Robust Estimation of Tree Structured Gaussian Graphical Models

A. Proof of Theorem 1

Consider any tree 79 € T~ and its corresponding set S¢. We find the covariance matrix X9 with the same off diagonal
elements as X° whose independence structure is given by 7'9. Upon obtaining 9, getting the D? matrix is immediate. To
begin with, let us consider the case when S has just one node, i.e, S? consists of one of the leaves of T™.

Proposition 1. Suppose the covariance matrix ¥* has conditional independence structure T with leaf node a and its
neighbor b. Consider a covariance matrix 3.9 defined as follows:

1 o .
Efj—@ U‘1=J=a

= Y+ 0<a<Djifi=j=b
X7 otherwise,

The conditional independence structure T9 of 39 is given by the tree obtained by exchanging positions of node a and b in
T*.

Proof. Relabeling if necessary, assume that node 7 is a leaf node and node n — 1 is its neighbor in 7*. Define B' and B>
as follows:

3

¢ 0<c<Di_y, 1ifi=j=n—1
0  otherwise

B2 _ — Ql ifi=j=n
10 otherwise

We also define an intermediate matrix X/ = %* + B2. Therefore ¥¢ = %/ + B'. The proof of this proposition can be split
in the following steps:

(i) We prove that for ¥/ column n is a multiple of column n — 1 making it a low rank matrix.

(i) We add B* to X/ to get ¥29. In X7 column 7 is a multiple of column n — 1 at all elements other than n — 15¢. This
makes node n — 1 a leaf node connected to node n as we see in Lemma 1.

(iii) We prove that the independence structure of the rest of the nodes does not change. This is done by proving 2 claims:

(a) Conditional independence relations do not change when if conditioning is not on node n or node n — 1.
(b) Any pair of nodes which were independent conditioned on n — 1 in ¥* are independent conditioned on n in X9.

A.1. Proof of Part(i) - Column n of X/ is a multiple of column n — 1:

The precision matrix Q* is of the form:

9SO o F A 0
= . ©)
QTTL—l e Q:L—ln—l Qn—ln
0 . 9, | @]

For notational convenience, in what follows, we label the blocks in (9) as Q7 QZ and 2%, so that:

o o
(€2) QO

z

Q=

As depicted in (9), block €27 is a n — 1 length vector with a non zero only at position n — 1. The covariance matrix
¥* = (%)~ Lis as follows:

D2 D ¥ P Xin
T — : : :
E>{n—l e E:<L—1n—1 2;—1“
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As with Q*, we write it in blocks as:

L= Doy
R (AL (4o

By the matrix inversion lemma, we have:

= ()7 + (@) THyr - (@) T (@) @@ T ) T

20 — (Q*) (Q*)*I(Q*)]*l. The (n — 1)% column of X} is given as follows:
(Z2)in-1 = [1+ e2(20)7 21 o1 (1)1 (Q0) s (11)

Note that (£%),—1,n—1 = X} _1,_71 and (%) p—1,n—1 = Q)
By the matrix inversion lemma, we also have:

S = (@) l0r — (@) (@) @)

T Y

To ease notation, we define cg

n—1ln—1-

Substituting ¢, for [Q2F — (27)7 (%)~ (€2;)] " and the value of €2} from equation (9) we get:
(3 I (12)

n—1

Z = —CQQ

n—1ln

By Equations (11) and (12) we have:

*

> e (3%) (13)
z):,n—1-

v [1+02(Q )nlln 1(9;‘171”)2]

Hence, the n'" column of ¥* is a multiple of the (n — 1)** column except for the n'”* element. Also, by the matrix inversion

lemma ¥} = X% = co.

Now we look at the intermediate matrix ¥/ which is given as follows:

Yoo X Xin
DU T . : (14)
E1n—1 ce En 1n—1 Zn 1in
|_ X1, ... X in DI o

Now we prove that ¥/ is a rank deficient matrix and its n‘" column is a multiple of its (n — 1)* column. Specifically, letting
*C2Qn in
[H”C?(Q*)n 1,n— (25, _1,)7] ’
Basically we need to prove the following:

o we show that X/ | = ¢3! . This is true for the first (n — 1) elements by Equation (13).

N 1
Enn - Q* C3En in* (15)
Expanding the LHS in Equation (15), we get
1 1 1
E;km - QO = Q* (Q* )2(9*),1 - QO
nn n—1n n—In—1 nn (16)
Q* (Q;kz 1n) (Q*)n 1n—1-
For the RHS of Equation (15), we substitute >, ;. from Equation (12) and the value of c3 to get the following:
(Q;: 1n)2
! [1 +CQ(Q*)n11 nfl(Q:L*l’l’L) ] 1 -
CQ(Qn n)2 *
= - (Q )n In—1 (17)

[ (Q*)n 1,n— 1(9:7, ln)]
Q* (Q;kl 1n) (Q*)n In—1"

From Equations (16) and (17) we conclude that that (7). ,, = ¢3(27). ,—1. Hence, ¥/ is a rank deficient matrix. Also

note that the first n — 1 principal sub matrices of ¥/ have positive determinant by the positive definiteness of ¥*. Hence,
rank(x) =n — 1.
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A.2. Proof of part (ii) - Node n — 1 is a leaf node connected to node n in the independence structure of >:

Next we add B! to X/ to get X¢:

* * *
211 R Z17171 E1n
q __ : : : .
M= T T + n—1 T ’
In—1 co n—In—1 €1 n—1n
* * *
|_ 21n En—ln Enn O

nn

forany 0 < i~ < D _,,_;. In X9 column n — 1 is not multiple of column 7, hence it is a symmetric positive definite
matrix making it a valid covariance matrix. Also, column n — 1 is a multiple at all indices except at index n. In order to
prove that node n — 1 is a leaf node connected to node n, we use Lemma 1.

Lemma 1. Ifin any covariance matrix 3, column n — 1 is a multiple o # 0 of column n except at position n — 1, then in

the independence structure of 3, node n — 1 is a leaf node connected to node n.

Proof of Lemma 1: We look at the edges of node n — 1 given by the (n — 1)*! column of Q = X1,

|det(2—(n—1),—i)|
det(X)

|Qn71i| =

Fori ¢ n,n — 1, Q,_1; = 0 as the submatrix Y _(n—1),—i is rank deficient by assumption. Note that Qn—1n # 0, because
by contradiction if that was true, {2 would be a block diagonal with node n — 1 as one block. This would imply that 3
would be a block diagonal with node n — 1 as one block, which cannot be the case as X, _1,, = aX,,, # 0. Hence node
n — 1 is a leaf node connected to node n. L]
By Lemma 1, node n — 1 is a leaf node connected to node n in 79.

A.3. Proof of part (iii) - Structure of the remaining tree does not change:
In order to prove this part, we need the following lemma:

Lemma 2. For any random vectorY = [Y1,Y5,...,Y,], Y ~ N(0,X), Y; is independent of Y; conditioned on'Yy, if and

only if
YikXjk
Sek

Eij =

Proof of Lemma 2: The probability distribution of Y_j, conditioned on Y}, is given as follows:

Yk kX _kk

Yoi | Vie ~ NS gk Z Yo, Sk — >
kk

For Y; to be independent of Y; conditioned on Y}, the ¢, j component of the conditional covariance matrix must be zero,
giving
Mgk

S =
’ Yk

O

Proof of part (iiia) - Conditional independence relations, when conditioning is not on n or n — 1, don’t change:
This is a direct consequence of Lemma 2 as X7, = 35, for k # n,n — 1.

Proof of part (iiib) - Any pair of nodes which were independent conditioned on n — 1 in * are independent conditioned on
nin X9:

Suppose node i and node j were independent conditioned on node n — 1 in 3* and ¢, j # n. Then by Lemma 2 we have:

* *
TE En—lizn—lj
ij T :

n—Iln—1
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From Equation(10), note that X}, _;; = (3} )n—1; and 37, _;; = (33)n—15, also X7, = (¥7); and X7, = (37);. So, by
Equation (13), we have:
DI I
y¢ . TniTng
" 6322—177,
Since the off diagonal terms of ¥X* and >.¢ are equal, we have:
q yq
q _ Zning
" CBZZL—ln
By Equation (15) we can substitute the denominator to obtain:
a3
_ TniTnj
£y = ar
Therefore, by Lemma 2, in the graphical structure for 39, ¢ and 5 are independent conditioned on n. O

Proving parts (i), (ii) and (iii) proves Proposition 1, that the conditional independence structure of 7 is given by the tree T'9.
For a leaf node @ and its neighbor b in 7, the decomposition 3 = X9 4+ D9 which results in the exchange to nodes a and b
is as follows:

S g ifizj=a
=0 Bn+d 0<d <Dyifi=j=b

X% otherwise,

% 1 oo
D}, + o ifi=a
Dfy=4 Di—c ifi=b
D;; otherwise,

O

Thus far, we have only considered the case when S, has just one node. This analysis directly extends to the case when S,
has more than one nodes. The 3¢ and D? matrices in that case are as follows:

5~ a5 ifi=je&9
N4 ={ %54 ifi=j € Neighbor(S)
DMy otherwise,

Di+ o ifieS?
Df, =13 Di—c ifie Neighbor(S9)

Dy; otherwise,

where Neighbor(S7) is the set of neighbor nodes of all the nodes in S9. Also, ¢! is chosen such that 0 < ¢} < D};. This
completes the proof of Theorem 1. O

B. Proof of Theorem 2

We prove this theorem by proving that the off diagonal terms of covariance matrix are enough to determine the structure of
the underlying tree up to the equivalence set 7. The main building block of this proof and of the algorithm presented in
Section 5 is to categorize any set of 4 nodes as a star shape or a non-star shape. Moreover, if it is a non star star shape we
further divide the set of 4 nodes in half forming 2 pairs of nodes.

Definition 4. e Four nodes {iy, i, 13,14} form a non-star shape if there exists a node iy, in the tree T** such that exactly
two nodes among the four lie in the same connected component of T* \ ik.

o [f{i1,i2,13,14} does not form a non-star shape, we say they form a star shape.
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Node Set Classification | %, pairing (If
Applicable)

©,1,3,7} Non-Star 1, {{0,1}, {3,7}}

{7,8,9,10} | Non-Star 1, {{7,8}, {9,101}

{14, 2, 10, 11} | Non-Star 2, {{14,2}, {10,11}}

{7,9,1,6} Star N.A.

{1, 14,10, 6} | Star N.A.

Figure 7. Conditional independence for non-star shape

It is easy to see that in the event that a set of 4 nodes forms a non star, there exists a grouping such that the 2 nodes in
the same connected component form the first pair and the other 2 nodes form the second pair. Examples of star shape and
non-star shape are presented in Figure 6. This categorization is done using only the off-diagonal elements of the covariance
matrix, hence this property remains invariant to diagonal perturbations, that is, every set of 4 nodes falls in the same category
in any tree obtained from the decomposition of X2 = ¥’ + D" as 32}, = ¥}, Vi # j.

The proof of this theorem is split in 3 parts:

(i) Prove that it is possible to categorize any set of 4 nodes as star shape or non-star shape using only off diagonal elements
of the covariance matrix.

(i1) Prove that this categorization of 4 nodes completely defines all the possible partitions of the original tree in 2 connected
components such that the connected components have at least 2 node.

(iii) Prove that these partitions of a tree into connected components completely define the tree structure up to the equivalence
set 7-T* .

B.1. Proof of Part (i) - Categorization of 4 nodes as star/non-star shape:

We first state the conditions using only off-diagonal elements for a set of 4 nodes to be categorized as non-star shape.
Assume that a set of 4 nodes {41, i2, i3, 74 } satisfy the definition of a non-star shape such that nodes 4, and i5 form one pair
and i3 and ¢4 form the second pair. This is true if and only if:

* *
ng . ng
* - * I
1104 1204
»* M.
Q21 Q21
*2 1 7& 2*2 4 and (18)
1311 i3%4
* *
izil 7& izig
* * N
1401 1304

The first equality and the second inequality imply the last inequality. When nodes {i1, 2, i3, 44} form a non star shape, they
either satisfy a conditional independence structure shown in Figure 7(a) or 7(b) for some nodes i; and /.
For Figure 7(a), the following conditional independence relations hold:

i1 L i3, 14]ia, (19)

Note that nothing prevents iy, to be one of the four nodes.
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(is) ) (i
(i) ()
() ()

b

(a)

Figure 8. Conditional independence for star shape.

ig L iglis. (20)

Using Lemma 2, we get the following conditions for the conditional independence relation in Equations (19) and (20):

* * * * *
Z* . 22122 223742 _ 21112 X:'5412 7é 1371221412 (21)
igi2 T n* - S N ’
2113 2124 i3i4

Using Equation (21) we get the relations in Equation (18).
For Figure 7(b), the following conditional independence relations hold:

Z‘1 €L i3; i4|ik'7 (22)
i? 1 i37 7;4|ik7'a (23)
is £ dalin. (24)

Using Lemma 2, we get the following conditions for the conditional independence relation in Equations (22), (23) and (24):

* * * * * * * * *

% Ezlzk/ Elglkl _ le’bklzhﬂk/ _ Elzlkl Ezyk/ _ 2121k12i4ik/ Ezyk/ G40, 25

Gprlg * * * * * . ( )
1113 1104 1213 Q214 1304

Using Equation (25), we get the conditions in Equation (18). Note that for both the cases in Figure 7, the Equation (18)
remains the same if ¢; and i, exchange positions.

Next, we state the conditions using only off-diagonal elements for a set of 4 nodes to be categorized as a star shape. Assume
that a set of 4 nodes {i1, i, 93,44} satisfy the definition of a star shape. This is true if and only if:

DI T

Hiais _ Tigis

2:124 Z;,k27,4 ’

by >

Ef“ = Zf“ and (26)
1371 1374

E;kzll — E;k2z3

i Shi

First 2 equalities imply the third equality. Any set of 4 nodes {1, 42,3, ¢4} can form a star structure only if their conditional
independence relation is given by Figure 8(a) or 8(b) for some node i;. For Figure 8(a), the conditional independence
relations are given as:
ig L i3, i4lit, 27
i3 L iqis. (28)
Using Lemma 2, we get the following for these conditional independence relations in Equations (27) and (28):
E* ¥ XrLony XrLu

2* 1112 1193 i1 Ti1%4 1104 1113. (29)
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Equation (29) implies Equation (26).
For Figure 8(b), the conditional independence relations are given as:

i1 L g, i3, 14]ik, (30)
ig L i3, i4ig, (€29)
is L ialin. 32)

Using Lemma 2, we get the following for the conditional independence relations in Equations (30), (31) and (32):

* * * * * * * * * * * *
sr - Dhie i _ S Digin _ i S _ i Sisie _ Sigis Diaie _ Sisin Sy (33)
1119 1113 1124 1213 1914 1314

Equation (33) implies Equation (26).
Hence using only the off diagonal terms, checking the conditions in Equations (18) and (26), any set of 4 nodes can be
classified as a star shape or non-star shape. O

B.2. Proof of Part (ii) - Partitioning of the tree in 2 connected components:

We prove this by presenting an explicit algorithm to obtain a specific partition of the original tree 7", which would also be a
valid partition of T”, using the categorization of any set of 4 nodes as a star shape or non-star shape. This procedure can be
performed with different initializations to obtain all the possible partitions.

Let A denote the set of all the nodes in 7.

Definition 5. A subtree B of a tree T* is a set of nodes such that B and A\ B form a connected component in T*. The pair
of subtrees B and A\ B are called complementary subtrees.

For any set of 4 nodes {41, i2, i3, 94} that form a non-star shape such that nodes i; and i, form a pair, we obtain the smallest
subtree containing ¢; and ¢2 by Algorithm 1. Basically, we fix i1, i2 and i3 and scan through all the remaining nodes to form
a set of 4 nodes and check if it forms a star or non-star shape. If this set of 4 nodes forms a star shape or forms a non-star
shape such that the scanned node pairs with ¢; or i2, we put it in group 1, otherwise, we put it in group 2. Once we are done
scanning through all the nodes, group 1 gives the smallest subtree and group 2 gives its complementary subtree.

Algorithm 1 Partition all the nodes in complementary subtrees.

Input - Observed Covariance Matrix (X°), Set of 4 nodes({i1, 2, i3, i4})
Output - The smallest subtree containing 71 and 72(groupl) and the complementary subtree (group2).

1: procedure SMALLESTSUBTREE(X?, {i1,%2,13,%4})

2: n_rows < size(X°,1)

3: index < {’L'l,i27l'3,0}

4: for j = 1ton_rows do

5: if 5 in groupl or group2 then

6: continue

7: index[4] = j

8: status, pairl, pair2 < ISSTARSHAPE(index, 3°)

9: if status then > If {41, i2, 13, j} forms a star shape, add j to groupl.
10: groupl.append(j)
11: else
12: if j pairs with index[3] then > If j pairs with i3, add j to group?2.
13: group2.append(j)
14: else

15: groupl.append(j) > Otherwise add j to groupl.
16: return groupl, group2
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Figure 9. Suppose iy = 7, i = 9 and 43 = 5. If j is in group 2, {41, i2, 3, j } is categorized as a non star and j pairs with ¢3. If 7 is in
group 1, {i1,142,13, 7} is either categorized as a star or it is categorized as a non star and j pairs with i1 or 7s.

EC3 EC4 EC5 EC6

Figure 10. (a) Equivalence clusters for the given tree. (b) The cluster tree with equivalence clusters as vertices.

PROOF OF CORRECTNESS OF ALGORITHM 1

Consider the tree 7. We denote the smallest subtree containing nodes i; and i3 by B. Let ¢, denote the node in B that has
an edge with the connected component formed by A \ B. Let i), be the node in .4 \ B that has an edge with a node in . In
this case i, is a node such that nodes i1 and i lie in the same connected component of 7* \ ij. By the definition of non-star
shape, i3 cannot be in B. Also, a node j can be in A \ B if and only if nodes {41, 2, i3, j} are non star and j pairs with i3 as
nodes i1 and i still lie in the same connected component of 7 \ ij. This is illustrated in Figure 9.

Using different ¢; and 7o, we get all the possible partitions of the tree 7.

B.3. Proof of Part (iii) - Recovering the tree up to unidentifiability using tree partitions

Before going to the proof of this part, we define the terms equivalence cluster, cluster tree, cluster subtrees, complementary
cluster subtrees and the root of a cluster subtree as follows:

Definition 6. A set containing an internal node and all the leaf nodes connected to it forms an equivalence cluster. We say
that there is an edge between two equivalence clusters if there is an edge between any node in one equivalence cluster and
any node in the other equivalence cluster. An equivalence cluster which has an edge with at most one more equivalence
cluster is called a leaf equivalence cluster.

Definition 7. A tree with equivalence clusters as vertices and edges between equivalence clusters as the edges is called a
cluster tree.

Example of equivalence clusters and a cluster tree are presented in Figure 10. The cluster tree completely defines the set

Tre.

Definition 8. A cluster subtree is a set where the equivalence clusters are plugged in for the corresponding nodes in a
subtree. Complementary cluster subtrees are the subtrees obtained when this is done for a pair of complementary subtrees.

Definition 9. The root of a cluster subtree is the equivalence cluster that has an edge with the complementary cluster
subtree.
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To prove this theorem we show that the partitions obtained in part (ii) completely define the cluster tree. We call the subtrees
obtained from part (ii) input subtrees. Note that each input subtree has at least 2 nodes. We prove this in 2 steps:

(i) The input subtrees define the equivalence clusters.

(i) The input subtrees define the edges between the equivalence clusters.

ALGORITHM TO FIND EQUIVALENCE CLUSTERS

The algorithm to find the equivalence clusters takes all the input subtrees and performs the following steps:

1. Initialize the set of discovered equivalence clusters as an empty set.

2. Identify one input subtree which does not have a subset of nodes forming another input subtree. This input subtree
forms an equivalence cluster. Append it to the list of equivalence clusters.

3. Construct trimmed subtrees by removing the equivalence cluster from the input subtrees.

4. Repeat steps 2 and 3 with trimmed subtrees as input subtrees.

PROOF OF CORRECTNESS:

We prove the correctness of this algorithm by induction on the number of equivalence clusters.

Base Case (k = 1):

When there is 1 equivalence cluster, there is 1 input subtree and it is the equivalence cluster.

Inductive Step:

Assume the algorithm works for a tree with & or less equivalence clusters. We prove that the algorithm works for a tree with
k + 1 equivalence clusters.

Relabeling if necessary, assume that & + 1 is a leaf equivalence cluster. Hence it forms a subtree and no subset of the
equivalence cluster can form a subset of another input subtree (as the smallest input subtree which contains at least 2 of
these nodes is the whole equivalence cluster). Thus in Step 2, k£ + 1 is recognized as an equivalence cluster.

By trimming in Step 3, we remove the k + 1°* equivalence cluster from all the subtrees. Hence, we are left with a tree
with k equivalence clusters. By inductive assumption, the algorithm can find these k equivalence clusters. Therefore, the
algorithm finds all the & 4 1 equivalence clusters.

ALGORITHM TO FIND THE EDGES BETWEEN EQUIVALENCE CLUSTERS

For this part we identify the root of every cluster subtree as follows:

An equivalence cluster is the root of a cluster subtree if and only if, upon its removal, the remaining elements can be written
as a union of smaller cluster subtrees which are a subset of the original cluster subtree.

To prove this claim, assume that we remove an equivalence cluster other than the root. In that case the root must have an
edge with the complementary cluster subtree and hence it cannot be obtained by a union of smaller cluster subtrees which
are a subset of the original cluster subtrees.

The algorithm to find the edges between equivalence clusters performs the following steps:

1. Initialize the set of edges as a null set and the set of unexplored complementary cluster subtrees as the set of all the
complementary cluster subtrees.

2. Select a pair of complementary cluster subtrees from the set of unexplored complementary cluster subtrees.
3. Find the root nodes of both the cluster subtrees and append an edge between the two roots in the set of edges.

4. Trim the currently selected cluster subtrees from all the cluster subtrees in the unexplored set for which the currently
explored cluster subtrees are a subset(this also deletes the currently selected cluster subtrees from the unexplored set).
Repeat Steps 2, 3 and 4 with the trimmed cluster subtrees till the unexplored set is empty.

PROOF OF CORRECTNESS:

We prove the correctness of this algorithm by induction on the number of equivalence clusters.
Base Case (k = 2): In this case there are 2 cluster subtrees which are complementary cluster subtrees. Both of them have 1
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equivalence cluster which is also the root. Hence the algorithm finds the edge between the two cluster subtrees.

Inductive Step: Suppose the algorithm works for a tree with & or less equivalence clusters. We prove that the algorithm
works for a tree with k 4 1 equivalence clusters.

Relabeling if necessary, assume that k£ + 1 is a leaf equivalence cluster. Hence there exists a pair of complementary cluster
subtrees where one cluster subtree contains the k£ + 1 equivalence cluster and the other cluster contains the first £ equivalence
cluster. Hence the edge of the (k + 1)! equivalence cluster is added to the list of edges. Once this edge is recognized, the
(k + 1)t equivalence cluster is trimmed and the algorithm correctly finds the edges of the remaining cluster tree by the
inductive assumption.

Hence the input subtrees completely define the equivalence clusters and the edges between them. This completes the proof
of theorem 2. 0

C. Proof of Theorem 4

To prove this claim, we consider the decomposition of ¥.° = ¥/ + D’ such that the conditional independence structure 7" for
Y’ has leaf node b and its neighbor node a. We show that j, < [Q/, |, that is, the leaf node b in T” violates the constraint.
Hence, any decomposition of > which results in an exchange of a leaf node with its neighbor is infeasible. Therefore, the
problem becomes identifiable.

Relabeling if necessary, assume that node 7 is a leaf node connected to node n — 1 in 7*. Recall that the decomposition of
3° =¥’ + D’ from Proposition 1 to obtain a tree structure 7” in which node n — 1 is a leaf node connected to node 7 is
given by:

Sh— o ifi=j=n
i
E;j: Yi4c 0<c<Di 4, ,ifi=j=n—1
3t otherwise.

We derive the expression of ' = (X/)~!. We denote B; and By as follows:

)

B _1c 0<c<Dy_q, ifi=j=n-1
7Y 0 otherwise

1 . . .
— 5 lf 1= =N
By = 0 J _
0 otherwise

This gives us ¥/ = ¥* 4+ B; + Bs. Hence ¥/ is ¥* plus a rank 2 matrix. To calculate its inverse, we first evaluate:

1
Y4Bl = ————— OB
&+ By) 1+tr(Q*By) !
O oL (34)
—ogr_ 85 :
L4 1y
We next evaluate ' as follows:
1
Q=" +B1+B) ' =" +B) ' - S* + By)'Bo(YF + By) T
( ! 2) ( ) 1+tr((2*+Bl)*1Bz)( ! 2( !
This expression can be simplified by substituting the value of (X* + B;)~! from Equation (34) to arrive at:
14 Q2 1
Q/ — Q* + MQ* Q* (Qinle:{,: + Q:*’TLQ;:,L:) (35)

C(Q* ning T Q*i

nfln) n—1n
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Now we look at the terms in positions (n — 1,7 — 1) and (n — 1,n) of Q0.

(1 + CQTL In— 1)

/
n—1n— 1_Qn n—1Tt C _ZQn 1n—1
1
&
* *
Q (1+CQ71—171—1)Q* * ann In—1
n—1n — Sép— ln O nn ~ S%n—1n — OF
Cip_1n n—1n
Q*
CQn ln

By the original assumption we have QF, > |Q%_, |, hence 2, _,, 1 < |S2,_;, |- Therefore the leaf node n — 1 in
T’ violates the additional constraint and hence this decomposition of 3° is infeasible. Extending the argument, any
decomposition of Y:° which results in a tree 7" in which leaf node of T exchanges position with its neighbor is infeasible.
Hence T* and 7" have the same structure. O

D. Proof of Theorem 6

To prove this theorem, we consider X’ such that the conditional independence structure has b as the leaf node and a as its
neighbor. Rest of the struture is the same as 7. We find a lower bound on the minimum eigenvalue of ¥/, A/ . . If this
lower bound is greater than \,,,;,,, this implies that there exists a feasible decomposition which has conditional independence

structure different from 7.

In order to lower bound the minimum eigenvalue of ¥/, we upper bound the maximum eigenvalue of . We do this using
a corollary of Gerschgorin’s Theorem. We use the result that the maximum eigenvalue of €’ is upper bounded by the
maximum of the sum of absolute values of all the row entries:

n

Xl < max (Z |Q;j|). (36)

mn j:1

From the expression of §’ stated in Equation (35) (by relabeling the nodes n and n — 1 as nodes a and b respectively), we
have:

Qr QF (QF QF —(Q*)2 Qr Q* .
%(EQ* ;2 N Q ) + aal ale*b:)z( ab)”) + 272:1 ﬁ ifi =a,
= ¢ j#a,b

Z'QM: %(1+3§a) ifi=b.

j=1 (E] ) |Q 1+ Qa‘é\f:‘q\) otherwise.
a

Using the definitions in Equation 6, we can rewrite the upper bound in Equation (36) as follows:

ab f'ab
S < max( + g, h?).
min
Rewriting this as:
ab ab ab
) 5 ife< L
ab ab
N < f? + gab if et <c< 7}”1{79@
hab otherwzse.

First, let us concentrate on the first case. For unidentifiability, we need:
> e®X\in.

P b__ pab . ab__ rab .
To remain in the first case, we need ¢ < &— [ . Therefore, if A\, < % and Dj, > €™ X\, in, there would exist a

feasible value of ¢ which allows node a and b to switch positions.
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Next we look at the second case. If \,,,;,, < ab , for unidentifiability, we need:

fab
> —
€= 1/>\mzn - gab

ab
To remain in the second case, we need ¢ < haf —. Therefore, if \,,;,, < hab and Dy, > ﬁ, there would exist a
feasible value of ¢ which allows node a and bto sw1tch positions. If \,,;, > ab , nothing can be said about unidentifiability.
To enter the third case, we need A\,,in > hab which would again imply that nothmg could be said about identifiability.

E. Algorithms
E.1. Pseudo-code

We give the pseudo-code for all the functions introduced in Section 5. Note that we have adopted the convention that the
indexing starts from 1.

Algorithm 2 Determine whether any set of 4 nodes is star shape or non-star shape.

1: procedure ISSTARSHAPE(index = {i1,i2,13,%4}, 2°)
2 sub_sigma < X°[index; index) > submatrix of 3 with only the input nodes.
3 count_pairs < 0 > Count the number of column pairs which satisfy ratio condition.
4 for column, = 1to 3 do
5: for columns = column, + 1to 4 do
6 is_ratio_initialized <— False
7 for z=1to4 do
8 if = == column, or z == columns then > Skip diagonal elements.
9: continue
10 if NOT(is_ratio_initialized) then
11: ratio < sub_sigmalz, columns]/sub_sigmalz, column; > Calculate ratio of elements.
12: is_ratio_initialized < True
13: else
14: if ratio == sub_sigmalz, columns]/sub_sigmalz, column,| then
15: count_pairs <— count_pairs + 1 > Counts pairs with equal ratio.
16: if count_pairs == 1 then
17: pairl = [index[column, ], index[columns]]
18: if count_pairs == 2 then
19: pair2 < index \ pairl > Nodes not in pairl form pair2.
20: return False, pairl, pair2 > non-star shape.
21: else
22: return True, [ ], [ ] > Star Shape.

E.2. Proof of correctness
E.2.1. PROOF FOR ALGORITHM 2: ISSTARSHAPE

The correctness of algorithm 2 is already proven in section B.1.

E.2.2. PROOF FOR ALGORITHM 3: PARTITIONNODES

The procedure in Algorithm 3 is initialized by finding a combination of four nodes which form a non-star shape. To achieve
that, we fix two nodes and scan through all the possible pairs of remaining nodes. In order to prove that this is enough we
look at the different configurations of two fixed nodes and argue the existence of two other nodes which can make the 4
node set a non-star shape (if such a shape exists in the tree).

Let the fixed nodes be i1 and 75. We now study all the different cases which can arise:
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Algorithm 3 Partition all the nodes in 2 subtrees.

1: procedure PARTITIONNODES(3?)

N

n_rows « size(2°,1)
index < [1,2,0,0]
is_star < True
for i3 = 3to n_rows — 1 do
for iy = i3 + 1 to n_rows do
index[3] < i3
index[4] < i4
is_star, pairl, pair2 < ISSTARSHAPE(index, X°)

if NoT(is_star) then > We found a non-star shape.
break from both loops
if is_star then > We did not find any non-star shape.
return ¢s_star,[ 1, [ ]
else > We found one non star. We use it to partition the nodes.

groupl, group2 < SMALLESTSUBTREE(X?, index)

return is_star, groupl, group?2

Algorithm 4 Get a node in subtree 5 from the equivalence cluster closest to the external node 7,y¢side-

1: procedure GETCLOSESTEQUIVALENCECLUSTER(B, ioutside; 2°)

N

n_node « len(B)
index < [ioutside; 0,0, 0]
ielose — B[1] > Initial estimate of a node from closest EC.
for jeandidate = 2 to n_node do > Sweep through jeandidate to find a node from the closest EC.
index[2] < icose
icandidate — B[jcandidate]
anex[g] <~ icandidate
for j = 1 to n_node do > Sweep through j until we find a non-star shape.
if B[j] in index then
continue
index[4] = Blj]
is_star, pairl, pair2 < ISSTARSHAPE(index, 3°)
if NOT(is_star) then

break
if icandidate pairs with i,¢5;4. then D> Telose Tuled Out. 7ogndidate 1S the new estimate
Z‘close — icandidate
equivalence_cluster < [icose] > %elose 18 in the EC closest to 7oy tside-
for icquivatent € B\ iciose O > Find other nodes of the closest EC.

all_star_shapes <+ True
fOI‘j €B \ {iclosea Z..squi'ualent} do
1s_star, ~, ~4— ISSTARSHAPE({Z.outsidea Lcloses bequivalents ]}a EO)
if NOT(is_star) then
all_star_shapes < False
break
if all_star_shapes then > If iequivalent always form a star shape, it is in the EC of i¢joe.
Add icguivatent t0 equivalence_cluster

return equivalence_cluster
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Algorithm 5 Splits B\ EC,,s. into the set of largest subtrees.

1: procedure SPLITROOTEDTREE(ipytsides FCelose, By 2°)
2: subtrees =[] > subtrees is a list of lists where each list contains the nodes of one subtree.
3 B+ B\ EC.pse > Remove the EC of 7,.,,; from B.
4: Z.close — ECclose[]-]
5: Create first subtree B with B[1] > Initialize By with any node of B.
6 for j € Bdo
7 is_star < True
8 for B; € subtrees do
9: index < [ioutside, Leloses J, Bill]] > Check if new node j forms non star with subtree B;.
10: is_star, pairl, pair2 < ISSTARSHAPE(index, 3°)
11: if NoT(is_star) then
12: break
13: if NOT(is_star) then
14: Add j to B; > Add new node j to the last subtree B; before the break.
15: else
16: Create new subtree with j > Create new subtree with only j.
17: return subtrees

Algorithm 6 Recursive function finds equivalence clusters and edges between them.

1: procedure LEARNEDGES(ioytside, B, learned_edges, equivalence_clusters, 3°)

2: n_nodes < len(B)

3 if n_nodes == 2 then > B is an equivalence cluster.
4 Add B to equivalence_cluster

5 Add (EC (ioutside)s EC(B[1])) to learned_edges

6: return

7: EC¢pse < GETCLOSESTEQUIVALENCECLUSTER(B, ioutside; 2°) > Get the closest EC.
8 Add EC s to equivalence_cluster

9: Add (EC (ioutside), ECeiose) to learned_edges > Add an edge between EC containing 7oy¢siqe and ECjose
10: subtrees < SPLITROOTEDTREE (ioyutside, ECelose, By 2°) > Get subtrees of B\ {ECjose }-
11:  for B; € subtrees do
12: LEARNEDGES (iciose, Bj, learned_edges, equivalence_clusters, ¥°) > Recursive call for all the subtrees.

Algorithm 7 Full Algorithm.
1: procedure LEARNTREESTRUCTURE(X?)

2: learned_edges <[ ]

3 equivalence_custers < [ [ 1]

4 A+ {1...n}

5 is_star, B, B’ < PARTITIONNODES(X?)

6: if is_star then equivalence_custers < A

7 return equivalence_custers, learned_edges

8 else

9: loutside < GETCLOSESTEQUIVALENCECLUSTER(B'[1], B, 3°)
10: loutside,y < GETCLOSESTEQUIVALENCECLUSTER(B[1], B, X°)
11: LEARNEDGES (ioutsidess , B, learned_edges, equivalence_clusters, ¥.°)
12: LEARNEDGES (ioutside,y » B, learned_edges, equivalence_clusters, ¥.°)

13: return equivalence_clusters, learned_edges
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e If 7; and i, are leaves with different neighbors, a combination of the two leaves with their neighbors forms a non star.

e If 4; and i, are leaves with a common neighbor, and there exists another leaf with a different neighbor, 7; and i, and
the other leaf neighbor pair form a non-star shape. If there does not exist another leaf with a different neighbor, then
the tree has one equivalence cluster, and no non-star shape exists.

e If 4; and o are internal nodes, combining them with one node from the connected component of 7 \ 4; that contains
12 and another node from a different connected component of 7* \ ¢; gives a non star shape.

e If one of 47 and 5 is an internal node and the other one is a leaf node and the internal node is not a neighbor of the leaf
node, combining them with the neighbor of the leaf node and another leaf with a different neighbor gives a non-star
shape.

o If the internal node is the neighbor of the leaf node, combining them with another pair of leaf and neighbor gives a non
star structure.

When we obtain the initial set of 4 nodes which form a non star structure, we also obtain the pairing of the 4 nodes.
Performing the procedure of Algorithm 3 splits the tree into the smallest subtree that contains pair 1 and the remaining
subtree.

E.2.3. PROOF FOR ALGORITHM 4: GETCLOSESTEQUIVALENCECLUSTER

Let 4,0t be the node in B which has an edge with a node in A \ B and i.;,sc be a node from the equivalence cluster
containing #,oo¢-

Lemma 3. The set {ioutside, Leiose, 11, 92 } forms a non star shape if and only if i1 and iz lie in one connected component of
B \ iroot~

Corollary 2. When {ioutside; tcioses i1, 92 } forms a non star shape i1, i form one pair and ioytside, iclose form the second
pair.

Proof. The set {ioutside, iciose, 91, 12} forms a non star if 3 iy, such that exactly 2 of these nodes lie in the same connected
component of B \ iy.

Proof of If:

Setting i, = i,00¢ gives us the non star shape for this set. Moreover, i1, io form one pair and 7,y tsides tclose form the other
pair.

Proof of Only if:

We now prove that if 41 and i are not in the same subtree of B \ %00t then {ioutsides iciose, 91, t2 } does not form a non-star
shape, i.e. it is impossible to find a node i), such that exactly two nodes of {iyutsides tcioses 41,42} are in the same subtree of
T* \ ix. We look at the possible iy, we could choose:

o If iy & B, {iciose, 1,42} are in the same subtree of T \ iy.
® i} = iroot, then iyytside, 11 and io are in different subtrees of of 7% \ 4.

e If i is in one of the connected component of B\ 4,40, then at least one of the two nodes i1 or i5 is not in the same
component. Therefore, either {ioutside, Leiose, 11 }> {boutsides beloses 12 } OF {Goutside, Lelose, i1, 42 + are together in the
same subtree of T™* \ iy.

Hence there is no i, such that exactly 2 of {iyutsides tciose, 41,42 } lie in the same connected component of 7% \ 45,. Therefore
{toutside, icloses 11, 12 } forms a star shape. O

Any node icguivalent 1S in the equivalence cluster containing i,,,, if and only if any set of 4 nodes
{lequivalent, J; boutside, tciose} ¥ j € B forms a star shape. By Lemma 3, this set of 4 nodes forms a star shape if
and only if ¢cquivaient and j do not lie in the same connected component of B \ 4,o0t. ThUS Gequivaient 18 €ither 4,40 Or a
leaf node connected to %00t Hence éequivaient lies in the equivalence cluster containing %o
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E.2.4. PROOF OF ALGORITHM 5: SPLITROOTEDTREE

Given an external node i,y¢s:de, the equivalence cluster EC s containing i,.,,; and a node i.jose from EC,s¢, by Lemma
3, {ioutside, Lclose, i1, 92 } forms a non-star shape if and only if 4, and i are in the same connected component of 55 \ 7,0t -
This is used to find all the subtrees in B\ EC,jpsec-

E.2.5. PROOF OF ALGORITHM 6: LEARNEDGES

We show that LEARNEDGES (ioutside; B, learned_edges, equivalence_clusters, ¥°) correctly learns the equivalence clus-
ters in B and the edges between these equivalence clusters as well as the edge between the equivalence cluster containing
Toutside and the equivalence cluster in B closest to iyyt5ide- We do this by induction on the number of equivalence clusters.
Base case: B contains 1 equivalence cluster

Note that the function GETCLOSESTEQUIVALENCECLUSTER needs at least 3 nodes in 3. The base case can be split in 2
cases:

Case 1: If B has 2 nodes, it has to contain a leaf node and its neighbor, hence it forms one equivalence cluster which is
identified and an edge is added between the EC containing i,,¢s;4e and the EC in B.

Case 2: If B has more than 2 nodes, the equivalence cluster is correctly identified by GETCLOSESTEQUIVALENCECLUSTER.
An edge is added between the EC containing 7,¢si4. and the EC in B.

Inductive step: Let the function identify all the equivalence clusters and edges when B has less than n equivalence clusters.
Now suppose 3 has n equivalence clusters. By the correctness of GETCLOSESTEQUIVALENCECLUSTER, it correctly
identifies the equivalence cluster EC¢j,sc in B with the node that has an edge with EC (ipy¢side) and adds this edge. By the
correctness of SPLITROOTEDTREE, it correctly identifies all the subtrees in B\ EC(jse. All these subtrees have less than
n equivalence clusters. By the inductive assumption, the function correctly learns all the edges between EC';,s. and the
closest equivalence clusters in these subtrees as well as all the edges within these subtrees.

E.2.6. PROOF OF ALGORITHM 7: LEARNTREESTRUCTURE

By the correctness of PARTITIONNODES, we successfully partition the whole tree in two subtrees. By the correctness of
Algorithm GETCLOSESTEQUIVALENCECLUSTER, we find the equivalence clusters in these subtrees which connect to the
other subtree. By the correctness of LEARNEDGES, we accurately discover the equivalence clusters in these 2 subtrees, the
edges between these equivalence clusters as well as the edge between the equivalence clusters of the 2 subtrees. This gives
us all the equivalence clusters and the edges between them.

E.3. Running Time Analysis

ISSTARSHAPE is O(1) operation.

PARTITIONNODES is O(n?) as in the worst case when the tree is star structured, it needs to search through all the pairs of
nodes.

GETCLOSESTEQUIVALENCECLUSTER is O(n?) as it checks all the nodes once for being better than the current estimate of
connecting node. Checking this at each step involves scanning through all the nodes till a non star structure is discovered
which in the worst case can take O(n) time. It further finds all the other nodes from the equivalence cluster. To do that, it
scans through all the nodes and checks if that node can form a non star. Checking if it can form a non star is O(n). Hence
the complexity is O(n?).

SPLITROOTEDTREE is O(n?) as the outer for loop scans through all the nodes in the input subtree and the inner loop scans
through one node from all the output subtrees. Both of these are O(n) is worst case. Hence the complexity is O(n?).

LEARNEDGES is O(n?) as it calls GETCLOSESTEQUIVALENCECLUSTER and SPLITROOTEDTREE at most n — 1 times.
LEARNTREESTRUCTURE is O(n?) as it calls LEARNEDGES twice.



