
Robust Estimation of Tree Structured Gaussian Graphical Models

A. Proof of Theorem 1
Consider any tree T q ∈ TT∗ and its corresponding set Sq. We find the covariance matrix Σq with the same off diagonal
elements as Σo whose independence structure is given by T q . Upon obtaining Σq , getting the Dq matrix is immediate. To
begin with, let us consider the case when Sq has just one node, i.e, Sq consists of one of the leaves of T ∗.

Proposition 1. Suppose the covariance matrix Σ∗ has conditional independence structure T ∗ with leaf node a and its
neighbor b. Consider a covariance matrix Σq defined as follows:

Σqij =


Σ∗ij − 1

Ω∗aa
if i = j = a

Σ∗ij + ci1 0 < ci1 < D∗ij if i = j = b
Σ∗ij otherwise,

The conditional independence structure T q of Σq is given by the tree obtained by exchanging positions of node a and b in
T ∗.

Proof. Relabeling if necessary, assume that node n is a leaf node and node n− 1 is its neighbor in T ∗. Define B1 and B2

as follows:

B1
ij =

{
ci1 0 < ci1 < D∗n−1n−1 if i = j = n− 1
0 otherwise ,

B2
ij =

{
− 1

Ω∗nn
if i = j = n

0 otherwise
.

We also define an intermediate matrix ΣI = Σ∗ +B2. Therefore Σq = ΣI +B1. The proof of this proposition can be split
in the following steps:

(i) We prove that for ΣI column n is a multiple of column n− 1 making it a low rank matrix.

(ii) We add B1 to ΣI to get Σq. In Σq column n is a multiple of column n− 1 at all elements other than n− 1st. This
makes node n− 1 a leaf node connected to node n as we see in Lemma 1.

(iii) We prove that the independence structure of the rest of the nodes does not change. This is done by proving 2 claims:

(a) Conditional independence relations do not change when if conditioning is not on node n or node n− 1.
(b) Any pair of nodes which were independent conditioned on n− 1 in Σ∗ are independent conditioned on n in Σq .

A.1. Proof of Part(i) - Column n of ΣI is a multiple of column n− 1:

The precision matrix Ω∗ is of the form:

Ω∗ =


Ω∗11 . . . Ω∗1n−1 0

...
. . .

...
...

Ω∗1n−1 . . . Ω∗n−1n−1 Ω∗n−1n

0 . . . Ω∗n−1n Ω∗nn

 . (9)

For notational convenience, in what follows, we label the blocks in (9) as Ω∗x,Ω
∗
y and Ω∗z , so that:

Ω∗ =

[
Ω∗x Ω∗y

(Ω∗y)T Ω∗z

]
.

As depicted in (9), block Ω∗y is a n − 1 length vector with a non zero only at position n − 1. The covariance matrix
Σ∗ = (Ω∗)−1 is as follows:

Σ∗ =


Σ∗11 . . . Σ∗1n−1 Σ∗1n

...
. . .

...
...

Σ∗1n−1 . . . Σ∗n−1n−1 Σ∗n−1n

Σ∗1n . . . Σ∗n−1n Σ∗nn

 .

Robust Estimation of Tree Structured Gaussian Graphical Models

As with Ω∗, we write it in blocks as:

Σ∗ =

[
Σ∗x Σ∗y

(Σ∗y)T Σ∗z

]
. (10)

By the matrix inversion lemma, we have:

Σ∗x = (Ω∗x)−1 + (Ω∗x)−1Ω∗y[Ω∗z − (Ω∗y)T (Ω∗x)−1(Ω∗y)]−1(Ω∗y)T (Ω∗x)−1.

To ease notation, we define c2 , [Ω∗z − (Ω∗y)T (Ω∗x)−1(Ω∗y)]−1. The (n− 1)st column of Σ∗x is given as follows:

(Σ∗x):,n−1 = [1 + c2(Ω∗x)−1
n−1,n−1(Ω∗n−1n)2](Ω∗x)−1

:,n−1. (11)

Note that (Σ∗x)n−1,n−1 = Σ∗n−1n−1 and (Ω∗x)n−1,n−1 = Ω∗n−1n−1.
By the matrix inversion lemma, we also have:

Σ∗y = −(Ω∗x)−1Ω∗y[Ω∗z − (Ω∗y)T (Ω∗x)−1(Ω∗y)]−1.

Substituting c2 for [Ω∗z − (Ω∗y)T (Ω∗x)−1(Ω∗y)]−1 and the value of Ω∗y from equation (9) we get:

Σ∗y = −c2Ω∗n−1n(Ω∗x)−1
:,n−1. (12)

By Equations (11) and (12) we have:

Σ∗y =
−c2Ω∗n−1n

[1 + c2(Ω∗x)−1
n−1,n−1(Ω∗n−1n)2]

(Σ∗x):,n−1. (13)

Hence, the nth column of Σ∗ is a multiple of the (n− 1)st column except for the nth element. Also, by the matrix inversion
lemma Σ∗nn = Σ∗z = c2.
Now we look at the intermediate matrix ΣI which is given as follows:

ΣI =


Σ∗11 . . . Σ∗1n−1 Σ∗1n

...
...

...
...

Σ∗1n−1 . . . Σ∗n−1n−1 Σ∗n−1n

Σ∗1n . . . Σ∗n−1n Σ∗nn − 1
Ω∗nn

 . (14)

Now we prove that ΣI is a rank deficient matrix and its nth column is a multiple of its (n− 1)st column. Specifically, letting
c3 ,

−c2Ω∗n−1n

[1+c2(Ω∗x)−1
n−1,n−1(Ω∗n−1n)2]

, we show that ΣI:,n = c3ΣI:,n−1. This is true for the first (n− 1) elements by Equation (13).

Basically we need to prove the following:

Σ∗nn −
1

Ω∗nn
= c3Σ∗n−1n. (15)

Expanding the LHS in Equation (15), we get

Σ∗nn −
1

Ω∗nn
=

1

Ω∗nn − (Ω∗n−1n)2(Ω∗x)−1
n−1n−1

− 1

Ω∗nn

=
c2

Ω∗nn
(Ω∗n−1n)2(Ω∗x)−1

n−1n−1.

(16)

For the RHS of Equation (15), we substitute Σ∗n−1n from Equation (12) and the value of c3 to get the following:

c3Σ∗n−1n =
c22(Ω∗n−1n)2

[1 + c2(Ω∗x)−1
n−1,n−1(Ω∗n−1n)2]

(Ω∗x)−1
n−1n−1

=
c2(Ω∗n−1n)2

[c−1
2 + (Ω∗x)−1

n−1,n−1(Ω∗n−1n)2]
(Ω∗x)−1

n−1n−1

=
c2

Ω∗nn
(Ω∗n−1n)2(Ω∗x)−1

n−1n−1.

(17)

From Equations (16) and (17) we conclude that that (ΣI):,n = c3(ΣI):,n−1. Hence, ΣI is a rank deficient matrix. Also
note that the first n− 1 principal sub matrices of ΣI have positive determinant by the positive definiteness of Σ∗. Hence,
rank(ΣI) = n− 1.

Robust Estimation of Tree Structured Gaussian Graphical Models

A.2. Proof of part (ii) - Node n− 1 is a leaf node connected to node n in the independence structure of Σq:

Next we add B1 to ΣI to get Σq:

Σq =


Σ∗11 . . . Σ∗1n−1 Σ∗1n

...
...

...
...

Σ∗1n−1 . . . Σ∗n−1n−1 + cn−1
1 Σ∗n−1n

Σ∗1n . . . Σ∗n−1n Σ∗nn − 1
Ω∗nn

 ,
for any 0 < cn−1

1 < D∗n−1n−1. In Σq column n− 1 is not multiple of column n, hence it is a symmetric positive definite
matrix making it a valid covariance matrix. Also, column n− 1 is a multiple at all indices except at index n. In order to
prove that node n− 1 is a leaf node connected to node n, we use Lemma 1.

Lemma 1. If in any covariance matrix Σ, column n− 1 is a multiple α 6= 0 of column n except at position n− 1, then in
the independence structure of Σ, node n− 1 is a leaf node connected to node n.

Proof of Lemma 1: We look at the edges of node n− 1 given by the (n− 1)st column of Ω = Σ−1.

|Ωn−1i| =
|det(Σ−(n−1),−i)|

det(Σ)

For i /∈ n, n− 1, Ωn−1i = 0 as the submatrix Σ−(n−1),−i is rank deficient by assumption. Note that Ωn−1n 6= 0, because
by contradiction if that was true, Ω would be a block diagonal with node n − 1 as one block. This would imply that Σ
would be a block diagonal with node n− 1 as one block, which cannot be the case as Σn−1n = αΣnn 6= 0. Hence node
n− 1 is a leaf node connected to node n.
By Lemma 1, node n− 1 is a leaf node connected to node n in T q .

A.3. Proof of part (iii) - Structure of the remaining tree does not change:

In order to prove this part, we need the following lemma:

Lemma 2. For any random vector Y = [Y1, Y2, . . . , Yn], Y ∼ N (0,Σ), Yi is independent of Yj conditioned on Yk if and
only if

Σij =
ΣikΣjk

Σkk
.

Proof of Lemma 2: The probability distribution of Y−k conditioned on Yk is given as follows:

Y−k | Yk ∼ N (Σ−k,kΣ−1
kk Yk,Σ−k,−k −

Σk,−kΣ−k,k
Σkk

).

For Yi to be independent of Yj conditioned on Yk, the i, j component of the conditional covariance matrix must be zero,
giving

Σij =
ΣikΣjk

Σkk
.

Proof of part (iiia) - Conditional independence relations, when conditioning is not on n or n− 1, don’t change:
This is a direct consequence of Lemma 2 as Σqkk = Σ∗kk for k 6= n, n− 1.

Proof of part (iiib) - Any pair of nodes which were independent conditioned on n− 1 in Σ∗ are independent conditioned on
n in Σq:

Suppose node i and node j were independent conditioned on node n− 1 in Σ∗ and i, j 6= n. Then by Lemma 2 we have:

Σ∗ij =
Σ∗n−1iΣ

∗
n−1j

Σ∗n−1n−1

.

Robust Estimation of Tree Structured Gaussian Graphical Models

From Equation(10), note that Σ∗n−1i = (Σ∗x)n−1i and Σ∗n−1j = (Σ∗x)n−1j , also Σ∗ni = (Σ∗y)i and Σ∗nj = (Σ∗y)j . So, by
Equation (13), we have:

Σ∗ij =
Σ∗niΣ

∗
nj

c3Σ∗n−1n

.

Since the off diagonal terms of Σ∗ and Σq are equal, we have:

Σqij =
ΣqniΣ

q
nj

c3Σqn−1n

.

By Equation (15) we can substitute the denominator to obtain:

Σqij =
ΣqniΣ

q
nj

Σqnn
.

Therefore, by Lemma 2, in the graphical structure for Σq , i and j are independent conditioned on n.
Proving parts (i), (ii) and (iii) proves Proposition 1, that the conditional independence structure of Σq is given by the tree T q .
For a leaf node a and its neighbor b in T ∗, the decomposition Σo = Σq +Dq which results in the exchange to nodes a and b
is as follows:

Σqij =


Σ∗ij − 1

Ω∗aa
if i = j = a

Σ∗ij + ci1 0 < ci1 < D∗ij if i = j = b
Σ∗ij otherwise,

Dq
ii =


D∗ii + 1

Ω∗aa
if i = a

D∗ii − ci1 if i = b
D∗ii otherwise,

Thus far, we have only considered the case when Sq has just one node. This analysis directly extends to the case when Sq
has more than one nodes. The Σq and Dq matrices in that case are as follows:

Σqij =


Σ∗ij − 1

Ω∗ij
if i = j ∈ Sq

Σ∗ij + ci1 if i = j ∈ Neighbor(Sq)
Σ∗ij otherwise,

Dq
ii =


D∗ii + 1

Ω∗ii
if i ∈ Sq

D∗ii − ci1 if i ∈ Neighbor(Sq)
D∗ii otherwise,

where Neighbor(Sq) is the set of neighbor nodes of all the nodes in Sq. Also, ci1 is chosen such that 0 < ci1 < D∗ii. This
completes the proof of Theorem 1.

B. Proof of Theorem 2
We prove this theorem by proving that the off diagonal terms of covariance matrix are enough to determine the structure of
the underlying tree up to the equivalence set TT∗ . The main building block of this proof and of the algorithm presented in
Section 5 is to categorize any set of 4 nodes as a star shape or a non-star shape. Moreover, if it is a non star star shape we
further divide the set of 4 nodes in half forming 2 pairs of nodes.

Definition 4. • Four nodes {i1, i2, i3, i4} form a non-star shape if there exists a node ik in the tree T ∗2 such that exactly
two nodes among the four lie in the same connected component of T ∗ \ ik.

• If {i1, i2, i3, i4} does not form a non-star shape, we say they form a star shape.

Robust Estimation of Tree Structured Gaussian Graphical Models

Figure 6. Examples of classification of 4 nodes as star shape or non-star shape.

Figure 7. Conditional independence for non-star shape

It is easy to see that in the event that a set of 4 nodes forms a non star, there exists a grouping such that the 2 nodes in
the same connected component form the first pair and the other 2 nodes form the second pair. Examples of star shape and
non-star shape are presented in Figure 6. This categorization is done using only the off-diagonal elements of the covariance
matrix, hence this property remains invariant to diagonal perturbations, that is, every set of 4 nodes falls in the same category
in any tree obtained from the decomposition of Σo = Σ′ +D′ as Σ′ij = Σ∗ij ∀i 6= j.
The proof of this theorem is split in 3 parts:

(i) Prove that it is possible to categorize any set of 4 nodes as star shape or non-star shape using only off diagonal elements
of the covariance matrix.

(ii) Prove that this categorization of 4 nodes completely defines all the possible partitions of the original tree in 2 connected
components such that the connected components have at least 2 node.

(iii) Prove that these partitions of a tree into connected components completely define the tree structure up to the equivalence
set TT∗ .

B.1. Proof of Part (i) - Categorization of 4 nodes as star/non-star shape:

We first state the conditions using only off-diagonal elements for a set of 4 nodes to be categorized as non-star shape.
Assume that a set of 4 nodes {i1, i2, i3, i4} satisfy the definition of a non-star shape such that nodes i1 and i2 form one pair
and i3 and i4 form the second pair. This is true if and only if:

Σ∗i1i3
Σ∗i1i4

=
Σ∗i2i3
Σ∗i2i4

,

Σ∗i2i1
Σ∗i3i1

6=
Σ∗i2i4
Σ∗i3i4

and

Σ∗i2i1
Σ∗i4i1

6=
Σ∗i2i3
Σ∗i3i4

.

(18)

The first equality and the second inequality imply the last inequality. When nodes {i1, i2, i3, i4} form a non star shape, they
either satisfy a conditional independence structure shown in Figure 7(a) or 7(b) for some nodes ik and ik′ .
For Figure 7(a), the following conditional independence relations hold:

i1 ⊥ i3, i4|i2, (19)

2Note that nothing prevents ik to be one of the four nodes.

Robust Estimation of Tree Structured Gaussian Graphical Models

Figure 8. Conditional independence for star shape.

i3 6⊥ i4|i2. (20)

Using Lemma 2, we get the following conditions for the conditional independence relation in Equations (19) and (20):

Σ∗i2i2 =
Σ∗i1i2Σ∗i3i2

Σ∗i1i3
=

Σ∗i1i2Σ∗i4i2
Σ∗i1i4

6=
Σ∗i3i2Σ∗i4i2

Σ∗i3i4
. (21)

Using Equation (21) we get the relations in Equation (18).
For Figure 7(b), the following conditional independence relations hold:

i1 ⊥ i3, i4|ik′ , (22)

i2 ⊥ i3, i4|ik′ , (23)

i3 6⊥ i4|ik′ . (24)

Using Lemma 2, we get the following conditions for the conditional independence relation in Equations (22), (23) and (24):

Σ∗ik′ ik′ =
Σ∗i1ik′Σ

∗
i3ik′

Σ∗i1i3
=

Σ∗i1ik′Σ
∗
i4ik′

Σ∗i1i4
=

Σ∗i2ik′Σ
∗
i3ik′

Σ∗i2i3
=

Σ∗i2ik′Σ
∗
i4ik′

Σ∗i2i4
6=

Σ∗i3ik′Σ
∗
i4ik′

Σ∗i3i4
. (25)

Using Equation (25), we get the conditions in Equation (18). Note that for both the cases in Figure 7, the Equation (18)
remains the same if i1 and i2 exchange positions.
Next, we state the conditions using only off-diagonal elements for a set of 4 nodes to be categorized as a star shape. Assume
that a set of 4 nodes {i1, i2, i3, i4} satisfy the definition of a star shape. This is true if and only if:

Σ∗i1i3
Σ∗i1i4

=
Σ∗i2i3
Σ∗i2i4

,

Σ∗i2i1
Σ∗i3i1

=
Σ∗i2i4
Σ∗i3i4

and

Σ∗i2i1
Σ∗i4i1

=
Σ∗i2i3
Σ∗i3i4

.

(26)

First 2 equalities imply the third equality. Any set of 4 nodes {i1, i2, i3, i4} can form a star structure only if their conditional
independence relation is given by Figure 8(a) or 8(b) for some node ik. For Figure 8(a), the conditional independence
relations are given as:

i2 ⊥ i3, i4|i1, (27)

i3 ⊥ i4|i1. (28)

Using Lemma 2, we get the following for these conditional independence relations in Equations (27) and (28):

Σ∗i1i1 =
Σ∗i1i2Σ∗i1i3

Σ∗i2i3
=

Σ∗i1i2Σ∗i1i4
Σ∗i2i4

=
Σ∗i1i4Σ∗i1i3

Σ∗i4i3
. (29)

Robust Estimation of Tree Structured Gaussian Graphical Models

Equation (29) implies Equation (26).
For Figure 8(b), the conditional independence relations are given as:

i1 ⊥ i2, i3, i4|ik, (30)

i2 ⊥ i3, i4|ik, (31)

i3 ⊥ i4|ik. (32)

Using Lemma 2, we get the following for the conditional independence relations in Equations (30), (31) and (32):

Σ∗ikik =
Σ∗i1ikΣ∗i2ik

Σ∗i1i2
=

Σ∗i1ikΣ∗i3ik
Σ∗i1i3

=
Σ∗i1ikΣ∗i4ik

Σ∗i1i4
=

Σ∗i2ikΣ∗i3ik
Σ∗i2i3

=
Σ∗i2ikΣ∗i4ik

Σ∗i2i4
=

Σ∗i3ikΣ∗i4ik
Σ∗i3i4

. (33)

Equation (33) implies Equation (26).
Hence using only the off diagonal terms, checking the conditions in Equations (18) and (26), any set of 4 nodes can be
classified as a star shape or non-star shape.

B.2. Proof of Part (ii) - Partitioning of the tree in 2 connected components:

We prove this by presenting an explicit algorithm to obtain a specific partition of the original tree T ∗, which would also be a
valid partition of T ′, using the categorization of any set of 4 nodes as a star shape or non-star shape. This procedure can be
performed with different initializations to obtain all the possible partitions.
Let A denote the set of all the nodes in T ∗.

Definition 5. A subtree B of a tree T ∗ is a set of nodes such that B and A\B form a connected component in T ∗. The pair
of subtrees B and A \ B are called complementary subtrees.

For any set of 4 nodes {i1, i2, i3, i4} that form a non-star shape such that nodes i1 and i2 form a pair, we obtain the smallest
subtree containing i1 and i2 by Algorithm 1. Basically, we fix i1, i2 and i3 and scan through all the remaining nodes to form
a set of 4 nodes and check if it forms a star or non-star shape. If this set of 4 nodes forms a star shape or forms a non-star
shape such that the scanned node pairs with i1 or i2, we put it in group 1, otherwise, we put it in group 2. Once we are done
scanning through all the nodes, group 1 gives the smallest subtree and group 2 gives its complementary subtree.

Algorithm 1 Partition all the nodes in complementary subtrees.
Input - Observed Covariance Matrix (Σo), Set of 4 nodes({i1, i2, i3, i4})
Output - The smallest subtree containing i1 and i2(group1) and the complementary subtree (group2).

1: procedure SMALLESTSUBTREE(Σo, {i1, i2, i3, i4})
2: n rows← size(Σo, 1)
3: index← {i1, i2, i3, 0}
4: for j = 1 to n rows do
5: if j in group1 or group2 then
6: continue
7: index[4] = j
8: status, pair1, pair2← ISSTARSHAPE(index,Σo)
9: if status then . If {i1, i2, i3, j} forms a star shape, add j to group1.

10: group1.append(j)
11: else
12: if j pairs with index[3] then . If j pairs with i3, add j to group2.
13: group2.append(j)
14: else
15: group1.append(j) . Otherwise add j to group1.
16: return group1, group2

Robust Estimation of Tree Structured Gaussian Graphical Models

Figure 9. Suppose i1 = 7, i2 = 9 and i3 = 5. If j is in group 2, {i1, i2, i3, j} is categorized as a non star and j pairs with i3. If j is in
group 1, {i1, i2, i3, j} is either categorized as a star or it is categorized as a non star and j pairs with i1 or i2.

Figure 10. (a) Equivalence clusters for the given tree. (b) The cluster tree with equivalence clusters as vertices.

PROOF OF CORRECTNESS OF ALGORITHM 1

Consider the tree T ∗. We denote the smallest subtree containing nodes i1 and i2 by B. Let ik′ denote the node in B that has
an edge with the connected component formed by A \ B. Let ik be the node in A \ B that has an edge with a node in B. In
this case ik is a node such that nodes i1 and i2 lie in the same connected component of T ∗ \ ik. By the definition of non-star
shape, i3 cannot be in B. Also, a node j can be in A \ B if and only if nodes {i1, i2, i3, j} are non star and j pairs with i3 as
nodes i1 and i2 still lie in the same connected component of T ∗ \ ik. This is illustrated in Figure 9.
Using different i1 and i2, we get all the possible partitions of the tree T ∗.

B.3. Proof of Part (iii) - Recovering the tree up to unidentifiability using tree partitions

Before going to the proof of this part, we define the terms equivalence cluster, cluster tree, cluster subtrees, complementary
cluster subtrees and the root of a cluster subtree as follows:

Definition 6. A set containing an internal node and all the leaf nodes connected to it forms an equivalence cluster. We say
that there is an edge between two equivalence clusters if there is an edge between any node in one equivalence cluster and
any node in the other equivalence cluster. An equivalence cluster which has an edge with at most one more equivalence
cluster is called a leaf equivalence cluster.

Definition 7. A tree with equivalence clusters as vertices and edges between equivalence clusters as the edges is called a
cluster tree.

Example of equivalence clusters and a cluster tree are presented in Figure 10. The cluster tree completely defines the set
TT∗ .
Definition 8. A cluster subtree is a set where the equivalence clusters are plugged in for the corresponding nodes in a
subtree. Complementary cluster subtrees are the subtrees obtained when this is done for a pair of complementary subtrees.

Definition 9. The root of a cluster subtree is the equivalence cluster that has an edge with the complementary cluster
subtree.

Robust Estimation of Tree Structured Gaussian Graphical Models

To prove this theorem we show that the partitions obtained in part (ii) completely define the cluster tree. We call the subtrees
obtained from part (ii) input subtrees. Note that each input subtree has at least 2 nodes. We prove this in 2 steps:

(i) The input subtrees define the equivalence clusters.

(ii) The input subtrees define the edges between the equivalence clusters.

ALGORITHM TO FIND EQUIVALENCE CLUSTERS

The algorithm to find the equivalence clusters takes all the input subtrees and performs the following steps:

1. Initialize the set of discovered equivalence clusters as an empty set.

2. Identify one input subtree which does not have a subset of nodes forming another input subtree. This input subtree
forms an equivalence cluster. Append it to the list of equivalence clusters.

3. Construct trimmed subtrees by removing the equivalence cluster from the input subtrees.

4. Repeat steps 2 and 3 with trimmed subtrees as input subtrees.

PROOF OF CORRECTNESS:

We prove the correctness of this algorithm by induction on the number of equivalence clusters.
Base Case (k = 1):
When there is 1 equivalence cluster, there is 1 input subtree and it is the equivalence cluster.
Inductive Step:
Assume the algorithm works for a tree with k or less equivalence clusters. We prove that the algorithm works for a tree with
k + 1 equivalence clusters.
Relabeling if necessary, assume that k + 1 is a leaf equivalence cluster. Hence it forms a subtree and no subset of the
equivalence cluster can form a subset of another input subtree (as the smallest input subtree which contains at least 2 of
these nodes is the whole equivalence cluster). Thus in Step 2, k + 1 is recognized as an equivalence cluster.
By trimming in Step 3, we remove the k + 1st equivalence cluster from all the subtrees. Hence, we are left with a tree
with k equivalence clusters. By inductive assumption, the algorithm can find these k equivalence clusters. Therefore, the
algorithm finds all the k + 1 equivalence clusters.

ALGORITHM TO FIND THE EDGES BETWEEN EQUIVALENCE CLUSTERS

For this part we identify the root of every cluster subtree as follows:
An equivalence cluster is the root of a cluster subtree if and only if, upon its removal, the remaining elements can be written
as a union of smaller cluster subtrees which are a subset of the original cluster subtree.
To prove this claim, assume that we remove an equivalence cluster other than the root. In that case the root must have an
edge with the complementary cluster subtree and hence it cannot be obtained by a union of smaller cluster subtrees which
are a subset of the original cluster subtrees.
The algorithm to find the edges between equivalence clusters performs the following steps:

1. Initialize the set of edges as a null set and the set of unexplored complementary cluster subtrees as the set of all the
complementary cluster subtrees.

2. Select a pair of complementary cluster subtrees from the set of unexplored complementary cluster subtrees.

3. Find the root nodes of both the cluster subtrees and append an edge between the two roots in the set of edges.

4. Trim the currently selected cluster subtrees from all the cluster subtrees in the unexplored set for which the currently
explored cluster subtrees are a subset(this also deletes the currently selected cluster subtrees from the unexplored set).
Repeat Steps 2, 3 and 4 with the trimmed cluster subtrees till the unexplored set is empty.

PROOF OF CORRECTNESS:

We prove the correctness of this algorithm by induction on the number of equivalence clusters.
Base Case (k = 2): In this case there are 2 cluster subtrees which are complementary cluster subtrees. Both of them have 1

Robust Estimation of Tree Structured Gaussian Graphical Models

equivalence cluster which is also the root. Hence the algorithm finds the edge between the two cluster subtrees.
Inductive Step: Suppose the algorithm works for a tree with k or less equivalence clusters. We prove that the algorithm
works for a tree with k + 1 equivalence clusters.
Relabeling if necessary, assume that k + 1 is a leaf equivalence cluster. Hence there exists a pair of complementary cluster
subtrees where one cluster subtree contains the k+ 1 equivalence cluster and the other cluster contains the first k equivalence
cluster. Hence the edge of the (k + 1)st equivalence cluster is added to the list of edges. Once this edge is recognized, the
(k + 1)st equivalence cluster is trimmed and the algorithm correctly finds the edges of the remaining cluster tree by the
inductive assumption.

Hence the input subtrees completely define the equivalence clusters and the edges between them. This completes the proof
of theorem 2.

C. Proof of Theorem 4
To prove this claim, we consider the decomposition of Σo = Σ′+D′ such that the conditional independence structure T ′ for
Σ′ has leaf node b and its neighbor node a. We show that Ω′bb < |Ω′ab|, that is, the leaf node b in T ′ violates the constraint.
Hence, any decomposition of Σo which results in an exchange of a leaf node with its neighbor is infeasible. Therefore, the
problem becomes identifiable.

Relabeling if necessary, assume that node n is a leaf node connected to node n− 1 in T ∗. Recall that the decomposition of
Σo = Σ′ +D′ from Proposition 1 to obtain a tree structure T ′ in which node n− 1 is a leaf node connected to node n is
given by:

Σ′ij =


Σ∗ij − 1

Ω∗ij
if i = j = n

Σ∗ij + c 0 < c < D∗n−1n−1 if i = j = n− 1
Σ∗ij otherwise.

We derive the expression of Ω′ = (Σ′)−1. We denote B1 and B2 as follows:

B1 =

{
c 0 < c < D∗n−1n−1 if i = j = n− 1
0 otherwise ,

B2 =

{
− 1

Ω∗nn
if i = j = n

0 otherwise
.

This gives us Σ′ = Σ∗ +B1 +B2. Hence Σ′ is Σ∗ plus a rank 2 matrix. To calculate its inverse, we first evaluate:

(Σ∗ +B1)−1 = Ω∗ − 1

1 + tr(Ω∗B1)
Ω∗B1Ω∗

= Ω∗ −
cΩ∗:,n−1Ω∗n−1,:

1 + cΩ∗n−1n−1

.

(34)

We next evaluate Ω′ as follows:

Ω′ = (Σ∗ +B1 +B2)−1 = (Σ∗ +B1)−1 − 1

1 + tr((Σ∗ +B1)−1B2)
(Σ∗ +B1)−1B2(Σ∗ +B1)−1.

This expression can be simplified by substituting the value of (Σ∗ +B1)−1 from Equation (34) to arrive at:

Ω′ = Ω∗ +
(1 + cΩ∗n−1n−1)

c(Ω∗n−1n)2
Ω∗:,nΩ∗n,: −

1

Ω∗n−1n

(Ω∗:,n−1Ω∗n,: + Ω∗:,nΩ∗n−1,:). (35)

Robust Estimation of Tree Structured Gaussian Graphical Models

Now we look at the terms in positions (n− 1, n− 1) and (n− 1, n) of Ω′.

Ω′n−1n−1 = Ω∗n−1n−1 +
(1 + cΩ∗n−1n−1)

c
− 2Ω∗n−1n−1

=
1

c
.

Ω′n−1n = Ω∗n−1n +
(1 + cΩ∗n−1n−1)

cΩ∗n−1n

Ω∗nn − Ω∗n−1n −
Ω∗nnΩ∗n−1n−1

Ω∗n−1n

=
Ω∗nn

cΩ∗n−1n

.

By the original assumption we have Ω∗nn > |Ω∗n−1n|, hence Ω′n−1n−1 < |Ω′n−1n|. Therefore the leaf node n − 1 in
T ′ violates the additional constraint and hence this decomposition of Σo is infeasible. Extending the argument, any
decomposition of Σo which results in a tree T ′ in which leaf node of T ∗ exchanges position with its neighbor is infeasible.
Hence T ∗ and T ′ have the same structure.

D. Proof of Theorem 6
To prove this theorem, we consider Σ′ such that the conditional independence structure has b as the leaf node and a as its
neighbor. Rest of the struture is the same as T ∗. We find a lower bound on the minimum eigenvalue of Σ′, λ′min. If this
lower bound is greater than λmin, this implies that there exists a feasible decomposition which has conditional independence
structure different from T ∗.

In order to lower bound the minimum eigenvalue of Σ′, we upper bound the maximum eigenvalue of Ω′. We do this using
a corollary of Gerschgorin’s Theorem. We use the result that the maximum eigenvalue of Ω′ is upper bounded by the
maximum of the sum of absolute values of all the row entries:

1

λ′min
≤ max

i

(n∑
j=1

|Ω′ij |
)
. (36)

From the expression of Ω′ stated in Equation (35) (by relabeling the nodes n and n− 1 as nodes a and b respectively), we
have:

n∑
j=1

|Ω′ij | =


1
c

(
(Ω∗aa)2

(Ω∗ab)2 +
Ω∗aa

Ω∗ab

)
+

Ω∗aa(Ω∗aaΩ∗bb−(Ω∗ab)2)
(Ω∗ab)2 +

∑n
j=1
j 6=a,b

Ω∗aa|Ω
∗
qj |

|Ω∗ab|
if i = a,

1
c

(
1 +

Ω∗aa

Ω∗ab

)
if i = b.(∑n

j=1
j 6=a,b

|Ω∗ij |+
Ω∗aa|Ω

∗
qi|

|Ω∗ab|

)
otherwise.

Using the definitions in Equation 6, we can rewrite the upper bound in Equation (36) as follows:

1

λ′min
≤ max (

eab

c
,
fab

c
+ gab, hab).

Rewriting this as:

1

λ′min
≤


eab

c if c ≤ eab−fab

gab

fab

c + gab if e
ab−fab

gab < c ≤ fab

hab−gab

hab otherwise.

First, let us concentrate on the first case. For unidentifiability, we need:

c ≥ eabλmin.

To remain in the first case, we need c ≤ eab−fab

gab . Therefore, if λmin ≤ (eab−fab)
eabgab and D∗bb ≥ eabλmin, there would exist a

feasible value of c which allows node a and b to switch positions.

Robust Estimation of Tree Structured Gaussian Graphical Models

Next we look at the second case. If λmin < 1
gab , for unidentifiability, we need:

c ≥ fab

1/λmin − gab
.

To remain in the second case, we need c ≤ fab

hab−gab . Therefore, if λmin < 1
hab and D∗bb ≥

fab

1/λmin−gab , there would exist a
feasible value of c which allows node a and b to switch positions. If λmin > 1

gab , nothing can be said about unidentifiability.
To enter the third case, we need λmin > 1

hab which would again imply that nothing could be said about identifiability.

E. Algorithms
E.1. Pseudo-code

We give the pseudo-code for all the functions introduced in Section 5. Note that we have adopted the convention that the
indexing starts from 1.

Algorithm 2 Determine whether any set of 4 nodes is star shape or non-star shape.

1: procedure ISSTARSHAPE(index = {i1, i2, i3, i4},Σo)
2: sub sigma← Σo[index; index] . submatrix of Σo with only the input nodes.
3: count pairs← 0 . Count the number of column pairs which satisfy ratio condition.
4: for column1 = 1 to 3 do
5: for column2 = column1 + 1 to 4 do
6: is ratio initialized← False
7: for z = 1 to 4 do
8: if z == column1 or z == column2 then . Skip diagonal elements.
9: continue

10: if NOT(is ratio initialized) then
11: ratio← sub sigma[z, column2]/sub sigma[z, column1] . Calculate ratio of elements.
12: is ratio initialized← True
13: else
14: if ratio == sub sigma[z, column2]/sub sigma[z, column1] then
15: count pairs← count pairs+ 1 . Counts pairs with equal ratio.
16: if count pairs == 1 then
17: pair1 = [index[column1], index[column2]]

18: if count pairs == 2 then
19: pair2← index \ pair1 . Nodes not in pair1 form pair2.
20: return False, pair1, pair2 . non-star shape.
21: else
22: return True, [], [] . Star Shape.

E.2. Proof of correctness

E.2.1. PROOF FOR ALGORITHM 2: ISSTARSHAPE

The correctness of algorithm 2 is already proven in section B.1.

E.2.2. PROOF FOR ALGORITHM 3: PARTITIONNODES

The procedure in Algorithm 3 is initialized by finding a combination of four nodes which form a non-star shape. To achieve
that, we fix two nodes and scan through all the possible pairs of remaining nodes. In order to prove that this is enough we
look at the different configurations of two fixed nodes and argue the existence of two other nodes which can make the 4
node set a non-star shape (if such a shape exists in the tree).

Let the fixed nodes be i1 and i2. We now study all the different cases which can arise:

Robust Estimation of Tree Structured Gaussian Graphical Models

Algorithm 3 Partition all the nodes in 2 subtrees.

1: procedure PARTITIONNODES(Σo)
2: n rows← size(Σo, 1)
3: index← [1,2,0,0]
4: is star ← True
5: for i3 = 3 to n rows− 1 do
6: for i4 = i3 + 1 to n rows do
7: index[3]← i3
8: index[4]← i4
9: is star, pair1, pair2← ISSTARSHAPE(index,Σo)

10: if NOT(is star) then . We found a non-star shape.
11: break from both loops
12: if is star then . We did not find any non-star shape.
13: return is star,[], []
14: else . We found one non star. We use it to partition the nodes.
15: group1, group2← SMALLESTSUBTREE(Σo, index)

16: return is star, group1, group2

Algorithm 4 Get a node in subtree B from the equivalence cluster closest to the external node ioutside.

1: procedure GETCLOSESTEQUIVALENCECLUSTER(B, ioutside,Σo)
2: n node← len(B)
3: index← [ioutside, 0, 0, 0]
4: iclose ← B[1] . Initial estimate of a node from closest EC.
5: for jcandidate = 2 to n node do . Sweep through jcandidate to find a node from the closest EC.
6: index[2]← iclose
7: icandidate ← B[jcandidate]
8: index[3]← icandidate
9: for j = 1 to n node do . Sweep through j until we find a non-star shape.

10: if B[j] in index then
11: continue
12: index[4] = B[j]
13: is star, pair1, pair2← ISSTARSHAPE(index,Σo)
14: if NOT(is star) then
15: break
16: if icandidate pairs with ioutside then . iclose ruled out. icandidate is the new estimate
17: iclose ← icandidate
18: equivalence cluster ← [iclose] . iclose is in the EC closest to ioutside.
19: for iequivalent ∈ B \ iclose do . Find other nodes of the closest EC.
20: all star shapes← True
21: for j ∈ B \ {iclose, iequivalent} do
22: is star,∼,∼← ISSTARSHAPE({ioutside, iclose, iequivalent, j},Σo)
23: if NOT(is star) then
24: all star shapes← False
25: break
26: if all star shapes then . If iequivalent always form a star shape, it is in the EC of iclose.
27: Add iequivalent to equivalence cluster
28: return equivalence cluster

Robust Estimation of Tree Structured Gaussian Graphical Models

Algorithm 5 Splits B \ ECclose into the set of largest subtrees.

1: procedure SPLITROOTEDTREE(ioutside, ECclose,B,Σo)
2: subtrees =[] . subtrees is a list of lists where each list contains the nodes of one subtree.
3: B ← B \ ECclose . Remove the EC of iroot from B.
4: iclose ← ECclose[1]
5: Create first subtree B1 with B[1] . Initialize B1 with any node of B.
6: for j ∈ B do
7: is star ← True
8: for Bi ∈ subtrees do
9: index← [ioutside, iclose, j,Bi[1]] . Check if new node j forms non star with subtree Bi.

10: is star, pair1, pair2← ISSTARSHAPE(index,Σo)
11: if NOT(is star) then
12: break
13: if NOT(is star) then
14: Add j to Bi . Add new node j to the last subtree Bi before the break.
15: else
16: Create new subtree with j . Create new subtree with only j.
17: return subtrees

Algorithm 6 Recursive function finds equivalence clusters and edges between them.

1: procedure LEARNEDGES(ioutside,B, learned edges, equivalence clusters,Σo)
2: n nodes← len(B)
3: if n nodes == 2 then . B is an equivalence cluster.
4: Add B to equivalence cluster
5: Add (EC(ioutside), EC(B[1])) to learned edges
6: return
7: ECclose ← GETCLOSESTEQUIVALENCECLUSTER(B, ioutside,Σo) . Get the closest EC.
8: Add ECclose to equivalence cluster
9: Add (EC(ioutside), ECclose) to learned edges . Add an edge between EC containing ioutside and ECclose

10: subtrees← SPLITROOTEDTREE(ioutside, ECclose,B,Σo) . Get subtrees of B \ {ECclose}.
11: for Bj ∈ subtrees do
12: LEARNEDGES(iclose,Bj , learned edges, equivalence clusters,Σo) . Recursive call for all the subtrees.

Algorithm 7 Full Algorithm.

1: procedure LEARNTREESTRUCTURE(Σo)
2: learned edges← []
3: equivalence custers← [[]]
4: A ← {1 . . . n}
5: is star,B,B′ ← PARTITIONNODES(Σo)
6: if is star then equivalence custers← A
7: return equivalence custers, learned edges
8: else
9: ioutsideB ← GETCLOSESTEQUIVALENCECLUSTER(B′[1],B,Σo)

10: ioutsideB′ ← GETCLOSESTEQUIVALENCECLUSTER(B[1],B′,Σo)
11: LEARNEDGES(ioutsideB ,B, learned edges, equivalence clusters,Σo)
12: LEARNEDGES(ioutsideB′ ,B

′, learned edges, equivalence clusters,Σo)

13: return equivalence clusters, learned edges

Robust Estimation of Tree Structured Gaussian Graphical Models

• If i1 and i2 are leaves with different neighbors, a combination of the two leaves with their neighbors forms a non star.

• If i1 and i2 are leaves with a common neighbor, and there exists another leaf with a different neighbor, i1 and i2 and
the other leaf neighbor pair form a non-star shape. If there does not exist another leaf with a different neighbor, then
the tree has one equivalence cluster, and no non-star shape exists.

• If i1 and i2 are internal nodes, combining them with one node from the connected component of T ∗ \ i1 that contains
i2 and another node from a different connected component of T ∗ \ i1 gives a non star shape.

• If one of i1 and i2 is an internal node and the other one is a leaf node and the internal node is not a neighbor of the leaf
node, combining them with the neighbor of the leaf node and another leaf with a different neighbor gives a non-star
shape.

• If the internal node is the neighbor of the leaf node, combining them with another pair of leaf and neighbor gives a non
star structure.

When we obtain the initial set of 4 nodes which form a non star structure, we also obtain the pairing of the 4 nodes.
Performing the procedure of Algorithm 3 splits the tree into the smallest subtree that contains pair 1 and the remaining
subtree.

E.2.3. PROOF FOR ALGORITHM 4: GETCLOSESTEQUIVALENCECLUSTER

Let iroot be the node in B which has an edge with a node in A \ B and iclose be a node from the equivalence cluster
containing iroot.

Lemma 3. The set {ioutside, iclose, i1, i2} forms a non star shape if and only if i1 and i2 lie in one connected component of
B \ iroot.
Corollary 2. When {ioutside, iclose, i1, i2} forms a non star shape i1, i2 form one pair and ioutside, iclose form the second
pair.

Proof. The set {ioutside, iclose, i1, i2} forms a non star if ∃ ik such that exactly 2 of these nodes lie in the same connected
component of B \ ik.
Proof of If:
Setting ik = iroot gives us the non star shape for this set. Moreover, i1, i2 form one pair and ioutside, iclose form the other
pair.
Proof of Only if:
We now prove that if i1 and i2 are not in the same subtree of B \ iroot, then {ioutside, iclose, i1, i2} does not form a non-star
shape, i.e. it is impossible to find a node ik such that exactly two nodes of {ioutside, iclose, i1, i2} are in the same subtree of
T ∗ \ ik. We look at the possible ik we could choose:

• If ik /∈ B, {iclose, i1, i2} are in the same subtree of T ∗ \ ik.

• ik = iroot, then ioutside, i1 and i2 are in different subtrees of of T ∗ \ ik.

• If ik is in one of the connected component of B \ iroot, then at least one of the two nodes i1 or i2 is not in the same
component. Therefore, either {ioutside, iclose, i1}, {ioutside, iclose, i2} or {ioutside, iclose, i1, i2} are together in the
same subtree of T ∗ \ ik.

Hence there is no ik such that exactly 2 of {ioutside, iclose, i1, i2} lie in the same connected component of T ∗ \ ik. Therefore
{ioutside, iclose, i1, i2} forms a star shape.

Any node iequivalent is in the equivalence cluster containing iroot, if and only if any set of 4 nodes
{iequivalent, j, ioutside, iclose} ∀ j ∈ B forms a star shape. By Lemma 3, this set of 4 nodes forms a star shape if
and only if iequivalent and j do not lie in the same connected component of B \ iroot. Thus iequivalent is either iroot or a
leaf node connected to iroot. Hence iequivalent lies in the equivalence cluster containing iroot.

Robust Estimation of Tree Structured Gaussian Graphical Models

E.2.4. PROOF OF ALGORITHM 5: SPLITROOTEDTREE

Given an external node ioutside, the equivalence cluster ECclose containing iroot and a node iclose from ECclose, by Lemma
3, {ioutside, iclose, i1, i2} forms a non-star shape if and only if i1 and i2 are in the same connected component of B \ iroot.
This is used to find all the subtrees in B \ ECclose.

E.2.5. PROOF OF ALGORITHM 6: LEARNEDGES

We show that LEARNEDGES(ioutside,B, learned edges, equivalence clusters,Σo) correctly learns the equivalence clus-
ters in B and the edges between these equivalence clusters as well as the edge between the equivalence cluster containing
ioutside and the equivalence cluster in B closest to ioutside. We do this by induction on the number of equivalence clusters.
Base case: B contains 1 equivalence cluster
Note that the function GETCLOSESTEQUIVALENCECLUSTER needs at least 3 nodes in B. The base case can be split in 2
cases:
Case 1: If B has 2 nodes, it has to contain a leaf node and its neighbor, hence it forms one equivalence cluster which is
identified and an edge is added between the EC containing ioutside and the EC in B.
Case 2: If B has more than 2 nodes, the equivalence cluster is correctly identified by GETCLOSESTEQUIVALENCECLUSTER.
An edge is added between the EC containing ioutside and the EC in B.
Inductive step: Let the function identify all the equivalence clusters and edges when B has less than n equivalence clusters.
Now suppose B has n equivalence clusters. By the correctness of GETCLOSESTEQUIVALENCECLUSTER, it correctly
identifies the equivalence cluster ECclose in B with the node that has an edge with EC(ioutside) and adds this edge. By the
correctness of SPLITROOTEDTREE, it correctly identifies all the subtrees in B \ ECclose. All these subtrees have less than
n equivalence clusters. By the inductive assumption, the function correctly learns all the edges between ECclose and the
closest equivalence clusters in these subtrees as well as all the edges within these subtrees.

E.2.6. PROOF OF ALGORITHM 7: LEARNTREESTRUCTURE

By the correctness of PARTITIONNODES, we successfully partition the whole tree in two subtrees. By the correctness of
Algorithm GETCLOSESTEQUIVALENCECLUSTER, we find the equivalence clusters in these subtrees which connect to the
other subtree. By the correctness of LEARNEDGES, we accurately discover the equivalence clusters in these 2 subtrees, the
edges between these equivalence clusters as well as the edge between the equivalence clusters of the 2 subtrees. This gives
us all the equivalence clusters and the edges between them.

E.3. Running Time Analysis

ISSTARSHAPE is O(1) operation.
PARTITIONNODES is O(n2) as in the worst case when the tree is star structured, it needs to search through all the pairs of
nodes.
GETCLOSESTEQUIVALENCECLUSTER is O(n2) as it checks all the nodes once for being better than the current estimate of
connecting node. Checking this at each step involves scanning through all the nodes till a non star structure is discovered
which in the worst case can take O(n) time. It further finds all the other nodes from the equivalence cluster. To do that, it
scans through all the nodes and checks if that node can form a non star. Checking if it can form a non star is O(n). Hence
the complexity is O(n2).
SPLITROOTEDTREE is O(n2) as the outer for loop scans through all the nodes in the input subtree and the inner loop scans
through one node from all the output subtrees. Both of these are O(n) is worst case. Hence the complexity is O(n2).

LEARNEDGES is O(n3) as it calls GETCLOSESTEQUIVALENCECLUSTER and SPLITROOTEDTREE at most n− 1 times.
LEARNTREESTRUCTURE is O(n3) as it calls LEARNEDGES twice.

