) Under condition 2, we have for all θ? ∈ Θ,

EY [λ(θ?, D
?
n)] ≥ (1− e−n/m)EY [λ(θ?, D

??
m )]

Lemma 10 controls the approximation error when we approximate the globally optimal policy which knows θ? with the
myopic policy which knows θ?. Our proof of theorem 3, combines the above result with Theorem 2, to show that MPS can
approximate π?G under suitable conditions.

Proof of Theorem 3. Let Dn be the data collected by πPS

M . By monotonicity of λ, and the fact that the maximum is larger
than the average we have E[λ(θ?, Dn)] ≥ 1

n

∑n
t=1 E[λ(θ?, Dt)] = 1

nE[Λ(θ?, Dn)]. Using theorem 2 the following holds
for all m,

E[λ(θ?, Dn)] ≥ 1

n

(
E [Λ(θ?, D

?
n)]−

√
|X |τnnΨn

2

)
=

1

n

n∑
t=1

Eθ? [EY [λ(θ?, D
?
t )]]−

√
|X |τnΨn

2n

≥ E[λ(θ?, D
??
m )]

1

n

n∑
t=1

(1− e−t/m)−
√
|X |τnΨn

2n

≥ E[λ(θ?, D
??
m )](1− m

n
e−1/m − 1

n
e−1/m)−

√
|X |τnΨn

2n
.

Here, the first step uses Theorem 2, the second step rearranges the expectations noting that λ takes the expectation over the
observations. The third step uses Lemma 9 for each t. The last step bounds the sum by an integral as follows,

n∑
t=1

e−t/m ≤ e−1/m +

∫ ∞
1

e−t/mdt ≤ e−1/m +me−1/m.

The result follows by using m = γn.
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B.4. Proof of Lower Bound (Proposition 1)

Consider a setting with uniform prior over two parameters θ0, θ1 with two actions X0, X1. Set λ(θi, D) = 1{Xi /∈ D}. If
θ? = θ0, then π?M will repeatedly choose X1 and achieve reward 1 on every time step, and similarly when θ? = θ1. On the
other hand, conditioned on any randomness of the decision maker (which is external to the randomness of the prior and the
observations), the first decision for the decision maker must be the same for both choices of θ?. Hence, for one of the two
choices for θ?, λ(θ?, Dn) = 0 for all n. Since the prior is equal on both θ0, θ1, the average instantaneous regret is at least
1/2. �

C. On Condition 1

The following proposition shows that when the myopic policy has value 1, and achieves this at a fast enough rate, for all
values of θ, we satisfy Condition 1. For this, let θ, θ′, πθM, π

θ′

M, Dn, D
′
n,EY,t+1: be as defined in Condition 1.

Proposition 10. (π?M has value 1). Let πθM denote the myopically optimal policy when θ? = θ. Assume there exists a
sequence {ε′n}n≥1 such that,

sup
θ∈Θ

sup
H∈D

(
1− EY,|H|+1[λ(θ,H ]Dn)]

)
≤ ε′n.

Then, Condition 1 is satisfied with εn = ε′n.

Proof. Let H ∈ D and θ, θ′ ∈ Θ. Then,

EY,|H|+1|θλ(θ,H ]Dn)− EY,|H|+1|θ′λ(θ′, H ]D′n)

=
(
EY,|H|+1|θλ(θ,H ]Dn)− 1

)
+
(

1− EY,|H|+1|θ′λ(θ′, H ]D′n)
)
≤ ε′n,

since the first term is always negative.

We next show two examples of DOE problems where the condition in Proposition 10 is satisfied.

C.1. Bandits & Bayesian Optimisation

In both settings, the parameter θ? specifies a function fθ? : X → R. When we choose a point X ∈ X to evaluate
the function, we observe YX = fθ?(X) + ε where E[ε] = 0. In the bandit framework, we can define the reward
to be λ(θ?, Dn) = 1 + fθ?(Xn) − maxx∈X fθ?(x) which is equivalent to maximising the instantaneous reward. In
Bayesian optimisation, one is interested in simply finding a single value close to the optimum and hence λ(θ?, Dn) =
1 + maxt≤n fθ?(Xt)−maxx∈X fθ?(x).

In both cases, since π?M knows it will always choose argmaxx∈X fθ?(x) achieving reward 1. Thus Proposition 10 is satisfied
with εn = 0 and τn = 1.

C.2. An Active Learning Example

We describe an active learning task on a Bayesian linear regression problem, and outline how it can be formulated to satisfy
the conditions in Section 4.

In this example, our parameter space is Θ = {θ = (β, η2)|β ∈ Rk, η2 ∈ [a, b]} for some positive numbers b > a > 0. We
will assume the following prior on θ? = (β?, η

2
?),

β? ∼ N (0k,P
−1
0 ), η2

? ∼ Unif(a, b),

where P0 ∈ Rk×k is the non-singular precision matrix of the Gaussian prior for β?. Our domain X = {x ∈ Rk; ‖x‖2 ≤ 1}
is the unit ball in Rk and Y = R. When we query the model at x ∈ X , we observe Yx = β>x+ ε where ε ∼ N (0, η2). Our
goal in DOE is to choose a sequence of experiments {Xt}t ⊂ X so as to estimate β well.

Given a dataset Dn = {(xj , yj)}nj=1, a natural quantity to characterise how well we have estimated β? in the Bayesian
setting is via the entropy of the posterior for β. This ensures that the data is sampled also considering the uncertainty in
the prior. For example, if the prior covariance is small along certain directions, an active learning agent is incentivised



Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments

to collect data so as to minimise the variance along other directions. Specifically, in this example, we wish to minimise
H(β?|Dn = Dn, η

2
? = η2

?), the entropy of β? assuming we have collected data Dn and the true η2
? value were to be revealed

at the end. It is straightforward to see that, P(β?|η2
?, Dn) = N (µn,P

−1
n ), where,

Pn = P0 +
1

η2
?

n∑
j=1

xjx
>
j , µn = Pn

n∑
j=1

yjxj .

The entropy of this posterior is

H(β?|Dn = Dn, η
2
? = η2

?) =
1

2
log det(2πeP−1

n ) =
k

2
log(2πe)− 1

2
log det Pn.

Minimising the posterior entropy can be equivalently formulated as maximising the following reward function,

λ(θ?, Dn) = 1− 1

det Pn
= 1− 1

det
(
P0 + 1

η2?

∑n
j=1 xjx

>
j

) . (9)

The reward depends on θ? due to the η2
? term, and an adaptive policy can be expected to do better than a non-adaptive one

since the observations {yj}nj=1 can inform us about the true value of η2
?.

Note that since λ(θ?, Dn) is a multi-set function, Dn can be viewed as a (non-ordered) mulit-set and the ] operator is
simply the union operator. We will now demonstrate that λ satisfies the two conditions set out in Section 4.

Condition 1: We will show that it satisfies the condition in Proposition 10. Let c be the smallest eigenvalue of P0. For a
given data set H = {(xj , yj)}mj=1 of size m, denote PH0 = P0 + 1

η2?

∑m
i=1 xjx

>
j . Moreover, assume that the points chosen

by π?M in X are z1, z2, . . . . Note that this is a deterministic sequence since π?M knows η2
? and the reward does not depend on

the observations.

Let PHn = PH0 + 1
η2?

∑n
i=1 zjz

>
j and denote its eigenvalues by σ1 > σ2 > · · · > σk. Note that since the myopic policy

chooses actions to maximise the reward at the next step, it will choose zn+1 = argmax‖z‖=1 det(PHn + 1
η2?
zz>). We

therefore have,

det PHn+1 = max
‖z‖=1

det
(

PHn +
1

η2
?

zz>
)
≥
(
σ1 +

1

η2
?

) k∏
j=2

σj

Noting that PH0 − cIk is positive definite, we have, via an inductive argument det PHn ≥ ck−1(c+ nη−2
? ). Letting D?

n be
the data collected by π?M, we have

1− λ(θ?, D
?
n) ≤ 1

ck−1(c+ nb)

∆
= ε′n,

as η2
? ≤ b. This leads to ε′n, εn ∈ O(1/n) and hence τn ∈ O(log n) in Proposition 10 and Condition 1. We next look at the

adaptive submodularity condition.

Condition 2 (Adaptive Submodularity): Let Dn = {(xj , yj)}nj=1 Dm = {(xj , yj)}mj=1 be two data sets such that
Dm ⊂ Dn and m < n. Let Qm = P0 + 1

η2?

∑n
j=1 xjx

>
j and Qn = P0 + 1

η2?

∑m
j=1 xjx

>
j = Qm + 1

η2?

∑n
j=m+1 xjx

>
j . Let

(x, Yx) be a new observation. We then have,

E[λ(θ?, Dn ] {(x, Yx)})]− λ(θ?, Dn) =
1

det(Qn)
− 1

det(Qn + xx>)

=
det(Qn + xx>)− det(Qn)

det(Qn) det(Qn + xx>)
=

x>Q−1
n x

det(Qn + xx>)
,

and similarly for Qm. Here the last step uses the identity det(A+ uv>) = det(A)(1 + v>A−1u). Submodularity follows
by observing that Qm, Qn are positive definite and Qn −Qm is positive semidefinite. Hence,

1 + x>Q−1
m x

det(Qm + xx>)
≥ 1 + x>Q−1

n x

det(Qn + xx>)
.



Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments

C.3. Rewards with State-like structure

Here, we will show that πPS

M can achieve sublinear regret with respect to π?M, when there is additional structure in the rewards.
In particular, we will assume that there exists a set of “states” S and a mapping σ : Θ×D → S from parameter, data sequence
pairs to states. Moreover, λ takes the form λ(θ?, D) = λS(θ?, σ(θ?, D)) for some known function λS : Θ× S → [0, 1].
We will also assume that the state transitions are Markovian, in that for any S ∈ S, let DS = {D ∈ D : σ(θ?, D) = S}.
Then, for all x ∈ X , y ∈ Y and D,D′ ∈ DS , σ(θ?, D ∪ {(x, y)}) = σ(θ?, D

′ ∪ {(x, y)}).

Now, for any policy π, define,

Vn(π,D; θ) =
1

n
E
[ n∑
j=1

λ(θ,D ]Dj)

∣∣∣∣ θ? = θ,D,Dn ∼ π
]

V (π,D; θ) = lim
n→∞

Vn(π,D; θ)

Vn is the expected sum of future rewards in n steps for a policy π when θ? = θ, and it starts from a prefixD. The expectation
is over the observations and any randomness in π. V is the limit of Vn. A common condition used in reinforcement learning
is that the associated Markov chain mixes when starting from any state S ∈ S . Under this condition, V does not depend on
the prefix D and we will simply denote it by V (π; θ). We have the following result.

Proposition 11. Assume that there exists a sequence {νn}n≥1, such that νn ∈ o(1/
√
n), and the following two statements

are true.

1. V (πθM; θ) = V (πθ
′

M; θ′) for all θ, θ′ ∈ Θ.

2. For all θ, and all data sequences H,H ′, |Vn(πθM, H; θ)− V (πθM; θ)| ≤ νn.

Then Theorem 2 holds with
√
τn = 1 + 2nνn.

The second condition is similar to the requirements in Definition 5 in (Kearns and Singh, 2002). However, while they only
use a thresholding behaviour, we assume a uniform rate of convergence, where our bounds depend on this rate. However,
while results for non-episodic RL settings are given in terms of the mixing characteristics of the globally optimal policy, our
results are in terms of the myopic policy.

Proof of Proposition 11. We will turn to our proof of Theorem 2, where we need to bound qt(θ1, x, y)− qt(θ2, x, y). We
will use Proposition 11 with H = Dt−1 ] {(x, y)} and have,

qt(θ1, x, y)− qt(θ2, x, y)

= λ(θ1, Dt−1 ] {(x, y)})− λ(θ2, Dt−1 ] {(x, y)}) +
n∑
j=1

EY,t+1:n|θ1
[
λ(θ1, Dt−1 ] {(x, y)} ] Fj,1)

]
− EY,t+1:n|θ2

[
λ(θ2, Dt−1 ] {(x, y)} ] Fj,2)

]
≤ 1 + (n− t)

(
Vn(πθM, Dt−1 ] {(x, y)}; θ)− Vn−t(πθ

′

M, Dt−1 ] {(x, y)}; θ′)
)

≤ 1 + (n− t)
(
|Vn−t(πθM, Dt−1 ] {(x, y)}; θ)− V (πθM; θ′)|+ |Vn−t(πθ

′

M, Dt−1 ] {(x, y)}; θ′)− V (πθ
′

M; θ′)|
)

≤ 1 + 2(n− t)νn−t =
√
τn−1

Here, the second step uses that λ is bounded in [0, 1], the third step simply uses the first condition in Proposition 11 along
with the triangle inequality, and the fourth step uses the second condition. The remainder of the proof carries through by
applying Pinksker’s inequality with this bound in (8).

Conditions of the above form are necessary in non-episodic undiscounted settings for RL (Kearns and Singh, 2002), and we
show that under similar conditions, πPS

M achieves sublinear regret with π?M.
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D. Some Experimental Details

Specification of the prior: In our experiments, we use a fixed prior in all our applications. In real world applications, the
prior could be specified by a domain expert with knowledge of the given DOE problem. In some instances, the expert may
only be able to specify the relations between the various variables involved. In such cases, one can specify the parametric
form for the prior, and learn the parameters of the prior in an adaptive data dependent fashion using maximum likelihood
and/or maximum a posteriori techniques (Snoek et al., 2012).

Computing the posterior: Experiments 2 and 4 which use a Bayesian linear regression model admit analytical computa-
tion of the posterior. So do experiments 5 and 6 which use a Gaussian process model. For experiments 1, 3, and 7 we use
the Edward probabilistic programming framework (Tran et al., 2017) for a variational approximation of the posterior. The
sample in step 3 is drawn from this approximation.

Optimising λ+: In all our experiments, the look-ahead reward (2) is computed empirically by drawing 50 samples from
Y |X, θ for the sampled θ and a given x ∈ X . For experiments 1 and 3 which are one dimensional, we maximise λ+ by
evaluating it on a fine grid of size 100 and choosing the maximum. Similarly, for experiments 2 and 4 which have two
dimensional domains, we use a grid of size 2500 and for experiments 5 and 7 which are three dimensional, we use a grid of
size 8000. Since experiment 6 is in nine dimensions, on each iteration, we sample 4000 points randomly from the domain
and choose the maximum.

Synthetic Active Learning Experiments: In all 4 experiments, the observations are generated from the true model. In
the log likelihood formalism of Experiments 3 and 4, in order to compute the reward λ, we evaluate the expecation over
X ∼ Γ, Y ∼ P(·|X, θ) empirically by drawing 1000 (x, y) pairs; we first sample 1000 x values uniformly at random and
then draw y from the likelihood for the given θ value.

Level Set Estimation on LRGs: Here we used data on Luminous Red Galaxies (LRGs) to compute the galaxy power
spectrum of 9 cosmological parameters: spatial curvature Ωk ∈ (−1, 0.9), dark energy fraction ΩΛ ∈ (0, 1), cold dark
matter density ωc ∈ (0, 1.2), baryonic density ωB ∈ (0.001, 0.25), scalar spectral index ns ∈ (0.5, 1.7), scalar fluctuation
amplitude As ∈ (0.65, 0.75), running of spectral index α ∈ (−0.1, 0.1) and galaxy bias b ∈ (0, 3). Following Gotovos
et al. (2013a), we model the function as a Gaussian process. The function values vary from approximately −1× 1018 and
−1× 1015. We set the threshold to −3× 1016 which is approximately the 75th percentile when we randomly sampled the
function value at several thousand points.


