
Submodular Streaming in All Its Glory:
Tight Approximation, Minimum Memory and Low Adaptive Complexity

Ehsan Kazemi 1 Marko Mitrovic 1 Morteza Zadimoghaddam 2 Silvio Lattanzi 2 Amin Karbasi 1

Abstract
Streaming algorithms are generally judged by
the quality of their solution, memory footprint,
and computational complexity. In this paper,
we study the problem of maximizing a mono-
tone submodular function in the streaming set-
ting with a cardinality constraint k. We first
propose SIEVE-STREAMING++, which requires
just one pass over the data, keeps only O(k) el-
ements and achieves the tight 1/2-approximation
guarantee. The best previously known stream-
ing algorithms either achieve a suboptimal 1/4-
approximation with ⇥(k) memory or the opti-
mal 1/2-approximation with O(k log k) memory.
Next, we show that by buffering a small fraction
of the stream and applying a careful filtering pro-
cedure, one can heavily reduce the number of
adaptive computational rounds, thus substantially
lowering the computational complexity of SIEVE-
STREAMING++. We then generalize our results
to the more challenging multi-source streaming
setting. We show how one can achieve the tight
1/2-approximation guarantee with O(k) shared
memory while minimizing not only the required
rounds of computations but also the total number
of communicated bits. Finally, we demonstrate
the efficiency of our algorithms on real-world data
summarization tasks for multi-source streams of
tweets and of YouTube videos.

1. Introduction
Many important problems in machine learning, including
data summarization, network inference, active set selection,
facility location, and sparse regression can be cast as in-
stances of constrained submodular maximization (Krause &
Golovin, 2012). Submodularity captures an intuitive dimin-
ishing returns property where the gain of adding an element
to a set decreases as the set gets larger. More formally, a

1Yale University 2Google Research. Correspondence to: Ehsan
Kazemi <ehsan.kazemi@yale.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

non-negative set function f : 2V ! R�0 is submodular
if for all sets A ✓ B ⇢ V and every element e 2 V \ B,
we have f(A [{e}) � f(A) � f(B [{e}) � f(B). The
submodular function f is monotone if for all A ✓ B we
have f(A)  f(B) .

In this paper, we consider the following canonical optimiza-
tion problem: given a non-negative monotone submodular
function f , find the set S

⇤ of size at most k that maximizes
the function f :

S
⇤ = arg max

S✓V,|S|k

f(S). (1)

We define OPT = f(S⇤). When the data is relatively small
and it does not change over time, the greedy algorithm
and other fast centralized algorithms provide near-optimal
solutions. Indeed, it is well known that for problem (1)
the greedy algorithm (which iteratively adds elements with
the largest marginal gain) achieves a 1� 1/e approximation
guarantee (Nemhauser et al., 1978).

In many real-world applications, we are dealing with mas-
sive streams of images, videos, texts, sensor logs, tweets,
and high-dimensional genomics data which are produced
from different data sources. These data streams have an
unprecedented volume and are produced so rapidly that they
cannot be stored in memory, which means we cannot ap-
ply classical submodular maximization algorithms. In this
paper, our goal is to design efficient algorithms for stream-
ing submodular maximization in order to simultaneously
provide the best approximation factor, memory complexity,
running time, and communication cost.

For problem (1), Norouzi-Fard et al. (2018) proved that
any streaming algorithm1 with a memory o(n/k) cannot
provide an approximation guarantee better than 1/2. SIEVE-
STREAMING is the first streaming algorithm with a constant
approximation factor (Badanidiyuru et al., 2014). This algo-
rithm guarantees an approximation factor of 1/2�" and mem-
ory complexity of O(k log(k)/"). While the approximation
guarantee of their SIEVE-STREAMING is optimal, the mem-
ory complexity is a factor of log(k) away from the desired
lower bound ⇥(k). In contrast, Buchbinder et al. (2015)

1They assume the submodular function is evaluated only on
feasible sets of cardinality at most k. In this paper, we make the
same natural assumption regarding the feasible queries.

Streaming Submodular Maximization

designed a streaming algorithm with a 1/4-approximation
factor and optimal memory ⇥(k). The first contribution of
this paper is to answer the following question: Is there a
streaming algorithm with an approximation factor arbitrarily
close to 1/2 whose memory complexity is O(k)?

Our new algorithm, SIEVE-STREAMING++, closes the gap
between the optimal approximation factor and memory com-
plexity, but it still has some drawbacks. In fact, in many
applications of submodular maximization, the function eval-
uations (or equivalently Oracle queries)2 are computation-
ally expensive and can take a long time to process.

In this context, the fundamental concept of adaptivity quan-
tifies the number of sequential rounds required to maximize
a submodular function, where in each round, we can make
polynomially many independent Oracle queries in parallel.
More formally, given an Oracle f , an algorithm is `-adaptive
if every query Q to the Oracle f at a round 1  i  ` is
independent of the answers f(Q0) to all other queries Q0 at
rounds j, i  j  ` (Balkanski & Singer, 2018). The adap-
tivity of an algorithm has important practical consequences
as low adaptive complexity results in substantial speedups
in parallel computing time.

All the existing streaming algorithms require at least one
Oracle query for each incoming element. This results in an
adaptive complexity of ⌦(n) where n is the total number of
elements in the stream. Furthermore, in many real-world
applications, data streams arrive at such a fast pace that it is
not possible to perform multiple Oracle queries in real time.
This could result in missing potentially important elements
or causing a huge delay.

Our idea to tackle the problem of adaptivity is to introduce a
hybrid model where we allow a machine to buffer a certain
amount of data, which allows us to perform many queries in
parallel. We design a sampling algorithm that, in only a few
adaptive rounds, picks items with good marginal gain and
discards the rest. The main benefit of this method is that we
can quickly empty the buffer and continue the optimization
process. In this way, we obtain an algorithm with optimal
approximation, query footprint, and near-optimal adaptivity.

Next, we focus on an additional challenge posed by real-
world data where often multiple streams co-exist at the same
time. In fact, while submodular maximization over only one
stream of data is challenging, in practice there are many
massive data streams generated simultaneously from a vari-
ety of sources. For example, these multi-source streams are
generated by tweets from news agencies, videos and images
from sporting events, or automated security systems and sen-
sor logs. These data streams have an enormous volume and
are produced so rapidly that they cannot be even transferred

2The Oracle for a submodular function f receives a set S and
returns its value f(S).

to a central machine. Therefore, in the multi-source stream-
ing setting, other than approximation factor, memory and
adaptivity, it is essential to keep communication cost low.
To solve this problem, we show that a carefully-designed
generalization of our proposed algorithm for single-source
streams also has an optimal communication cost.

2. Related Work
Badanidiyuru et al. (2014) were the first to consider a one-
pass streaming algorithm for maximizing a monotone sub-
modular function under a cardinality constraint. Buchbinder
et al. (2015) improved the memory complexity of (Badani-
diyuru et al., 2014) to ⇥(k) by designing a 1/4 approxi-
mation algorithm. Norouzi-Fard et al. (2018) introduced
an algorithm for random order streams that beats the 1/2

bound. Recently, Agrawal et al. (2019) substantially im-
proved the result for random order streams to an almost
tight 1� 1/e� "�O(k�1) approximation factor. Norouzi-
Fard et al. (2018) also studied the multi-pass streaming
submodular maximization problem.

Chakrabarti & Kale (2015) studied streaming submodu-
lar maximization problem subject to the intersection of p

matroid constraints. These results were further extended
to more general constraints such as p-matchoids (Chekuri
et al., 2015; Feldman et al., 2018). Also, there have been
some very recent works to generalize these results to non-
monotone submodular functions (Chakrabarti & Kale, 2015;
Chekuri et al., 2015; Chan et al., 2017; Mirzasoleiman et al.,
2018; Feldman et al., 2018). Elenberg et al. (2017) provide
a streaming algorithm with a constant factor approximation
for a generalized notion of submodular objective functions,
called weak submodularity. In addition, a few other works
study the streaming submodular maximization over sliding
windows (Chen et al., 2016; Epasto et al., 2017).

To scale to very large datasets, several solutions to the prob-
lem of submodular maximization have been proposed in
recent years (Mirzasoleiman et al., 2015; 2016a; Feldman
et al., 2017; Badanidiyuru & Vondrák, 2014; Mitrovic et al.,
2017a). Mirzasoleiman et al. (2015) proposed the first linear-
time algorithm for maximizing a monotone submodular
function subject to a cardinality constraint that achieves a
(1� 1/e� ")-approximation. Buchbinder et al. (2017) ex-
tended these results to non-monotone submodular functions.

Another line of work investigates the problem of scalable
submodular maximization in the MapReduce setting where
the data is split amongst several machines (Kumar et al.,
2015; Mirzasoleiman et al., 2016b; Barbosa et al., 2015;
Mirrokni & Zadimoghaddam, 2015; Mirzasoleiman et al.,
2016c; Barbosa et al., 2016; Liu & Vondrák, 2018). Each
machine runs a centralized algorithm on its data and passes
the result to a central machine. Then, the central machine
outputs the final answer. Since each machine runs a vari-
ant of the greedy algorithm, the adaptivity of all these ap-

Streaming Submodular Maximization

proaches is linear in k, i.e., it is ⌦(n) in the worst-case.

Practical concerns of scalability have motivated studying the
adaptivity of submodular maximization algorithms. Balkan-
ski & Singer (2018) showed that no algorithm can obtain a
constant factor approximation in o(log n) adaptive rounds
for monotone submodular maximization subject to a cardi-
nality constraint. They introduced the first constant factor
approximation algorithm for submodular maximization with
logarithmic adaptive rounds. Their algorithm, in O(log n)
adaptive rounds, finds a solution with an approximation arbi-
trarily close to 1/3. These bounds were recently improved by
(1� 1/e� ")-approximation algorithm with O(log(n)/poly("))
adaptivity (Fahrbach et al., 2019; Balkanski et al., 2019a;
Ene & Nguyen, 2019). More recently and independently,
Balkanski et al. (2019b) and Chekuri & Quanrud (2019)
studied the additivity of submodular maximization under
a matroid constraint. In addition, Balkanski et al. (2018)
proposed an algorithm for maximizing a non-monotone
submodular function with cardinality constraint k whose ap-
proximation factor is arbitrarily close to 1/(2e) in O(log2 n)
adaptive rounds. Fahrbach et al. (2018) improved the adap-
tive complexity of this problem to O(log(n)). Chen et al.
(2018) considered the unconstrained submodular maximiza-
tion problem and proposed the first algorithm that achieves
the optimal approximation guarantee in a constant number
of adaptive rounds.

Contributions The main contributions of our paper are:
• We introduce SIEVE-STREAMING++ which is the first

streaming algorithm with optimal approximation fac-
tor and memory complexity. Note that our optimality
result for the approximation factor is under the natural
assumption that the Oracle is allowed to make queries
only over the feasible sets of cardinality at most k.

• We design an algorithm for a hybrid model of sub-
modular maximization, where it enjoys a near-optimal
adaptive complexity and it still guarantees both optimal
approximation factor and memory complexity. We also
prove that our algorithm has a very low communication
cost in a multi-source streaming setting.

• We use multi-source streams of data from Twitter and
YouTube to compare our algorithms against state-of-
the-art streaming approaches.

• We significantly improve the memory complexity for
several important problems in the submodular maxi-
mization literature by applying the main idea of SIEVE-
STREAMING++ (see the Supplementary material).

3. Streaming Submodular Maximization
In this section, we propose an algorithm called SIEVE-
STREAMING++ that has the optimal 1/2-approximation fac-
tor and memory complexity O(k). Our algorithm is de-
signed based on the SIEVE-STREAMING algorithm (Badani-
diyuru et al., 2014).

The general idea behind SIEVE-STREAMING is that choos-
ing elements with marginal gain at least ⌧

⇤ = OPT

2k from
a data stream returns a set S with an objective value of at
least f(S) � OPT

2 . The main problem with this primary idea
is that the value of OPT is not known. Badanidiyuru et al.
(2014) pointed out that, from the submodularity of f , we can
trivially deduce �0  OPT  k�0 where �0 is the largest
value in the set {f({e}) | e 2 V }. It is also possible to find
an accurate guess for OPT by dividing the range [�0, k�0]
into small intervals of [⌧i, ⌧i+1). For this reason, it suffices
to try log k different thresholds ⌧ to obtain a close enough
estimate of OPT. Furthermore, in a streaming setting, where
we do not know the maximum value of singletons a priori,
Badanidiyuru et al. (2014) showed it suffices to only con-
sider the range �  OPT  2k�, where � is the maximum
value of singleton elements observed so far. The memory
complexity of SIEVE-STREAMING is O(k log k/") because
there are O(log k/") different thresholds and, for each one,
we could keep at most k elements.

3.1. The SIEVE-STREAMING++ Algorithm
In the rest of this section, we show that with a novel modifi-
cation to SIEVE-STREAMING it is possible to significantly
reduce the memory complexity of the streaming algorithm.

Our main observation is that in the process of guessing OPT,
the previous algorithm uses � as a lower bound for OPT;
but as new elements are added to sets S⌧ , it is possible to get
better and better estimates of a lower bound on OPT. More
specifically, we have OPT � LB , max⌧ f(S⌧) and as a
result, there is no need to keep thresholds smaller than LB

2k .
Also, for a threshold ⌧ we can conclude that there is at most
LB

⌧
elements in set S⌧ . These two important observations

allow us to get a geometrically decreasing upper bound
on the number of items stored for each guess ⌧ , which
gives the asymptotically optimal memory complexity of
O(k). The details of our algorithm (SIEVE-STREAMING++)
are described in Algorithm 1. Note that we represent the
marginal gain of a set A to the set B with f(A | B) =
f(A [B)� f(B). Theorem 1 guarantees the performance
of SIEVE-STREAMING++. Table 1 compares the state-of-
the-art streaming algorithms based on approximation ratio,
memory complexity and queries per element.

Theorem 1. For a non-negative monotone submod-
ular function f subject to a cardinality constraint k,
SIEVE-STREAMING++ returns a solution S such that
(i) f(S) � (1/2� ") · maxA✓V,|A|k f(A), (ii) mem-
ory complexity is O(k/"), and (iii) number of queries
is O(log(k)/") per each element.

3.2. The BATCH-SIEVE-STREAMING++ Algorithm
The SIEVE-STREAMING++ algorithm, for each incoming
element of the stream, requires at least one query to the
Oracle which increases its adaptive complexity to ⌦(n).
Since the adaptivity of an algorithm has a significant impact

Streaming Submodular Maximization

Table 1. Streaming algorithms for non-negative and monotone submodular maximization subject to a cardinality constraint k. The
SIEVE-STREAMING++ provides the best approximation ratio, memory complexity (up to a constant factor), and query complexity.

Algorithm Approx. Ratio Memory Queries per Element Reference

PREEMPTION-STREAMING 1/4 O(k) O(k) Buchbinder et al. (2015)
SIEVE-STREAMING 1/2� " O(k log(k)/") O(log(k)/") Badanidiyuru et al. (2014)
SIEVE-STREAMING++ 1/2� " O(k/") O(log(k)/") Ours

Algorithm 1 SIEVE-STREAMING++

Input: Submodular function f , data stream V , cardinality
constraint k and error term "

1: ⌧min 0, � 0 and LB 0
2: while there is an incoming item e from V do
3: � max{�, f({e})}
4: ⌧min = max(LB,�)

2k
5: Discard all sets S⌧ with ⌧ < ⌧min

6: for ⌧ 2 {(1 + ")i|⌧min/(1+")  (1 + ")i  �} do
7: if ⌧ is a new threshold then S⌧ ?
8: if |S⌧ | < k and f({e} | S⌧) � ⌧ then
9: S⌧ S⌧ [{e} and LB max{LB, f(S⌧)}

10: return arg maxS⌧
f(S⌧)

on its ability to be executed in parallel, there is a dire need
to implement streaming algorithms with low adaptivity. To
address this concern, our proposal is to first buffer a fraction
of the data stream and then, through a parallel threshold
filtering procedure, reduce the adaptive complexity, thus
substantially lower the running time. Our results show that a
small buffer memory can significantly parallelize streaming
submodular maximization.

One natural idea for parallelization is to iteratively perform
the following two steps: (i) for a threshold ⌧ , in one adaptive
round, compute the marginal gain of elements to set S⌧ and
discard those with a gain less than ⌧ , and (ii) pick one of
the remaining items with a good marginal gain and add it
to S⌧ . This process is repeated at most k times. We refer to
this algorithm as SAMPLE-ONE-STREAMING and we will
use it as a baseline in Section 5.3.

Although this method gives a 1/2 � " approximation fac-
tor, the adaptive complexity of this algorithm is ⌦(k)
which is still prohibitive in the worst case. For this rea-
son, we introduce a hybrid algorithm called BATCH-SIEVE-
STREAMING++. This algorithm enjoys two important prop-
erties: (i) the number of adaptive rounds is near-optimal, and
(ii) it has an optimal memory complexity (by adopting an
idea similar to SIEVE-STREAMING++). Next, we explain
BATCH-SIEVE-STREAMING++ (Algorithm 2) in detail.

First, we assume that the machine has a buffer B that can
store at most B elements. For a data stream V, whenever
Threshold fraction of the buffer is full, the optimization

process begins. The purpose of Threshold is to empty
the buffer before it gets completely full and to avoid los-
ing arriving elements. Similar to the other sieve stream-
ing methods, BATCH-SIEVE-STREAMING++ requires us
to guess the value of ⌧

⇤ = OPT

2k . For each guess ⌧ , BATCH-
SIEVE-STREAMING++ uses THRESHOLD-SAMPLING (Al-
gorithm 3) as a subroutine. THRESHOLD-SAMPLING itera-
tively picks random batches of elements T . If their average
marginal gain to the set of picked elements S⌧ is at least
(1 � ")⌧ it adds that batch to S⌧ . Otherwise, all elements
with marginal gain less than ⌧ to the set S⌧ are filtered
out. THRESHOLD-SAMPLING repeats this process until the
buffer is empty or |S⌧ | = k.

Note that in Algorithm 2, we define the function fS as
fS(A) = f(A | S), which calculates the marginal gain of
adding a set A to S. It is straightforward to show that if f is
a non-negative and monotone submodular function, then fS

is also non-negative and monotone submodular.

The adaptive complexity of BATCH-SIEVE-STREAMING++
is the number of times its buffer gets full (which is
at most N/B) multiplied by the adaptive complexity of
THRESHOLD-SAMPLING. The reason for the low adaptive
complexity of THRESHOLD-SAMPLING is quite subtle. In
Line 3 of Algorithm 3, with a non-negligible probability, a
constant fraction of items is discarded from the buffer. Thus,
the while loop continues for at most O(log B) steps. Since
we increase the batch size by a constant factor of (1+") each
time, the for loops within each while loop will run at most
O(log(k)/") times. Therefore, the total adaptive complex-
ity of BATCH-SIEVE-STREAMING++ is O(N log(B) log(k)

B"
)

Note that when |S| < 1/", multiplying the size by (1 + ")
would increase it less than one, so we increase the batch size
one by one for the first loop in Lines 4–10 of Algorithm 3.
Theorem 2 guarantees the performance of BATCH-SIEVE-
STREAMING++.

Theorem 2. For a non-negative monotone submod-
ular function f subject to a cardinality constraint k,
define N to be the total number of elements in the
stream, B to be the buffer size and " < 1/3 to be a con-
stant. For BATCH-SIEVE-STREAMING++ we have:
(i) the approximation factor is 1/2� 3"/2, (ii) the mem-
ory complexity is O(B + k/"), and (iii) the expected
adaptive complexity is O(N log(B) log(k)

B").

Streaming Submodular Maximization

Algorithm 2 BATCH-SIEVE-STREAMING++

Input: Stream of data V, submodular set function f , cardi-
nality constraint k, buffer B with a memory B, Threshold,
and error term ".

1: � 0, ⌧min 0,LB 0 and B ?
2: while there is an incoming element e from V do
3: Add e to B
4: if the buffer B is Threshold percent full then
5: � max{�, maxe2B f(e)}, ⌧min = max(LB,�)

2k(1+")

and discard all sets S⌧ with ⌧ < ⌧min

6: for ⌧ 2 {(1 + ")i|⌧min  (1 + ")i  �} do
7: If ⌧ is a new threshold then assign a new set S⌧

to it, i.e., S⌧ ?
8: if |S⌧ | < k then
9: T THRESHOLD-SAMPLING(fS⌧ , B, k �

|S⌧ |, ⌧, ")
10: S⌧ S⌧ [T

11: LB = maxS⌧ f(S⌧) and B ?
12: return arg maxS⌧

f(S⌧)

Algorithm 3 THRESHOLD-SAMPLING

Input: Submodular set function f , set of buffered items
B, cardinality constraint k, threshold ⌧, and error term "

1: S ?
2: while |B| > 0 and |S| < k do
3: update B {x 2 B : f({x} | S) � ⌧} and filter

out the rest
4: for i = 1 to d 1

"
e do

5: Sample x uniformly at random from B \ S

6: if f({x}|S)  (1� ")⌧ then
7: break and go to Line 2
8: else
9: S S [{x}

10: if |S| = k then return S

11: for i = blog1+"(1/")c to dlog1+" ke � 1 do
12: t min{b(1+")i+1�(1+")ic, |B\S|, k� |S|}
13: Sample a random set T of size t from B \ S

14: if |S [T | = k then return S [T

15: if f(T | S)

|T |  (1� ")⌧ then

16: S S [T and break
17: else
18: S S [T

19: return S

Remark It is important to note that THRESHOLD-
SAMPLING is inspired by recent progress for maximizing
submodular functions with low adaptivity (Fahrbach et al.,
2019; Balkanski et al., 2019a; Ene & Nguyen, 2019) but
it uses a few new ideas to adapt the result to our setting.
Indeed, if we had used the sampling routines from these
previous works, it was even possible to slightly improve the

adaptivity of the hybrid model. The main issue with these
methods is that their adaptivity heavily depends on evaluat-
ing many random subsets of the ground set in each round.
As it is discussed in the next section, we are interested in al-
gorithms that are efficient in the multi-source setting. In that
scenario, the data is distributed among several machines,
so existing sampling methods dramatically increases the
communication cost of our hybrid algorithm.

4. Multi-Source Data Streams
In general, the important aspects to consider for a single
source streaming algorithm are approximation factor, mem-
ory complexity, and adaptivity. In the multi-source setting,
the communication cost of an algorithm also plays an impor-
tant role. While the main ideas of SIEVE-STREAMING++
give us an optimal approximation factor and memory com-
plexity, there is always a trade-off between adaptive com-
plexity and communication cost in any threshold sampling
procedure.

As we discussed before, existing submodular maximiza-
tion algorithms with low adaptivity need to evaluate the
utility of random subsets several times to guarantee the
marginal gain of sampled items. Consequently, this incurs
high communication cost. In this section, we explain how
BATCH-SIEVE-STREAMING++ can be generalized to the
multi-source scenario with both low adaptivity and low com-
munication cost.

We assume elements arrive from m different data streams
and for each stream the elements are placed in a separate
machine with a buffer Bi. When the buffer memory of at
least one of these m machines is Threshold% full, the
process of batch insertion and filtering begins. The only
necessary change to BATCH-SIEVE-STREAMING++ is to
use a parallelized version of THRESHOLD-SAMPLING with
inputs from {Bi}. In this generalization, Lines 5 and 13 of
Algorithm 3 are executed in a distributed way where the
goal is to perform the random sampling procedure from the
buffer memory of all machines. Indeed, in order to pick a
batch of t random items, the central coordinator asks each
machine to send a pre-decided number of items. Note that
the set of picked elements S⌧ for each threshold ⌧ is shared
among all machines. And therefore the filtering step at
Line 3 of Algorithm 3 can be done independently for each
stream in only one adaptive round. Our algorithm is shown
pictorially in Figure 1.

Theorem 3 guarantees the communication cost of BATCH-
SIEVE-STREAMING++ in the multi-source setting. Notably,
the communication cost of our algorithm is independent of
the buffer size B and the total number of elements N .

Streaming Submodular Maximization

Theorem 3. For a non-negative and monotone sub-
modular function f in a multi-source streaming setting
subject to a cardinality constraint k, define �0 as the
largest singleton value when for the first time a buffer
gets full, and C = OPT

�0
. The total communication cost

of BATCH-SIEVE-STREAMING++ is O(k log C
"2

).

Figure 1. The schematic representation of our proposed hybrid
algorithm: there are m simultaneous streams where data from each
stream is buffered separately. When a buffer is Threshold%
full, a central machine starts the sampling process. The thresholds
{⌧} and sets {S⌧} are stored in a shared memory. First, for
each threshold ⌧ , all elements with marginal gain less than ⌧ are
discarded from the buffers. Then the central machine randomly
samples t items T (with geometrically increasing values of t) from
the buffers of all streams and adds them to set S⌧ if their average
marginal gain is at least (1� ")⌧ . The sampling procedure stops
when the average value of randomly picked items is not good
enough. These iterative steps are performed until k items are
picked or the buffer memories of all machines are emptied.

5. Experiments
In these experiments, we have three main goals:

1. For the single-source streaming scenario, we want
to demonstrate the memory efficiency of SIEVE-
STREAMING++ relative to SIEVE-STREAMING.

2. For the multi-source setting, we want to showcase how
BATCH-SIEVE-STREAMING++ requires the fewest
adaptive rounds amongst algorithms with optimal com-
munication costs.

3. Lastly, we want to illustrate how a simple variation of
BATCH-SIEVE-STREAMING++ can trade off commu-
nication cost for adaptivity, thus allowing the user to
find the best balance for their particular problem.

5.1. Datasets

These experiments will be run on a Twitter stream summa-
rization task and a YouTube Video summarization task, as
described next.

Twitter Stream Summarization In this application, we
want to produce real-time summaries for Twitter feeds. As
of January 2019, six of the top fifty Twitter accounts (also
known as “handles”) are dedicated primarily to news report-
ing. Each of these handles has over thirty million followers,
and there are many other news handles with tens of millions
of followers as well. Naturally, such accounts commonly
share the same stories. Whether we want to provide a peri-
odic synopsis of major events or simply to reduce the clutter
in a user’s feed, it would be very valuable if we could pro-
duce a succinct summary that still relays all the important
information.

To collect the data, we scraped recent tweets from 30 dif-
ferent popular news accounts, giving us a total of 42,104
unique tweets. In the multi-source experiments, we assume
that each machine is scraping one page of tweets, so we
have 30 different streams to consider.

We want to define a submodular function that covers the
important stories of the day without redundancy. To this end,
we extract the keywords from each tweet and weight them
proportionally to the number of retweets the post received.
In order to encourage diversity in a selected set of tweets, we
take the square root of the value assigned to each keyword.
More formally, consider a function f defined over a ground
set V of tweets. Each tweet e 2 V consists of a positive
value vale denoting its number of retweets and a set of `e

keywords We = {we,1, · · · , we,`e} from a general set of
keywords W . The score of a word w 2 We for a tweet e

is defined by score(w, e) = vale. If w /2 We, we define
score(w, e) = 0. For a set S ✓ V of tweets, the function f

is defined as follows:

f(S) =
X

w2W

sX

e2S

score(w, e).

Figure 2 gives an example and Appendix E gives a proof of
submodularity for this function.

YouTube Video Summarization In this second task, we
want to select representative frames from multiple simulta-
neous and related video feeds. In particular, we consider
YouTube videos of New Year’s Eve celebrations from ten
different cities around the world. Although the cities are not
all in the same time zone, in our multi-source experiments
we assume that we have one machine processing each video
simultaneously.

Using the first 30 seconds of each video, we train an au-
toencoder that compresses each frame into a 4-dimensional
representative vector. Given a ground set V of such vec-
tors, we define a matrix M such that Mij = e

�dist(vi,vj),
where dist(vi, vj) is the euclidean distance between vectors
vi, vj 2 V . Intuitively, Mij encodes the similarity between
the frames represented by vi and vj .

Streaming Submodular Maximization

['mps', 'voted', 'reject', ‘prime’,
 'minister', 'theresa',‘mays','brexit',
 'deal', 'votes', 'majority']

['breaking', 'news', 'theresa', 'mays',
 'brexit', 'plan', 'crushed', 'votes',
 'parliament', 'record', 'margin']

48.8 442.1

Keywords

Retweets
per word

(breaking, 48.8)

(news, 48.8)

(plan, 48.8)

(crushed, 48.8)

(parliament, 48.8)

(record, 48.8)

(margin, 48.8)

(votes, 490.9)

(theresa, 490.9)

(mays, 490.9)

(brexit, 490.9)

(mps, 442.1)

(voted, 442.1)

(reject, 442.1)

(prime, 442.1)

(minister, 442.1)

(deal, 442.1)

(majority, 442.1)

+
+

7 ⇥
p

48.8
7 ⇥

p
442.1

4 ⇥
p

490.9

284.7

�
f(T)T

Figure 2. At the top, we show two tweets on the same subject from
different accounts. We first extract the list of keywords, as well as
the number of retweets per word. We combine these into a single
list T of (keyword, score) pairs and then pass this list through our
submodular function f .

The utility of a set S ✓ V is defined as a non-negative
monotone submodular objective f(S) = log det(I+↵MS),
where I is the identity matrix, ↵ > 0 and MS is the princi-
pal sub-matrix of M indexed by S (Herbrich et al., 2003).
Informally, this function is meant to measure the diversity of
the vectors in S. Figure 3 shows the representative images
selected by our BATCH-SIEVE-STREAMING++ algorithm
for k = 8.

Sydney

Taiwan

Taiwan

Rio

Hong Kong

London Moscow

Athens

Figure 3. Eight representative frames chosen by BATCH-SIEVE-
STREAMING++ from ten different simultaneous feeds of New
Year’s Eve fireworks from around the world.

5.2. Single-Source Experiments

In this section, we want to emphasize the power of SIEVE-
STREAMING++ in the single-source streaming scenario. As
discussed earlier, the two existing standard approaches for
monotone k-cardinality submodular streaming are SIEVE-
STREAMING and PREEMPTION-STREAMING.

As mentioned in Section 3, SIEVE-STREAMING++ theo-
retically has the best properties of both of these existing
baselines, with optimal memory complexity and the optimal
approximation guarantee. Figures 4a through 4d show the
performance of these three algorithms on the YouTube task
and confirm that this holds in practice as well.

For the purposes of this test, we simply combined the differ-
ent video feeds into one single stream. We see that the mem-

ory required by SIEVE-STREAMING++ is much smaller
than the memory required by SIEVE-STREAMING, but it
still achieves the exact same utility. Furthermore, the mem-
ory requirement of SIEVE-STREAMING++ is within a con-
stant factor of PREEMPTION-STREAMING, while its utility
is much better. The Twitter experiment gives similar results
so those graphs are deferred to Appendix F.

5.3. Multi-Source Experiments

Once we move into the multi-source setting, the communi-
cation cost of algorithms becomes a key concern also. In
this section, we compare the performance of algorithms in
terms of utility and adaptivity where their communication
cost is optimal.

Our first baseline is a trivial extension of SIEVE-
STREAMING++. The multi-source extension for this al-
gorithm essentially functions by locally computing the
marginal gain of each incoming element, and only com-
municating it to the central machine if the marginal gain is
above the desired threshold. However, as mentioned at the
beginning Section 3.1, this algorithm requires ⌦(n) adaptive
rounds. Our second baseline is SAMPLE-ONE-STREAMING,
which was described in Section 3.2.

Figures 4e and 4f show the effect of the buffer size B on
the performance of these algorithms for the Twitter task.
The main observation is that BATCH-SIEVE-STREAMING++
can achieve roughly the same utility as the two baselines
with many fewer adaptive rounds. Note that the number of
adaptive rounds is shown in log scale.

Figures 4g and 4h show how these numbers vary with ".
Again, the utilities of the three baselines are similar. We also
see that increasing " results in a large drop in the number of
adaptive rounds for BATCH-SIEVE-STREAMING++, but not
for SAMPLE-ONE-STREAMING. Appendix F gives some
additional graphs, as well as the results for the YouTube
dataset.

5.4. Trade-off Between Communication and Adaptivity

In the multi-source setting, there is a natural exchange be-
tween communication cost and adaptivity. Intuitively, the
idea is that if we sample items more aggressively (which
translates into higher communication cost), a set S of k

items is generally picked faster, thus it reduces the adaptiv-
ity. In the real world, the preference for one or the other can
depend on a wide variety of factors ranging from resource
constraints to the requirements of the particular problem.

In THRESHOLD-SAMPLING, we ensure the optimal com-
munication performance by sampling ti = d(1 + ")i+1 �
(1 + ")ie items in each step of the for loop. Instead, to
reduce the adaptivity by a factor of log(k), we could sam-
ple all the required k items in a single step. Thus, in one

Streaming Submodular Maximization

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Graphs (a) to (d) show how the memory and utility of various single-source streaming algorithms vary with the cardinality k and
granularity ". Note that the utility of SIEVE-STREAMING++ and SIEVE-STREAMING exactly overlap. In (a) and (b) we use k = 20, while
in (c) and (d) we use " = 0.3. Graphs (e) to (h) show how the utility and adaptivity of various multi-source streaming algorithms vary
with the buffer size B and the granularity ". Unless they are being varied on the x-axis, we set " = 0.7, B = 100, and k = 50.

adaptive round we mimic the two for loops of THRESHOLD-
SAMPLING. Doing this in each call to Algorithm 3 would
reduce the expected adaptive complexity of THRESHOLD-
SAMPLING to the optimal log(B), but dramatically increase
the communication cost to O(k log B).

In order to trade off between communication and adaptiv-
ity, we can instead sample t

R

i
= d(1 + ")i+R � (1 + ")ie

elements to perform R consecutive adaptive rounds in only
one round. However, to maintain the same chance of a
successful sampling, we still need to check the marginal
gain. Finally, we pick a batch of the largest size t

j

i
such that

the average marginal gain of the first t
j�1
i

items is above
the desired threshold. Then we just add just this subset to
S⌧ , meaning we have wasted d(1 + ")i+R � (1 + ")i+je
communication.

Scatter plots of Figure 5 shows how the number of adaptive
rounds varies with the communication cost. Each individual
dot represents a single run of the algorithm on a different
subset of the data. The different colors cluster the dots into
groups based on the value of R that we used in that run.
Note that the parameter R controls the communication cost.

The plot on the left comes from the Twitter experiment,
while the plot on the right comes from the YouTube exper-
iment. Although the shapes of the clusters are different in
the two experiments, we see that increasing R increases
the communication cost, but also decreases the number of
adaptive rounds, as expected.

R = 1
R = 2

R = 3
R = 4

Twitter

R = 1

R = 2

R = 3

R = 4

YouTube

Figure 5. Scatter plots showing how we can lower the number of
adaptive rounds by increasing communication. Each dot is the
result of a single run of the algorithm and the colored clusters
represent a particular setting for R.

6. Conclusion
In this paper, we studied the problem of maximizing a non-
negative submodular function over a multi-source stream of
data subject to a cardinality constraint k. We first proposed
SIEVE-STREAMING++ with the optimum approximation
factor and memory complexity for a single stream of data.
Build upon this idea, we designed an algorithm for multi-
source streaming setting with a 1/2 approximation factor,
O(k) memory complexity, a very low communication cost,
and near-optimal adaptivity. We evaluated the performance
of our algorithms on two real-world data sets of multi-source
tweet streams and video streams. Furthermore, by using
the main idea of SIEVE-STREAMING++, we significantly
improved the memory complexity of several important sub-
modular maximization problems.

Streaming Submodular Maximization

Acknowledgements
The work of Amin Karbasi is supported by AFOSR Young
Investigator Award (FA9550-18-1-0160) and Grainger
Award (PO 2000008083 2016012). We would like to thank
Ola Svensson for his comment on the first version of this
manuscript.

References
Agrawal, S., Shadravan, M., and Stein, C. Submodular

Secretary Problem with Shortlists. In Innovations in
Theoretical Computer Science Conference, ITCS, pp. 1:1–
1:19, 2019.

Badanidiyuru, A. and Vondrák, J. Fast algorithms for maxi-
mizing submodular functions. In Symposium on Discrete
Algorithms, SODA, pp. 1497–1514, 2014.

Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A.,
and Krause, A. Streaming Submodular Maximiza-
tion:Massive Data Summarization on the Fly. In Inter-
national Conference on Knowledge Discovery and Data
Mining, KDD, pp. 671–680, 2014.

Balkanski, E. and Singer, Y. The adaptive complexity of
maximizing a submodular function. In Symposium on
Theory of Computing, STOC, pp. 1138–1151, 2018.

Balkanski, E., Mirzasoleiman, B., Krause, A., and Singer,
Y. Learning sparse combinatorial representations via
two-stage submodular maximization. In International
Conference on Machine Learning (ICML), 2016.

Balkanski, E., Breuer, A., and Singer, Y. Non-monotone
Submodular Maximization in Exponentially Fewer Iter-
ations. In Advances in Neural Information Processing
Systems, pp. 2359–2370, 2018.

Balkanski, E., Rubinstein, A., and Singer, Y. An Exponen-
tial Speedup in Parallel Running Time for Submodular
Maximization without Loss in Approximation. In Sym-
posium on Discrete Algorithms (SODA), pp. 283–302,
2019a.

Balkanski, E., Rubinstein, A., and Singer, Y. An optimal
approximation for submodular maximization under a ma-
troid constraint in the adaptive complexity model. In
Symposium on Theory of Computing, STOC, 2019b.

Bansal, N. and Sviridenko, M. The santa claus problem. In
Proceedings of the Thirty-Eighth Annual ACM Sympo-
sium on Theory of Computing, pp. 31–40. ACM, 2006.

Barbosa, R., Ene, A., Nguyen, H., and Ward, J. The power
of randomization: Distributed submodular maximization
on massive datasets. In International Conference on
Machine Learning (ICML), pp. 1236–1244, 2015.

Barbosa, R., Ene, A., Nguyen, H. L., and Ward, J. A New
Framework for Distributed Submodular Maximization. In
Annual Symposium on Foundations of Computer Science,
FOCS, pp. 645–654, 2016.

Buchbinder, N., Feldman, M., and Schwartz, R. Online
submodular maximization with preemption. In ACM-
SIAM Symposium on Discrete Algorithms, SODA, pp.
1202–1216, 2015.

Buchbinder, N., Feldman, M., and Schwartz, R. Comparing
Apples and Oranges: Query Trade-off in Submodular
Maximization. Math. Oper. Res., 42(2):308–329, 2017.

Chakrabarti, A. and Kale, S. Submodular maximization
meets streaming: matchings, matroids, and more. Math.
Program., 154(1-2):225–247, 2015.

Chan, T. H., Huang, Z., Jiang, S. H., Kang, N., and Tang,
Z. G. Online Submodular Maximization with Free Dis-
posal: Randomization Beats ¼ for Partition Matroids.
In Symposium on Discrete Algorithms, SODA, pp. 1204–
1223, 2017.

Chekuri, C. and Quanrud, K. Parallelizing greedy for sub-
modular set function maximization in matroids and be-
yond. In Symposium on Theory of Computing, STOC,
2019.

Chekuri, C., Gupta, S., and Quanrud, K. Streaming al-
gorithms for submodular function maximization. In In-
ternational Colloquium on Automata, Languages, and
Programming, pp. 318–330. Springer, 2015.

Chen, J., Nguyen, H. L., and Zhang, Q. Submodular Maxi-
mization over Sliding Windows. CoRR, abs/1611.00129,
2016.

Chen, L., Feldman, M., and Karbasi, A. Unconstrained sub-
modular maximization with constant adaptive complexity.
CoRR, abs/1811.06603, 2018.

Das, A. and Kempe, D. Submodular meets Spectral: Greedy
Algorithms for Subset Selection, Sparse Approximation
and Dictionary Selection. In International Conference on
Machine Learning (ICML), pp. 1057–1064, 2011.

Elenberg, E. R., Dimakis, A. G., Feldman, M., and Karbasi,
A. Streaming Weak Submodularity: Interpreting Neural
Networks on the Fly. In Advances in Neural Information
Processing Systems, pp. 4047–4057, 2017.

Ene, A. and Nguyen, H. L. Submodular Maximization
with Nearly-optimal Approximation and Adaptivity in
Nearly-linear Time. In Symposium on Discrete Algo-
rithms (SODA), pp. 274–282, 2019.

Streaming Submodular Maximization

Epasto, A., Lattanzi, S., Vassilvitskii, S., and Zadimoghad-
dam, M. Submodular Optimization Over Sliding Win-
dows. In WWW, pp. 421–430, 2017.

Fahrbach, M., Mirrokni, V. S., and Zadimoghaddam, M.
Non-monotone Submodular Maximization with Nearly
Optimal Adaptivity Complexity. CoRR, abs/1808.06932,
2018.

Fahrbach, M., Mirrokni, V. S., and Zadimoghaddam, M.
Submodular Maximization with Nearly Optimal Approxi-
mation, Adaptivity and Query Complexity. In Symposium
on Discrete Algorithms (SODA), pp. 255–273, 2019.

Feldman, M., Harshaw, C., and Karbasi, A. Greed Is Good:
Near-Optimal Submodular Maximization via Greedy Op-
timization. In Conference on Learning Theory, 2017.

Feldman, M., Karbasi, A., and Kazemi, E. Do Less, Get
More: Streaming Submodular Maximization with Sub-
sampling. In Advances in Neural Information Processing
Systems, pp. 730–740, 2018.

Herbrich, R., Lawrence, N. D., and Seeger, M. Fast sparse
gaussian process methods: The informative vector ma-
chine. In Advances in Neural Information Processing
Systems, pp. 625–632, 2003.

Kazemi, E., Zadimoghaddam, M., and Karbasi, A. Scal-
able Deletion-Robust Submodular Maximization: Data
Summarization with Privacy and Fairness Constraints. In
International Conference on Machine Learning (ICML),
pp. 2549–2558, 2018.

Krause, A. and Golovin, D. Submodular Function Maxi-
mization. In Tractability: Practical Approaches to Hard
Problems. Cambridge University Press, 2012.

Kumar, R., Moseley, B., Vassilvitskii, S., and Vattani, A.
Fast Greedy Algorithms in MapReduce and Streaming.
TOPC, 2(3):14:1–14:22, 2015.

Liu, P. and Vondrák, J. Submodular Optimization in the
MapReduce Model. CoRR, abs/1810.01489, 2018.

Mirrokni, V. and Zadimoghaddam, M. Randomized compos-
able core-sets for distributed submodular maximization.
In Symposium on Theory of Computing, , STOC, pp. 153–
162. ACM, 2015.

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrak,
J., and Krause, A. Lazier than Lazy Greedy. In AAAI Con-
ference on Artificial Intelligence, pp. 1812–1818, 2015.

Mirzasoleiman, B., Badanidiyuru, A., and Karbasi, A. Fast
constrained submodular maximization: Personalized data
summarization. In International Conference on Machine
Learning (ICML), pp. 1358–1367, 2016a.

Mirzasoleiman, B., Karbasi, A., Sarkar, R., and Krause,
A. Distributed Submodular Maximization. Journal of
Machine Learning Research (JMLR), 17:1–44, 2016b.

Mirzasoleiman, B., Zadimoghaddam, M., and Karbasi, A.
Fast Distributed Submodular Cover: Public-Private Data
Summarization. In Advances in Neural Information Pro-
cessing Systems, 2016c.

Mirzasoleiman, B., Karbasi, A., and Krause, A. Deletion-
Robust Submodular Maximization: Data Summarization
with “the Right to be Forgotten”. In International Con-
ference on Machine Learning (ICML), pp. 2449–2458,
2017.

Mirzasoleiman, B., Jegelka, S., and Krause, A. Streaming
Non-Monotone Submodular Maximization: Personalized
Video Summarization on the Fly. In AAAI Conference on
Artificial Intelligence, 2018.

Mitrovic, M., Bun, M., Krause, A., and Karbasi, A. Differ-
entially Private Submodular Maximization: Data Sum-
marization in Disguise. In International Conference on
Machine Learning (ICML), pp. 2478–2487, 2017a.

Mitrovic, M., Kazemi, E., Zadimoghaddam, M., and Kar-
basi, A. Data Summarization at Scale: A Two-Stage
Submodular Approach. In International Conference on
Machine Learning (ICML), pp. 3593–3602, 2018.

Mitrovic, S., Bogunovic, I., Norouzi-Fard, A., Tarnawski,
J. M., and Cevher, V. Streaming Robust Submodular
Maximization: A Partitioned Thresholding Approach. In
Advances in Neural Information Processing Systems, pp.
4560–4569, 2017b.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functions-I. Mathematical programming, 14(1):265–
294, 1978.

Norouzi-Fard, A., Tarnawski, J., Mitrovic, S., Zandieh,
A., Mousavifar, A., and Svensson, O. Beyond 1/2-
Approximation for Submodular Maximization on Mas-
sive Data Streams. In International Conference on Ma-
chine Learning (ICML), pp. 3826–3835, 2018.

Stan, S., Zadimoghaddam, M., Krause, A., and Karbasi, A.
Probabilistic Submodular Maximization in Sub-Linear
Time. In International Conference on Machine Learning
(ICML), 2017.

