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Abstract
Deep reinforcement learning algorithms have
been successfully applied to a range of challeng-
ing control tasks. However, these methods typi-
cally struggle with achieving effective exploration
and are extremely sensitive to the choice of hyper-
parameters. One reason is that most approaches
use a noisy version of their operating policy to
explore - thereby limiting the range of exploration.
In this paper, we introduce Collaborative Evolu-
tionary Reinforcement Learning (CERL), a scal-
able framework that comprises a portfolio of poli-
cies that simultaneously explore and exploit di-
verse regions of the solution space. A collection
of learners - typically proven algorithms like TD3
- optimize over varying time-horizons leading to
this diverse portfolio. All learners contribute to
and use a shared replay buffer to achieve greater
sample efficiency. Computational resources are
dynamically distributed to favor the best learners
as a form of online algorithm selection. Neuroevo-
lution binds this entire process to generate a single
emergent learner that exceeds the capabilities of
any individual learner. Experiments in a range of
continuous control benchmarks demonstrate that
the emergent learner significantly outperforms its
composite learners while remaining overall more
sample-efficient - notably solving the Mujoco Hu-
manoid benchmark where all of its composite
learners (TD3) fail entirely in isolation.

1. Introduction
Reinforcement learning (RL) has been successfully applied
to a number of challenging tasks, ranging from arcade games
(Mnih et al., 2015; 2016), board games (Silver et al., 2016)
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to robotic control (Andrychowicz et al., 2017; Lillicrap et al.,
2015). A driving force behind the explosion of RL appli-
cations is its integration with powerful non-linear function
approximators like deep neural networks. This partnership,
often referred to as Deep Reinforcement Learning (DRL),
has enabled RL to successfully extend to tasks with high-
dimensional input and action spaces. However, widespread
adoption of these techniques to real-world problems is still
limited by two major challenges: the difficulty in achieving
effective exploration and brittle convergence properties that
require careful tuning of the hyperparameters by a designer.

First, exploration is a key component for successful rein-
forcement learning. It enables an agent to learn good poli-
cies and avoid converging prematurely to local optima. De-
signing exploration strategies that lead to a diverse set of
experiences remains a key challenge for DRL operating on
high dimensional action and state spaces (Plappert et al.,
2017). Many methods have been formulated to address this
issue, ranging from intrinsic motivation (Bellemare et al.,
2016), count-based exploration (Ostrovski et al., 2017; Tang
et al., 2017), curiosity (Pathak et al., 2017) and variational
information maximization (Houthooft et al., 2016). Fur-
ther, a parallel class of techniques emphasize exploration
by adding noise directly to the parameters of the agent (For-
tunato et al., 2017; Plappert et al., 2017; Khadka & Tumer,
2018). However, each of these techniques either relies on
supplementary structures or introduces task-specific param-
eters that need to be tuned rigorously. A general exploration
strategy that is universally applicable across tasks and learn-
ing algorithms remains an active area of research.

Second, DRL approaches are often notoriously sensitive
to their hyperparamaters (Henderson et al., 2017; Islam
et al., 2017) and demonstrate brittle convergence properties
(Haarnoja et al., 2018). This is particularly true for off-
policy approaches that use a replay buffer to leverage past
experiences (Bhatnagar et al., 2009; Duan et al., 2016). In
part, this sensitivity is coupled with the difficulty of effective
exploration. A standard reinforcement learner employs a
noisy version of its operating policy as its behavioral policy
for exploration. This puts the burden of both exploitation
and exploration onto the same set of hyperparameters.

In this paper, we introduce Collaborative Evolutionary Re-
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Figure 1. High level schematic of CERL. A portfolio of policy gra-
dient learners operate in parallel to neuroevolution for collective
exploration, while a shared replay buffer enables collective ex-
ploitation. Resource Manager drives this process by dynamically
allocating computational resources amongst the learners.

inforcement Learning (CERL), a scalable framework that
leverages a portfolio of learners that learn with different
time-horizons to explore different parts of the solution space
while remaining loyal to the task. This process is directed
by a resource manager that dynamically re-distributes com-
putational resources amongst the learners - favoring the best
as a form of online algorithm selection. The diverse set of
experiences generated by this adaptive process are stored
in a shared replay buffer for collective exploration enabling
better sample efficiency.

Figure 1 illustrates CERL’s multi-layered learning approach
where each learner exploits the data generated by a diversity
of “behavioral policies” stemming from other learners in the
portfolio. An evolutionary population operating in parallel
augments this process by extending exploration to the pa-
rameter space of policies through mutation. Evolution also
introduces redundancies in the population to stabilize learn-
ing, intermixes sub-components within policies through
crossover, and binds the entire underlying process to gen-
erate an emergent learner that exceeds the sum of its parts.
Experiments in a range of continuous control benchmarks
demonstrate that CERL inherits the best of its composite
learners while remaining overall more sample-efficient.

2. Background
A standard reinforcement learning setting is often formal-
ized as a Markov Decision Process (MDP) and consists of
an agent interacting with an environment over a finite num-
ber of discrete time steps. At each time step t, the agent
observes a state st and maps it to an action at using its
policy π. The agent receives a scalar reward rt and transi-
tions to the next state st+1. The process continues until the
agent reaches a terminal state marking the end of an episode.
The return, Rt =

∑∞
n=1 γ

krt+k is the total return from
time step t with discount factor γ ∈ (0, 1]. The goal of the

agent is to maximize this expected return. The state-value
function Qπ(s, a) describes the expected return from state
s after taking action a and subsequently following policy π.

2.1. Twin Delayed Deep Deterministic Policy Gradients

Policy gradient methods re-frame the goal of maximizing
the expected return as the minimization of a loss function
L(θ) where θ encapsulates the agent parameters. A widely
used policy gradient method is Deep Deterministic Policy
Gradient (DDPG) (Lillicrap et al., 2015), a model-free RL
algorithm developed for working with continuous, high
dimensional actions spaces. Recently, Fujimoto et al. ex-
tended DDPG to Twin Delayed DDPG (TD3), (Fujimoto
et al., 2018b) addressing the well-known overestimation
problem of the former. TD3 was shown to significantly
improve upon DDPG and is the state-of-the-art, off-policy
algorithm for model-free deep reinforcement learning in
continuous action spaces. TD3 uses an actor-critic archi-
tecture (Sutton & Barto, 1998) maintaining a deterministic
policy (actor) π : S → A, and two distinct action-value
function approximations (critics) Q : S ×A → Ri.

Each critic independently approximates the actor’s action-
value function Qπ. The actor and the critics are param-
eterized by (deep) neural networks with θπ, θQa , and θQb
respectively. A separate copy of the actor π′ and critics: Q′a
and Q′b are kept as target networks for stability. These net-
works are updated periodically using the actor π and critic
networks: Qa andQb regulated by a weighting parameter τ
and a delayed policy update frequency d.

A behavioral policy is used to explore the environment dur-
ing training. The behavioral policy is simply a noisy version
of the policy: πb(s) = π(s) + N (0, 1) where N is white
Gaussian noise. After each action, the tuple (st, at, rt, st+1)
containing the current state, actor’s action, observed reward
and the next state, respectively, is saved into a replay buffer
R. The actor and critic networks are updated by randomly
sampling mini-batches from R. The critic is trained by
minimizing the loss function:

Li =
1
T

∑
i(yi −Qi(si, ai|θQ))2

where yi = ri + γ min
j=1,2

Q′j(si+1,
∼
a |θQ

′
j )

where ∼a is the noisy action computed by adding Gaussian
noise clipped to between −c and c. ∼a = π′(si+1|θπ

′
) + ε,

clip
(
ε ∼ N (µ, σ2) − c, c

)
This noisy action used for the Bellman update smoothens
the value estimate by bootstrapping from similar state-action
value estimates. It serves to make the policy smooth and
addresses overfitting of the deterministic policy. The actor
is trained using the sampled policy gradient:

∇θπJ ∼ 1
T

∑
∇aQ(s, a|θQa )|s=si,a=ai∇θππ(s|θπ)|s=si
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The sampled policy gradient with respect to the actor’s
parameters θπ is computed by backpropagation through the
combined actor and critic network.

2.2. Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of search algo-
rithms characterized by three primary operators: new so-
lution generation, solution alteration and selection (Fogel,
2006; Spears et al., 1993). These operations are applied on
a population of candidate solutions to continually generate
new solutions while retaining promising ones. The selection
operation is generally probabilistic, where better solutions
with higher fitness values have a higher probability of being
selected. Assuming that higher fitness values are representa-
tive of good solution quality, the overall quality of solutions
will improve with each generation. In this work, each indi-
vidual in the evolutionary algorithm is a deep neural network
representing a policy π. Mutation is implemented as ran-
dom perturbations to the weights (genes) of these neural
networks. The evolutionary framework used here is closely
related to evolving neural networks and is often referred to
as neuroevolution (Floreano et al., 2008; Lüders et al., 2017;
Risi & Togelius, 2017; Stanley & Miikkulainen, 2002).

3. Related Work
A closely related work to CERL is Population-based Train-
ing (PBT) (Jaderberg et al., 2017), which employs a popu-
lation to jointly optimize models and its associated hyper-
parameters online. However, unlike CERL, PBT does not
dynamically redistribute computational resources amongst
its learners; instead, it relies entirely on its evolutionary
process for learner selection. Additionally, learners in PBT
are isolated and do not share experiences with each other for
collective exploitation - a key mechanism in CERL for the
retention of sample-efficiency. Collective exploitation of a
diverse set of experiences is a popular idea, particularly in
recent literature. Colas et al. used an evolutionary method
(Goal Exploration Process) to generate diverse samples fol-
lowed by a policy gradient method for fine-tuning the policy
parameters (Colas et al., 2018) while Khadka and Tumer
incorporated the two processes to run concurrently formu-
lating a Lamarckian framework (Khadka & Tumer, 2018).
From an evolutionary perspective, this is closely related to
the idea of incorporating learning with evolution (Ackley &
Littman, 1991; Drugan, 2018; Turney et al., 1996).

Another facet of CERL is algorithm selection (Gagliolo
& Schmidhuber, 2006; Smith-Miles, 2009; Rice, 1976) -
an idea that has been explored extensively in past litera-
ture. Lagoudakis and Littman formulated algorithm se-
lection as an MDP and used Q-learning to solve classic
order statistic selection and sorting problems (Lagoudakis
& Littman, 2000). Cauwet et al. addressed noisy opti-

Figure 2. Comparative performance of Neuroeovlution, TD3 (γ =
0.0, 1.0) and CERL (built using them) in the Hopper benchmark.

mization using a portfolio of online reinforcement learning
algorithms (Cauwet et al., 2014). Conversely, Laroche and
Feraud introduced Epochal Stochastic Bandit Algorithm
Selection (ESBAS), which tackled algorithm selection in
reinforcement learning itself, formulating it as a K-armed
stochastic bandit problem (Laroche & Feraud, 2017). The
resource-manager in CERL closely builds on this formu-
lation to inherit its good exploration-exploitation trade-off
properties. However, unlike ESBAS, CERL leads to soft
algorithm selection - carried out through the allocation of
computation resources rather than a hard binary selection.

4. Motivating Example
Consider the Hopper task from OpenAI gym (Brockman
et al., 2016), a classic continuous control benchmark used
widely in recent DRL literature (Duan et al., 2016; Islam
et al., 2017; Henderson et al., 2017; Schulman et al., 2015).
Here, the goal is to make a two-dimensional, one-legged
robot hop as fast as possible without falling. The task has a
state space dimension of S = 11 and action space dimension
of A = 3. TD3 has been shown to solve this problem fairly
easily (Fujimoto et al., 2018a) (also shown in Figure 5 in
Section 6). However, TD3 solves this problem with a tuned
discount rate (γ = 0.99). It is interesting how sensitive this
performance would be to varying choices of a discount rate
(γ), including ones that are clearly sub-optimal.

Figure 2 shows the comparative performance of TD3 (γ =
0.0), TD3 (γ = 1.0), neuroevolution and our proposed ap-
proach: CERL built using the two TD3 variations as its
learners. TD3 (γ = 0.0) represents an extremely greedy
learner whose optimization horizon is limited to its imme-
diate reward. On the contrary, TD3 (γ = 1.0) represents a
long-term learner whose optimization horizon is virtually
infinite. However, since it seeks to optimize a return which
is a function of all future action and states in the trajectory,
it learns with significant amount of variance. Both learn-
ers represent the extreme ends of the spectrum and would
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not be expected to learn well. Figure 2 corroborates this
expectation: TD3 (γ = 0.0) fails to entirely learn as the
most greedy action with respect to the immediate reward
is rarely aligned with the cumulative episode-wide return.
TD3 (γ = 1.0), on the other hand, has a reward ceiling of
1000 - imposed by the variance of its computed return. Sim-
ilarly, neuroevolution on its own also fails to solve the task
within the 5 million steps tested. However, CERL, which
is built directly on top of these learners, is able to continue
learning beyond this - reaching a score of 2136± 512.

While each of the learners fails to solve the problem individ-
ually, they collaboratively succeed in solving it under the
CERL framework. A key reason here is that each learner
fails when required to simultaneously exploit well and pro-
duce good behavioral policies that explore the space well.
Being able to do both is key to solving the problem and tun-
ing the discount rate is akin to finding this trade-off. CERL
provides an alternate approach to finding this trade-off - by
employing both learners to explore the space while dynami-
cally distributing the resources to the better performer for
effective exploitation. Even when a learner is ill-suited for
solving the task by itself, it can serve to be a key ’behavioral
policy’ that explores critical parts of the search space and
generates experiences which are key to learning well on the
task. CERL exploits these diversities to define an emergent
learner that surpasses the sum of its parts.

5. Collaborative Evolutionary Reinforcement
Learning

Algorithm 1 Object Learner
1: procedure INITIALIZE(γ)
2: Set discount rate=γ, count=0 and value v=0
3: Initialize actor π and critic Q with weights θπ and

θQ, respectively
4: Initialize target actor π′ and critic Q′ with weights

θπ
′

and θQ
′
, respectively

The principal idea behind Collaborative Evolutionary Rein-
forcement Learning (CERL) is to incorporate the strengths
of multiple learners, each optimizing over varying time-
horizons of the underlying task (MDP). While a specific
learner is unlikely to be an optimal choice for the task
throughout the learning process, a diverse collection of learn-
ers is significantly more likely to be so. This is particularly
true for exploration, where different learners can contribute
a diverse set of behavioral policies while remaining loyal
to the task. A shared replay buffer ensures that all learners
exploit this diverse data generated. A resource manager
supervises this process by dynamically re-distributing com-
putational resources to favor the better performing learners.
Finally, this entire underlying apparatus is bound together by
evolution which serves to integrate the best policies, explore

Algorithm 2 CERL Algorithm
1: Initialize portfolio P with q learners (Alg 1) - varying γ
2: Start allocation A uniformly, and set # roll-out H = 0
3: Initialize a population of k actors popπ
4: Initialize an empty cyclic replay bufferR
5: Define a Gaussian noise generator O = N (0, σ)
6: Define a random number generator r() ∈ [0, 1)
7: for generation = 1,∞ do
8: for actor π ∈ popπ do
9: fitness, R = Evaluate(π, R, noise=None)

10: Rank the population based on fitness scores
11: Select the first e actors π ∈ popπ as elites
12: Select (k − e) actors π from popπ, to form Set S

using tournament selection with replacement
13: while |S| < (k − e) do
14: Use single-point crossover between a randomly

sampled π ∈ e and π ∈ S and append to S
15: for Actor π ∈ Set S do
16: if r() < mutprob then
17: Mutate(θπ)
18: for Learner L ∈ P do
19: for ii =1,Ai do
20: score, R = Evaluate(Lπ,R, noise = O)
21: Lv = α * score + (1 - α) * Lv
22: Lcount += 1
23: ups = # of environment steps taken this generation
24: for ii = 1, ups do
25: for Learner L ∈ P do
26: Sample a random minibatch of T transitions

(si, ai, ri, si+1) fromR
27: Update the critic via a Bellman update

using the min of LQ′j(si+1 (see 2.1)
28: Update Lπ using the sampled policy

gradient with noisy actions (see 2.1))
29: Soft update target networks:
30: Lθπ′ ⇐ τLθπ + (1− τ)Lθπ′ and
31: LθQ′ ⇐ τLθQ + (1− τ)LθQ′

32: Compute the UCB scores U using
33: for Learner L ∈ P do

Ui = Lv + c ∗
√

logeH
Lcount

34: Normalize U to be within [0, 1) and set A = []
35: Sample from U to fill up A
36: if generation mod ω = 0 then
37: for Learner L ∈ P do
38: Copy Lπ into the population: for weakest

π ∈ popπ : θπ ⇐ Lθπ

in the parameter space and exploit any decomposition in the
policy space with crossover operands. The emergent learner
combines the best of its underlying composite processes,
leading to a whole larger than the sum of its parts.
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Algorithm 3 Function Evaluate
1: procedure EVALUATE(π, R, noise)
2: fitness = 0
3: Reset environment and get initial state s0
4: while env is not done do
5: Select action at = π(st|θπ) + noiset
6: Execute action at and observe reward rt and

new state st+1

7: Append transition (st, at, rt, st+1) to R
8: fitness← fitness+ rt and s = st+1

9: Return fitness, R

Algorithm 4 Function Mutate
1: procedure MUTATE(θπ)
2: for Weight MatrixM∈ θπ do
3: for iteration = 1, mutfrac ∗ |M| do
4: Randomly sample indices i and j fromM′s

first and second axis, respectively
5: if r() < supermutprob then
6: M[i, j] = M[i, j] * N (0, 100 ∗

mutstrength)
7: else if r() < resetprob then
8: M[i, j] = N (0, 1)
9: else

10: M[i, j] =M[i, j] *N (0, mutstrength)

A general flow of the CERL algorithm proceeds as follows:
a population of actor networks is initialized with random
weights. The population is then evaluated in an episode
of interaction with the environment (roll-out). The fitness
for each actor is computed as the cumulative sum of the
rewards received in the roll-out. A selection operator selects
a portion of the population for survival with probability com-
mensurate with their relative fitness scores. The weights of
the actors in the population are then probabilistically per-
turbed through mutation and crossover operators to create
the next generation of actors. A select portion of actors
with the highest relative fitness are shielded from the muta-
tion step and are preserved as elites.

Portfolio: The procedure described so far is reminiscent of
a standard EA. However, in addition to the population of
actors, CERL initializes a collection of learners (henceforth
referred to as a portfolio). Each learner is initialized with its
own actor, critic and has an associated learning algorithm
defined with its own distinct hyperparameters. In this paper,
the variation across learners is realized through varying dis-
count rates (γ). However, in general, this can be any other
variation in the hyperparameters, including a difference in
the learning algorithm itself. The variation in discount rate
used in this work can be interpreted as each learner opti-
mizing over a distinct time-horizon of the underlying MDP.
Learners with lower discount rates optimize a “greedier”

objective than the ones with larger discount rates (long-term
optimizers). The greedier objective has the benefit of being
highly learnable but is not guaranteed to be aligned with
the true learning goal. On the other hand, the long-term
objective is more aligned to the true learning goal but is
not as learnable - suffering from high variance due to its
returns being conditioned on a longer time horizon. Thus,
the portfolio represents a diverse set of learners, each with
its own strengths and weaknesses.

Adaptive Resource Allocation: CERL is initialized with
a computation resource budget of b workers dedicated to
running roll-outs for its learner portfolio (separate from
the resources used to evaluate the evolutionary population
of actors). Allocation A defines the allotment of this re-
source budget amongst the learners within the portfolio for
each generation of learning. This is initialized uniformly -
each learner gets an equal number of dedicated workers to
run roll-outs using its actor as the behavioral policy. Each
learner stores statistics about the number of cumulative
roll-outs it has run y, and a value metric v, defined as the
discounted sum of the cumulative returns received from its
own roll-outs. v is updated after every roll-out as:

v′ ⇐ α ∗ return+ (1− α) ∗ v

After each generation, an upper confidence bound (UCB)
(Auer, 2002) score U is computed for each learner based on
its node statistics using Equation 1. This formulation is com-
monly used in solving multi-bandit problems (Bubeck et al.,
2012; Karnin et al., 2013). The UCB score is known to pro-
vide good trade-offs between exploitation and exploration
and has been extensively used for reinforcement learning in
the form of tree searches (Anthony et al., 2017; Silver et al.,
2016) and algorithms selection (Laroche & Feraud, 2017).

Ui = vni + c ∗

√
log(

∑b
i=1 yi)

yi
(1)

where, vn is v normalized to be ∈ (0, 1)

The UCB scores are normalized to form a probability dis-
tribution, and allocation A is re-populated by iterative sam-
pling from this distribution. The allocation describes the
new allotment of resources (roll-out workers) amongst the
learners for the next generation. The process can be seen as
a meta-operation that adaptively distributes resources across
the learners dynamically during the course of learning. The
underlying UCB technique used to control this distribution
ensures a systematic approach to balancing exploitation and
exploration when allocating resources across learners.

Shared Experiences: The collective replay buffer is the
principal mechanism that enables the sharing of information
across the evolutionary population and amongst the learners
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in the portfolio. In contrast to a standard EA which would
extract the fitness metric from each of its roll-outs and dis-
regard them immediately, or ensemble methods that treat
different learners separately, CERL pools all experiences de-
fined by the tuple (current state, action, next state, reward)
in its collective replay buffer. This is done for every interac-
tion, at every time-step, for every episode and for each of its
actors (including the evolutionary population and each roll-
out conducted by the portfolio of learners). All learners are
then able to sample experiences from this collective buffer
and use it to update its parameters repeatedly using gradient
descent. This mechanism allows for increased information
extraction from each individual experiences leading to im-
proved sample efficiency.

Diverse Exploration: In contrast to most methods where a
learner learns based on data that its behavioral policy gen-
erates, CERL enables its portfolio of learners to leverage
the data generated by a diverse set of actors. This includes
the actors within the neuroevolutionary population and the
actors stemming from other learners in the portfolio. Since
each learner optimizes over varying time-horizons of the
same underlying MDP, the associated actors lead to diverse
behavioral policies exploring different regions of the solu-
tion space while remaining aligned with the task at hand.
Additionally, in contrast to the learners which explore in
their action space, the neuroevolutionary population ex-
plores in its parameter (neural weights) space using the
mutation operator. The two processes complement each
other and collectively lead to an effective strategy that is
able to better explore the policy space.

Portfolio → EA: Periodically, each learner network is
copied into the evolutionary population of actors, a pro-
cess referred to as Lamarckian transfer. The frequency of
Lamarckian transfer controls the flow of information from
the gradient-based learners in the portfolio to the gradient-
free evolutionary population. This is the core mechanism
that enables the evolutionary framework to directly leverage
the information learned through gradient-based optimiza-
tion. The evolutionary process also acts as an amplifier
in the realization of adaptive resource allocation. Good
learner policies are selected to survive and reproduce - ex-
tending their influence in the population over subsequent
generations. These policies and their descendants contribute
increasingly more data experiences into the collective replay
buffer and influence the learning of the all portfolio learn-
ers. Bad learner policies, on the other hand, are rejected
to minimize their influence. Finally, crossover serves to
exploit any decomposability in the policy space and com-
bines good “sub-components of the policies” present in the
diverse evolutionary population.

Algorithm 2, 3 and 4 provide a detailed pseudo-code of the
CERL algorithm using a portfolio of TD3 learners. The

choice of hyperparameters is explained in the Appendix.
Additionally, our source code 1 is available online.

6. Results
Domain: CERL is evaluated on 5 continuous control tasks
on Mujoco (Todorov et al., 2012). These benchmarks are
used widely in the field (Khadka & Tumer, 2018; Such et al.,
2017; Schulman et al., 2017) and are hosted on OpenAI gym
(Brockman et al., 2016).

Compared Baselines: For each benchmark, we compare
the performance of CERL with its composite learners ran in
isolation. While not constrained to this arrangement, CERL
here is built using a combination of a neuroevolutionary al-
gorithm (EA) and 4 policy gradient based learners. We use
TD3 (Fujimoto et al., 2018b) as our policy gradient learner
as it is the current state-of-the-art off-policy algorithm for
these benchmarks. The 4 TD3 learners are identical with
each other apart from their discount rates which are 0.9,
0.99, 0.997, and 0.9995. These were not tuned for perfor-
mance.

We also ran CERL with a single learner - picking the
best TD3 learner for each task. This is equivalent to ERL
(Khadka & Tumer, 2018) with the exception of the resource
manager. However, the resource manager does not have any
functional effect when there is only one learner.

Methodology for Reported Metrics: For TD3, the actor
network was periodically tested on 10 task instances with-
out any exploratory noise. The average score was logged as
its performance. During each training generation, the actor
network with the highest fitness was selected as the cham-
pion. The champion was then tested on 10 task instances,
and the average score was logged. This protocol shielded
the reported metrics from any bias of the population size.
We conduct 5 statistically independent runs with random
seeds from {2018, 2022} and report the average with error
bars showing a 95% confidence interval.

The “Steps” Metric: All scores reported are compared
against the number of environment steps. A step is de-
fined as an agent taking an action and receiving a reward
back from the environment. To make the comparisons fair
across single-agent and population-based algorithms, all
steps taken by all actors in the population, and by all learn-
ers in the portfolio are counted cumulatively.

Hyperparameter Selection: The hyperparameters used for
CERL were not tuned to generate the results, unless specif-
ically stated. The parameters used for the TD3 learners
were simply inherited from (Fujimoto et al., 2018b), while
the evolutionary parameters were inherited from (Khadka
& Tumer, 2018). The computational budget of b workers

1github.com/intelai/cerl

https://github.com/intelai/cerl
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Figure 3. Comparative Results for CERL tested against its com-
posite learners in the Humanoid benchmark.

was set to 10 to match the evolutionary population size.
The UCB exploration coefficient was set to 0.9 which nu-
merically makes the relative weight of exploration and ex-
ploitation terms in Equation 1 close to equilibrium at the
start.

Humanoid: Figure 3 shows the comparative performance
of CERL, alongside its composite learners. CERL signifi-
cantly outperforms neuroevolution, as well as all versions
of TD3 with varying discount rates. The TD3 learners fail
to learn at all, which is consistent with reports in previ-
ous literature (Haarnoja et al., 2018). On the other hand,
neuroevolution alone was shown to solve Humanoid, but re-
quired 62.5 millions roll-outs (Lehman et al., 2018). CERL
is able to achieve a score of 4702.0±356.5 within 1 million
environment steps (approximately 4000 roll-outs). Consid-
ering that CERL only uses a combination of these learners,
this is a significant result. Each learner in isolation fails
to learn on the task entirely, while the same learners when
incorporated under the CERL framework, are able to solve
it jointly. This is because none of the learners are able to
succeed when burdened with both exploring the solution
space to generate an expansive set of data, and exploiting
it aptly. However, when the learners collectively explore
diverse regions of the solution space, and collectively ex-
ploit these experiences, they succeed. The single-learner
ERL also fails to learn this task. Since the key difference
between ERL and CERL is the use of multiple learners, this
demonstrates that the performance gains of CERL come
primarily from this collaboration.

Resource-manager’s Sensitivity to Exploration: Figure
4 shows the comparative performance for CERL tested with
varying c (exploration coefficient in Equation 1) for the Hu-
manoid benchmark. CERL with c = 0.9 performs the best
as it provides a good balance of exploration and exploitation
for the resource-manager. However, CERL with c = 0.0
and c = 5.0 both are also able to learn well the benchmark,

Figure 4. Sensitivity analysis for resource-manager exploration (c)
in the Humanoid benchmark

but are less sample-efficient. An important point to note
is that c = 0.0 does not lead to the complete lack of ex-
ploration. As all learners start with random weights, the
returns are close to random at the beginning of learning and
serves to bootstrap exploration. On the other hand, a c of 10
does lead to extremely high exploration. As expected, this
prolonged exploration leads to even lower sample efficiency.
This highlights the role that the resource-manager plays in
dynamically redistributing resource and finding the balance
between exploration and exploitation.

Additional Mujoco Experiments: Figure 5 shows the
comparative performance of CERL, alongside its composite
learners in 4 additional environments simulated using Mu-
joco. Unlike the 3D humanoid benchmark, these domains
are 2D, have considerably smaller state and action spaces,
and are relatively simpler to solve. One of the four TD3
learners: TD3 with a discount rate of 0.99 (TD3-0.99) is
able to solve 3 out of the 4 benchmarks, with the exception
of Swimmer. CERL is also able to solve these benchmarks
but is less sample-efficient that TD3-0.99. However, on the
Swimmer benchmark, while all of the TD3 learners fail to
solve the task, CERL successfully solves it similar to neu-
roevolution. This emphasizes the key strength of CERL: the
ability to inherit the best of its composite approaches.

While TD3-0.99 is more sample-efficient in 3 out of the 4
benchmarks, CERL is more sample-efficient than all the
other TD3-based learners. This suggests that 0.99 is an
ideal discount rate for these tasks. Any deviation from this
value leads to considerable loss in performance for TD3.
In other words, this is a sensitive hyperparameter that has
to be rigorously tuned. CERL achieves this functional-
ity online through its resource-manager, which adaptively
re-distributes computational resources across the learners.
While this invariably leads to the use of more samples when
compared to an ideal hyperparameter that is known a priori,
CERL is able to identify and exploit the best hyperparam-
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(a) Hopper (b) Swimmer (c) HalfCheetah (d) Walker2D

Figure 5. Comparative results of CERL with 4 learners (TD3 with discount rates of 0.9, 0.99, 0.997 and 0.9995) against the learners in
isolation, and neuroevolution.

Table 1. Average cumulative resource-allocation rate for CERL
across benchmarks. (error intervals omitted as all were < 0.04)

Task L1 L2 L3 L4

Humanoid 0.24 0.35 0.20 0.20

Hopper 0.14 0.27 0.32 0.27

Swimmer 0.17 0.20 0.36 0.27

HalfCheetah 0.29 0.32 0.24 0.15

Walker 0.14 0.28 0.33 0.25

eters online via joint exploration. Additionally, as demon-
strated in the cases of Swimmer and Humanoid (Figure
3), this exploration itself is critical to successful learning
as there does not exist one hyperparameter that can solve
the task all by itself. Overall, CERL enables an arguably
simpler alternative to network design compared to complex
hyperparameter tuning methodologies.

Allocation: Table 1 reports the final cumulative resource-
allocation rate across the four learners for CERL in the five
Mujoco benchmarks tested. L1, L2, L3 and L4 correspond
to learners with γ = 0.9, 0.99, 0.997 and 0.9995, respec-
tively. L2 seems to be the learner that is generally preferred
across most tasks. This is not surprising as this value for γ
is the hyperparameter used in (Fujimoto et al., 2018b) after
tuning. However, in the Swimmer benchmark, this choice of
hyperparameter is not ideal. Learners with higher γ perform
significantly better on the task (Figure 5). CERL is able
to identify this online and allocates more resources to L3
and L4 with higher γ. This flexibility for online algorithm
selection, in combination with its evolutionary population,
enables CERL to solve the Swimmer benchmark effectively.

7. Discussion
We presented CERL, a scalable platform that allows
gradient-based learners to jointly explore and exploit so-
lutions in a gradient-free evolutionary framework. Experi-
ments in continuous control demonstrate that CERL’s emer-
gent learner can outperform its composite learners while

remaining overall sample-efficient compared to traditional
approaches.

Strengths: CERL is generally insensitive to its hyperparam-
eters and to those of the individual learners. The Humanoid
and Swimmer problems are examples where state-of-the-art
algorithms show high sensitivity to their hyperparameters
while CERL required no hyperparameter tuning. Signifi-
cantly, the Humanoid problem demonstrates that CERL is
able to find effective solutions using participating learners
that fail completely on their own. This makes CERL a sim-
pler design alternative to complex hyperparameter tuning
and one that seems to generalize well across multiple tasks.

A practical consideration for CERL is the parallel operation
of gradient-based and gradient-free methods. The former,
involving backpropagation, is typically suited for GPUs.
The latter, involving forward-propagation, is typically suited
for CPUs and is highly scalable, leading to impressive wall-
clock performances (Salimans et al., 2017; Such et al., 2017).
By leveraging both modes simultaneously, CERL provides
a principled way to parallelize learning and to cater one’s
learning algorithm to the available hardware.

Limitations: CERL can be less sample-efficient for simple
tasks where the ideal hyperparameters are known a priori.
This is apparent in the case of Walker2d (Fig 5) and can be
attributed to the exploration involved in selecting learners.
However, CERL does eventually match the performance
shown by the learner with the known ideal hyperparameter.
This weakness of CERL is contingent on the ability to derive
the ideal parameters for a learner - a process which by itself
generally consumes significant resources that are often not
reported in literature.

Future Work: Here, we explored homogeneous learners op-
timizing over varying time-horizons of a task. Future work
will extend this to learners that are different algorithms them-
selves. Incorporating stochastic actors from SAC (Haarnoja
et al., 2018) with the deterministic TD3 actors is an exciting
area. Another promising line of work would be to incorpo-
rate learning within the resource manager to augment the
current UCB formulation.
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