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A. Introduction
This supplementary material is organised as follows: In § B
and § C we provide the detailed derivation of the gradients
for our attention sampling. Subsequently, in §D we mention
additional related work that might be of interest to the read-
ers. In § E and § F we present experiments that analyse the
effect of our entropy regularizer and the number of patches
sampled on the learned attention distribution. In § G, we
visualize the attention distribution of our method to show
it focuses computation on the informative parts of the high
resolution images. Finally, in § H we provide details with
respect to the architectures trained for our experiments.

B. Sampling with replacement
In this section, we detail the derivation of equation 11 in our
main submission. In order to be able to use a neural network
as our attention distribution we need to derive the gradient
of the loss with respect to the parameters of the attention
function a(·; Θ) through the sampling of the set of indices
Q. Namely, we need to compute
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C. Sampling without replacement
In this section, we derive the gradients of the attention dis-
tribution with respect to the feature network and attention
network parameters. We define

• fi = f(x; Θ)i for i ∈ {1, 2, . . . ,K} to be the K fea-
tures

• ai = a(x; Θ)i for i ∈ {1, 2, . . . ,K} to be the proba-
bility of the i-th feature from the attention distribution
a

• wi =
∑
j 6=i aj

We consider sampling without replacement to be sampling
an index i from a and then sampling from the distribution
pi(j) defined for j ∈ {1, 2, . . . , i − 1, i + 1, . . . ,K} as
follows,

pi(j) =
aj
wi
. (7)

Given samples i, j sampled from a and pi, we can make an
unbiased estimator for EI∼a[fI ] as follows,

aifi + wifj ' (8)
EI∼a[EJ∼pI [aIfI + wIfJ ]] = (9)
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Using the same i, j sampled from a and pi accordingly, we
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can estimate the gradient as follows,
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When we extend the above computations for sampling more
than two samples, the logarithm in equation 23 allows us
to avoid the numerical errors that arise from the cumulative
product at equation 20.

D. Extra related work
For completeness, in this section we discuss parts of the
literature that are tangentially related to our work.

Combalia & Vilaplana (2018) consider the problem of high-
resolution image classification from the Multiple Instance
Learning perspective. The authors propose a two-step pro-
cedure; initially random patches are sampled and classified.
Subsequently, more patches are sampled around the patches

that resulted in confident predictions. The most confident
prediction is returned. Due to the lack of the attention mech-
anism, this model relies in identifying the region of interest
via the initial random patches. However, in the second pass
the prediction is finetuned if informative patches are likely
to be spatially close with each other.

Maggiori et al. (2017) propose a neural network architecture
for the pixelwise classification of high resolution images.
The authors consider features at several resolutions and
train a pixel-by-pixel fully connected network to combine
the features into the final classification. The aforementioned
approach could be used with our attention sampling to ap-
proach pixelwise classification tasks such as semantic seg-
mentation.

E. Ablation study on the entropy regularizer
To characterize the effect of the entropy regularizer on our
attention sampling, we train with the same experimental
setup as for the histopathology images of § 4.3 but varying
the entropy regularizer λ ∈ {0, 0.01, 0.1, 1}. The results are
depicted in Figure 1. Using no entropy regularizer results in
a very selective attention distribution in the first 60 epochs of
training. On the other hand, a high value for λ, the entropy
regularizer weight, drives the sampling distribution towards
uniform.

In our experiments we observed that values close to 0.01
(e.g. 0.005 or 0.05) had no observable difference in terms of
the final attention distribution.

F. Ablation study on the number of patches
According to our theory, the number of patches should not
affect the learned attention distribution. Namely, the ex-
pectation of the gradients and the predictions should be the
same and the only difference is in the variance.

In Figure 2, we visualize, in a similar fashion to E, the atten-
tion distributions learned when sampling various numbers
of patches per image for training. Although the distributions
are different in the beginning of training after approximately
100 epochs they converge to a very similar attention distri-
bution.

G. Qualitative results of the learned attention
distribution

In this section, we provide additional visualizations of the
learned attention distribution using both attention sampling
and Deep MIL on our two real world datasets, namely the
Histopathology images § G.1 and the Speed limits § G.2.
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Figure 1. We visualize the effects of the entropy regularizer on the sampling distribution computeed from a test image of the colon cancer
dataset in the first 60 epochs of training. We observe that no entropy regularizer results in our attention becoming very selective early
during training which might hinder the exploration of the sampling space.
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Figure 2. Visualization of the attention distribution when training with varying number of patches. All the distributions converge to
approximately the same after ∼100 epochs.
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G.1. Histopathology images

In Figure 3 we visualize the learned attention distribution of
attention sampling and we compare it to Deep MIL and the
ground truth positions of epithelial cells in an subset of the
test set.

We observe that the learned attention distribution is very
similar to the one learned by Deep MIL even though our
model processes a fraction of the image at any iteration.
In addition, it is interesting to note that the two methods
produce distributions that agree even on mistakenly tagged
patches, one such case is depicted in figures 11 and 12 where
both methods the top right part of the image to contain useful
patches.

G.2. Speed limits

Figure 4 compares the attention distributions of Deep MIL
and attention sampling on the Speed Limits dataset (§ 4.4
in the main paper). This dataset is hard because it presents
large variations in scale and orientation of the regions of
interest, namely the speed limit signs. However, we observe
that both methods locate effectively the signs even when
there exist more than one in the image. Note that for some
of the images, such as 6 and 15, the sign is not readable
from the low resolution image.

H. Network Architecture Details
In this section, we detail the network architectures used
throughout our experimental evaluation. The ultimate detail
is always code, thus we encourage the reader to refer to
the github repository https://github.com/idiap/
attention-sampling.

H.1. Megapixel MNIST

We summarize the details of the architectures used for the
current experiment. For ATS, we use a three layer con-
volutional network with 8 channels followed by a ReLU
activation as the attention network and a convolutional net-
work inspired from LeNet-1 (LeCun et al., 1995) with 32
channels and a global max-pooling as a last layer as the
feature network. We also use an entropy regularizer with
weight 0.01. The CNN baseline is a ResNet-16 that starts
with 32 channels for convolutions and doubles them after
every two residual blocks.

We train all the networks with the Adam (Kingma & Ba,
2014) optimizer with a fixed learning rate of 10−3 for 500
epochs.

H.2. Histopathology images

We summarize the details of the architecture used for the
experiment on the H&E stained images. For ATS, we use a
three layer convolutional network with 8 channels followed
by ReLU non linearities as the attention network with an en-
tropy regularizer weight 0.01. The feature network of is the
same as the one proposed by (Ilse et al., 2018). Regarding,
the CNN baseline, we use a ResNet (He et al., 2016) with 8
convolutional layers and 32 channels instead.

We train all the networks for 30,000 gradient updates with
the Adam optimizer with learning rate 10−3.

H.3. Speed Limits

We detail the network architectures used for the current
experiment. For attention sampling, we use an attention net-
work that consists of four convolutions followed by ReLU
non-linearities starting with 8 channels and doubling them
after each layer. Furthermore, we add a max pooling layer
with pool size 8 at the end to reduce the sampling space
and use an entropy regularizer weight of 0.05. The feature
network of both our model and Deep MIL is a ResNet with
8 layers and 32 channels. The CNN baseline is a ResNet-16
that starts with 32 channels for convolutions and doubles
them after every two residual blocks.

Again, we we use the Adam (Kingma & Ba, 2014) optimizer
with a fixed learning rate of 10−3 for 300,000 iterations.
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Figure 3. We visualize in groups of 4, the H&E stained image, the ground truth positions of epithelial cells, the attention distribution of
Deep MIL and the attention distribution of attention sampling. We observe that indeed our method learns to identify regions of interest
without per patch annotations in a similar fashion to Deep MIL.
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Figure 4. Visualization of the positions of the speed limit signs in test images of the dataset as well as the two attention distributions of
Deep MIL (left) and attention sampling (right) and the patches extracted from the high resolution image at the positions of the signs. Both
methods identify effectively the speed limit in the high resolution image.
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