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Abstract

Reinforcement learning algorithms struggle when
the reward signal is very sparse. In these cases,
naive random exploration methods essentially rely
on a random walk to stumble onto a rewarding
state. Recent works utilize intrinsic motivation
to guide the exploration via generative models,
predictive forward models, or discriminative mod-
eling of novelty. We propose EMI, which is an
exploration method that constructs embedding
representation of states and actions that does not
rely on generative decoding of the full observa-
tion but extracts predictive signals that can be
used to guide exploration based on forward pre-
diction in the representation space. Our experi-
ments show competitive results on challenging
locomotion tasks with continuous control and on
image-based exploration tasks with discrete ac-
tions on Atari. The source code is available at
https://github.com/snu-mllab/EMI.

1. Introduction

The central task in reinforcement learning is to learn poli-
cies that would maximize the total reward received from
interacting with the unknown environment. Although re-
cent methods have been demonstrated to solve a range of
complex tasks (Mnih et al., 2015; Schulman et al., 2015;
2017), the success of these methods hinges on whether the
agent constantly receives the intermediate reward feedback
or not. In case of challenging environments with sparse
reward signals, these methods struggle to obtain meaningful
policies unless the agent luckily stumbles into the rewarding
or predefined goal states.

To this end, prior works on exploration generally utilize
some kind of intrinsic motivation mechanism to provide a
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Figure 1: Visualization of a sample trajectory in our learned
embedding space.

measure of novelty. These measures can be based on density
estimation via generative models (Bellemare et al., 2016;
Fu et al.,, 2017; Oh et al., 2015), predictive forward mod-
els (Stadie et al., 2015; Houthooft et al., 2016), or discrim-
inative methods that aim to approximate novelty (Pathak
et al., 2017). Methods based on predictive forward mod-
els and generative models must model the distribution over
state observations, which can make them difficult to scale
to complex, high-dimensional observation spaces.

Our aim in this work is to devise a method for exploration
that does not require a direct generation of high-dimensional
state observations, while still retaining the benefits of being
able to measure novelty based on the forward prediction. If
exploration is performed by seeking out states that maximize
surprise, the problem, in essence, is in measuring surprise,
which requires a representation where functionally similar
states are close together, and functionally distinct states are
far apart.

In this paper, we propose to learn compact representations
for both the states (¢) and actions (¢) simultaneously satis-
fying the following criteria: First, given the representations
of state and the corresponding next state, the uncertainty
of the representation of the corresponding action should be
minimal. Second, given the representations of the state and
the corresponding action, the uncertainty of the representa-
tion of the corresponding next state should also be minimal.
Third, the action embedding representation (1)) should seam-
lessly support both continuous and discrete actions. Finally,
we impose a linear dynamics model in the representation
space which can also explain the rare irreducible error under
the dynamics model. Given the representation, we guide
the exploration by measuring surprise based on forward
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prediction and a relative increase in diversity in the embed-
ding representation space. Figure 1 illustrates an example
visualization of our learned state embedding representations
(¢) and sample trajectories in the representation space in
Montezuma’s Revenge.

We present two main technical contributions that make this
into a practical exploration method. First, we describe how
compact state and action representations can be constructed
via variational divergence estimation of mutual information
without relying on generative decoding of full observations
(Nowozin et al., 2016). Second, we show that imposing lin-
ear topology on the learned embedding representation space
(such that the transitions are linear), thereby offloading most
of the modeling burden onto the embedding function itself,
provides an essential informative measure of surprise when
visiting novel states.

For the experiments, we show that we can use our represen-
tations on a range of complex image-based tasks and robotic
locomotion tasks with continuous actions. We report sig-
nificantly improved results compared to a number of recent
intrinsic motivation based exploration methods (Fu et al.,
2017; Pathak et al., 2017) on several challenging Atari tasks
and robotic locomotion tasks with sparse rewards.

2. Related works

Our work is related to the following strands of active re-
search:

Unsupervised representation learning via mutual infor-
mation estimation Recent literature on unsupervised rep-
resentation learning generally focuses on extracting latent
representations maximizing an approximate lower bound on
the mutual information between the code and the data. In
the context of generative adversarial networks (Goodfellow
et al., 2014), Chen et al. (2016); Belghazi et al. (2018) aim
at maximizing the approximation of mutual information be-
tween the latent code and the raw data. Belghazi et al. (2018)
estimates the mutual information with neural networks via
Donsker & Varadhan (1983) estimation to learn better gen-
erative models. Hjelm et al. (2018) builds on the idea and
trains a decoder-free encoding representation maximizing
the mutual information between the input image and the
representation. Furthermore, the method uses f-divergence
(Nowozin et al., 2016) estimation of Jensen-Shannon diver-
gence rather than the KL divergence to estimate the mutual
information for better numerical stability. Oord et al. (2018)
estimates mutual information via an autoregressive model
and makes predictions on local patches in an image. Thomas
et al. (2017) aims to learn the representations that maximize
the causal relationship between the distributed policies and
the representation of changes in the state. Nachum et al.
(2018) connects mutual information estimators to represen-

tation learning in hierarchical RL.

Exploration with intrinsic motivation Prior works on ex-
ploration mostly employ intrinsic motivation to estimate
the measure of novelty or surprisal to guide the exploration.
Mohamed & Rezende (2015) introduced the connection be-
tween mutual information estimation and empowerment for
intrinsic motivation. Bellemare et al. (2016); Ostrovski et al.
(2017) utilize density estimation via CTS (Bellemare et al.,
2014) generative model and PixelCNN (van den Oord et al.,
2016) and derive pseudo-counts as the intrinsic motivation.
Fu et al. (2017) avoids building explicit density models by
training K-exemplar models that distinguish a state from
all other observed states. Some methods train predictive
forward models (Stadie et al., 2015; Houthooft et al., 2016;
Oh et al., 2015) and estimate the prediction error as the
intrinsic motivation. Oh et al. (2015) employs generative
decoding of the full observation via recursive autoencoders
and thus can be challenging to scale for high dimensional
observations. VIME (Houthooft et al., 2016) approximates
the environment dynamics, uses the information gain of the
learned dynamics model as intrinsic rewards, and showed
encouraging results on robotic locomotion problems. How-
ever, the method needs to update the dynamics model per
each observation and is unlikely to be scalable for complex
tasks with high dimensional states such as Atari games.

RND (Burda et al., 2018) trains a network to predict the out-
put of a fixed randomly initialized target network and uses
the prediction error as the intrinsic reward but the method
does not report the results on continuous control tasks. ICM
(Pathak et al., 2017) transforms the high dimensional states
to feature space and imposes cross entropy and Euclidean
loss so the action and the feature of the next state are pre-
dictable. However, ICM does not utilize mutual information
like VIME to directly measure the uncertainty and is limited
to discrete actions. Our method (EMI) is also reminiscent of
(Kohonen & Somervuo, 1998) in the sense that we seek to
construct a decoder-free latent space from the high dimen-
sional observation data with a topology in the latent space.
In contrast to the prior works on exploration, we seek to
construct the representation under linear topology and does
not require decoding the full observation but seek to encode
the essential predictive signal that can be used for guiding
the exploration.

3. Preliminaries

We consider a Markov decision process defined by the tuple
(S, A, P,r,v), where S is the set of states, A is the set of
actions, P : § x A x § — R, is the environment transi-
tion distribution, r : S — R is the reward function, and
v € (0, 1) is the discount factor. Let 7 denote a stochastic
policy over actions given states. Denote Py : S — R as
the distribution of initial state sy. The discounted sum of
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expected rewards under the policy 7 is defined by
o= [Sote)|.
t=0

where 7 = (sg, ag,...,ar—_1,s7) denotes the trajectory,
so ~ Po(s0),at ~ m(a; | st), and sp41 ~ P(set1 | S¢,a1).
The objective in policy based reinforcement learning is to
search over the space of parameterized policies (i.e. neural
network) 7 (a | s) in order to maximize 7(mg).

Also, denote Pg 4 ¢, as the joint probability distribution of
singleton experience tuples (s, a,s’) starting from sy ~
Py(so) and following the policy w. Furthermore, define

P% = [s.5 AP%4g as the marginal distribution of actions,
P%g = [, dP% g as the marginal distribution of states
and the corresponding next states, PT, = | sxa AP A

as the marginal distribution of the next states, and Pg , =
Js dP% 4 g as the marginal distribution of states and the
actions following the policy 7.

4. Methods

Our goal is to construct the embedding representation of the
observation and action (discrete or continuous) for complex
dynamical systems that does not rely on generative decoding
of the full observation, but still provides a useful predictive
signal that can be used for exploration. This requires a
representation where functionally similar states are close
together, and functionally distinct states are far apart. We
approach this objective from the standpoint of maximizing
mutual information under several criteria.

4.1. Mutual information maximizing state and action
embedding representations

In this subsection, we introduce the desiderata for our ob-
jective and discuss the variational divergence lower bound
for efficient computation of the objective. We denote the
embedding function of states ¢, : S — R? and actions
¥ + A — R? with parameters o and 3 (i.e. neural net-
works) respectively. We seek to learn the embedding func-
tion of states (¢) and actions (1) g) satisfying the following
two criteria:

1. Given the embedding representation of states and the
actions [¢q(s); 13(a)], the uncertainty of the embed-
ding representation of the corresponding next states
¢« (s") should be minimal and vice versa.

2. Given the embedding representation of states and the
corresponding next states [¢q(s); @o(s")], the uncer-
tainty of the embedding representation of the corre-
sponding actions %3(a) should also be minimal and
vice versa.

Intuitively, the first criterion translates to maximizing the
mutual information between [¢(s);15(a)], and ¢4 (s)

which we define as Zg(«, 8) in Equation (1). And the
second criterion translates to maximizing the mutual in-
formation between [¢,(s); ¢ (s’)] and 1p5(a) defined as
Za(a, B) in Equation (2).

maxirﬁnize Is(a, B) := I([¢a(8);w5(a)];¢a(3/))

=Dk (P5as | P54 @ P%) (1)

ma)((xirﬁnize Za(e, B) :=I([¢a(s); dals)]; ¥a(a))
=Dk (P5as | Pos @ PR)  (2)

Mutual information is not bounded from above and maximiz-
ing mutual information is notoriously difficult to compute in
high dimensional settings. Motivated by (Hjelm et al., 2018;
Belghazi et al., 2018), we compute the variational diver-
gence lower bound of mutual information (Nowozin et al.,
2016). Concretely, variational divergence (f-divergence) rep-
resentation is a tight estimator for the mutual information of
two random variables X and Z, derived as in Equation (3).

I(X;Z)Z'DKL(PXZ || Px®Pz) 3)
> sug)2 Ep,,T.(x,2) — logEp, gp, exp(T,(z, 2)),
we

where T,, : X x Z — R is a differentiable transform with
parameter w. Furthermore, for better numerical stability, we
utilize a different measure between the joint and marginals
than the KL-divergence. In particular, we employ Jensen-
Shannon divergence (JSD) (Hjelm et al., 2018) which is
bounded both from below and above by 0 and log(4) !.

Theorem 1. The lower bound of mutual information using
Jensen-Shannon divergence is

I(JSD) (X, Z) > Slelg ]EPXZ [—sp (_Tw (1’, Z))]
— Epxep, [sp(Tu(z,2))] + log(4)

Proof.

IUPN(X;Z) = Disp(Pxz || Px ® Pz)
2> Sug EPXZ [Sw (Iv Z)] - EPX®PZ [JSD* (Sw(xa Z))]
we

= sup Ep,, [-sp (=T (, 2))]
weN

— Epygpr, [Sp (Tw (J?, Z))} + 1Og(4)’

where the inequality in the second line holds from the
definition of f-divergence (Nowozin et al., 2016). In
the third line, we substituted S, (z,2) = log(2) —
log(1 + exp(—T,,(x, z))) and Fenchel conjugate of Jensen-
Shannon divergence, JSD*(t) = — log(2 — exp(t)). O

'In (Nowozin et al., 2016), the authors derive the lower bound
of Dysp = DKL(PHM) + DKL(Q”M), instead of D jsp =
1(Dicr(P||IM) + Dicr(QIIM)), where M = L(P + Q).
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Figure 2: Computational architecture for estimating IgSD) and IXSD) for image-based observations.

From Theorem 1, we have,
maxiréiize IgSD)(a, B)
«,

2 maximize sup Fpg, ., [=5p (—Twos ($a(s), ¥5(a), da(s'))]

— By, ory, [ (Tos (9a(s),¥5(a), 6a()))] +1ogd, &)
maxiglize IEL{SD)((X, B)

> maximize sup Ery . [=sp (~Thos (6a(s), ¥5(@), 6a())]

—Epr,wpy [0 (Twa(Pals) ¥5(a), ¢a(s)))] + log4, ®)

where sp(z) = log(1 + exp(z)). The expectations in Equa-
tion (4) and Equation (5) are approximated using the em-
pirical samples trajectories 7. Note, the samples s’ ~ PT,
and a ~ P from the marginals are obtained by dropping
(s,a) and (s,s') in samples (s,a,s’) and (s,a,s’) from
IP% 45 - Figure 2 illustrates the computational architecture
for estimating the lower bounds on Zg and Z 4.

4.2. Embedding the linear dynamics model with the
error model

Since the embedding representation space is learned, it is
natural to impose a topology on it (Kohonen, 1983). In
EMI, we impose a simple and convenient topology where
transitions are linear since this spares us from having to also
represent a complex dynamical model. This allows us to
offload most of the modeling burden onto the embedding
function itself, which in turn provides us with a useful and
informative measure of surprise when visiting novel states.
Once the embedding representations are learned, this linear
dynamics model allows us to measure surprise in terms of
the residual error under the model or measure diversity in
terms of the similarity in the embedding space. Section 4.3
discusses the intrinsic reward computation procedure in
more detail.

Concretely, we seek to learn the representation of states
¢(s) and the actions ¥ (a) such that the representation of
the corresponding next state ¢(s’) follow linear dynamics
ie. ¢(s') = o(s)+ ¢¥(a). Intuitively, we would like the
nonlinear aspects of the dynamics to be offloaded to the neu-
ral networks ¢(-),1(-) so that in the R? embedding space,
the dynamics become linear. Regardless of the expressivity
of the neural networks, however, there always exists irre-
ducible error under the linear dynamic model. For example,
the state transition which leads the agent from one room to
another in Atari environments (i.e. Venture, Montezuma’s
revenge, efc.) or the transition leading the agent in the
same position under certain actions (i.e. Agent bumping
into a wall when navigating a maze) would be extremely
challenging to explain under the linear dynamics model.

To this end, we introduce the error model S, : S x A — R4,
which is another neural network taking the state and action
as input, estimating the irreducible error under the linear
model. Motivated by the work of Candes et al. (2011),
we seek to minimize Frobenius norm of the error term so
that the error term contributes on sparingly unexplainable
occasions. Equation (6) shows the embedding learning
problem under linear dynamics with modeled errors.

minimize ||Sy|l2,0
a,B,y ——
error minimization

subjectto P, = P, + Vg + S, (6)

embedding linear dynamics

where we used the matrix notation for compactness.
®,, Ug, S, denotes the matrices of respective embedding
representations stacked columns wise. Relaxing the matrix
I - |l2,0 norm with Frobenius norm, Equation (7) shows our
final learning objective.
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miniénize 1@, — (Pa + Vs + 5,) |7
B,y

+ )\error”S’Y”% + /\infOLinfm (7)
where Ling, denotes the following mutual information term.

['info = inf IE]P’7r

ws€Ng SAs’

sp (=T (Pa(5), ¥5(a), da(s')))

+ EIP’S'A®IP’S‘, Sp (Tws (¢a (S)a wﬁ (a)a Qba(sl)))
+ inf Epr 8p(—Tua(¢als) ¥s(a), ¢als)))

wWAENA

+ EIP”S'S,@)]P”A Sp (TwA ((//)a(s)’ wﬁ (a’)’ o (S/)))

Aerror, Ainfo are hyperparameters which control the relative
contributions of the linear dynamics error and the mutual
information term. In practice, for image-based experi-
ments, we found the optimization process to be more sta-
ble when we further regularize the distribution of action
embedding representation to follow a predefined prior dis-
tribution. Concretely, we regularize the action embedding
distribution to follow a standard normal distribution via
Dy (P, || N(0, 1)) similar to VAEs (Kingma & Welling,
2013). Intuitively, this has the effect of grounding the dis-
tribution of action embedding representation (and conse-
quently the state embedding representation) across different
iterations of the learning process.

Note, regularizing the distribution of state instead of action
embeddings renders the optimization process much more
unstable. This is because the distribution of states are much
more likely to be skewed than the distribution of actions,
especially during the initial stage of optimization, so the
Gaussian approximation becomes much less accurate in
contrast to the distribution of actions. In Section 5.5, we
compare the state and action embeddings as regularization
targets in terms of the quality of the learned embedding
functions.

4.3. Intrinsic reward augmentation

We consider a formulation based on the prediction error
under the linear dynamics model as shown in Equation (8).
This formulation incorporates the error term and makes sure
we differentiate the irreducible error that does not contribute
as the novelty.

re(se, ar, sp) = ||d(se) + ¥(ar) + S(se, ar) — o(s4) |
(8)

Algorithm 1 shows the complete procedure in detail. The
choice of different intrinsic reward formulation and the com-
putation of Ly, are fully described in supplementary Sec-
tion 2 and 3.

Algorithm 1 Exploration with mutual information state and
action embeddings (EMI)

initialize «,3,v,w4,wg
for i =1,..., MAXITER do
Collect samples {(s¢, at, s;) 7, with policy 7y
Compute prediction error intrinsic rewards
{re(st, az, s}) 7, following Equation (8)
for j =1,..., OPTITER do
for k=1,...,[ %] do
Sample a minibatch {(s¢,, as,, s},) }2q
Update «, 3,7, wa,ws using the Adam update
rule to minimize Equation (7)
end for
end for
Augment the intrinsic rewards with environment re-
ward Teny aS 7 = Teny + Nre and update the policy
network 7y using any RL method
end for

5. Experiments

We compare the experimental performance of EMI to recent
prior works on both low-dimensional locomotion tasks with
continuous control from rllab benchmark (Duan et al., 2016)
and the complex vision-based tasks with discrete control
from the Arcade Learning Environment (Bellemare et al.,
2013). For the locomotion tasks, we chose SwimmerGather
and SparseHalfCheetah environments for direct comparison
against the prior work of (Fu et al., 2017). SwimmerGather
is a hierarchical task where a two-link robot needs to reach
green pellets, which give positive rewards, instead of red
pellets, which give negative rewards. SparseHalfCheetah is
a challenging locomotion task where a cheetah-like robot
does not receive any rewards until it moves 5 units in one
direction.

For vision-based tasks, we selected Freeway, Frostbite, Ven-
ture, Montezuma’s Revenge, Gravitar, and Solaris for com-
parison with recent prior works (Pathak et al., 2017; Fu
et al., 2017; Burda et al., 2018). These six Atari environ-
ments feature very sparse reward feedback and often contain
many moving distractor objects which can be challenging
for the methods that rely on explicit decoding of the full
observations (Oh et al., 2015). Table 1 shows the overall
performance of EMI compared to the baseline methods in
all tasks.

5.1. Implementation Details

We compare all exploration methods using the same RL pro-
cedure, in order to provide a fair comparison. Specifically,
we use TRPO (Schulman et al., 2015), a policy gradient
method that can be applied to both continuous and discrete
action spaces. Although the absolute performance on each
task depends strongly on the choice of RL algorithm, com-
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Figure 3: Example sample paths in our learned embedding representations. Note the embedding dimensionality d is 2, and

thus we did not use any dimensionality reduction techniques.

paring the different methods with the same RL procedure
allows us to control for this source of variability. Also,
we observed TRPO is less sensitive to changes in hyper-
parameters than A3C (see Mnih et al. (2016)) making the
comparisons easier.

In the locomotion experiments, we use a 2-layer fully con-
nected neural network as the policy network. In the Atari
experiments, we use a 2-layer convolutional neural network
followed by a single layer fully connected neural network.
We convert the 84 x 84 input RGB frames to grayscale
images and resize them to 52 x 52 images following the
practice in Tang et al. (2017). The embedding dimension-
ality is set to d = 2 and intrinsic reward coefficient is set
to n = 0.001 in all of the environments. We use Adam
(Kingma & Ba, 2015) optimizer to train embedding net-

works. Please refer to supplementary Section 1 for more
details.

5.2. Locomotion tasks with continuous control

We compare EMI with TRPO (Schulman et al., 2015), EX2
(Fuetal., 2017), ICM (Pathak et al., 2017) and RND (Burda
et al., 2018) on two challenging locomotion environments:
SwimmerGather and SparseHalfCheetah. Figures 4a and 4b
shows that EMI outperforms all baseline methods on both
tasks. Figure 3a visualizes the scatter plot of the learned
state embeddings and an example trajectory for the Sparse-
HalfCheetah experiment. The figure shows that the learned
representation successfully preserves the similarity in obser-
vation space.
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Figure 4: (a), (b): Performance of EMI on locomotion tasks with sparse rewards compared to the baseline methods. The
solid lines show the mean reward (y-axis) of 5 different seeds at each iteration (x-axis) and the shaded area represents one
standard deviation from the mean. (c): Ablation result on SparseHalfCheetah. Each iteration represents 50K time steps for

SwimmerGather and 5K time steps for SparseHalfCheetah.
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Figure 5: Performance of EMI on sparse reward Atari environments compared to the baseline methods. The solid lines show
the mean reward (y-axis) of 5 different seeds at each iteration (x-axis). Each iteration represents 100K time steps.

5.3. Vision-based tasks with discrete control

For vision-based exploration tasks, our results in Figure 5
show that EMI significantly outperforms the TRPO, EX2,
ICM baselines on Frostbite and Montezuma’s Revenge, and
show competitive performance against RND. Figures 3b
and 3c illustrate our learned state embeddings ¢. Since
our embedding dimensionality is set to d = 2, we directly
visualize the scatter plot of the embedding representation
in 2D. Figure 3b shows that the embedding space natu-
rally separates state samples into two clusters each of which

corresponds to different rooms in Montezuma’s revenge.
Figure 3c shows smooth sample transitions along the em-
bedding space in Frostbite where functionally similar states
are close together and distinct states are far apart.

5.4. Ablation study

We perform an ablation study showing the effect of remov-
ing each term in the objective in Equation (7) on Sparse-
HalfCheetah. First, removing the information gain term
collapses the embedding space and the agent fails to get
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EMI EX2 ICM RND AE-SimHash VIME TRPO

SwimmerGather 0.438 0.200 0 0 0.258 0.196 0
SparseHalfCheetah 218.1 153.7 1.4 34 0.5 98.0 0
Freeway 33.8 27.1 33.6 333 335 - 26.7
Frostbite 7002 3387 4465 2227 5214 - 2034
Venture 646 589 418 707 445 - 263
Gravitar 558 550 424 546 482 - 508
Solaris 2688 2276 2453 2051 4467 - 3101
Montezuma 387 0 161 377 75 - 0

Table 1: Mean reward comparison of baseline methods. We compare EMI with EX2 (Fu et al., 2017), ICM (Pathak et al.,
2017), RND (Burda et al., 2018), AE-SimHash (Tang et al., 2017), VIME (Houthooft et al., 2016), and TRPO (Schulman
et al., 2015). The EMI, EX2, ICM, RND, and TRPO columns show the mean reward of 5 different seeds consistent with
the settings in Figure 4 and Figure 5. The AE-SimHash and VIME columns show the results from the original papers. All
methods in the table are implemented based on TRPO policy. The results of MuJoCo experiments are reported at SM and
100M time steps respectively. The results of Atari experiments are reported at SOM time steps.

any rewards as shown in Figure 4c. Also, we observed that
adding the model error term (Purple versus Red in the fig-
ure) shows drastic performance improvement. We observed
that modeling the linear dynamics error helps stabilize the
embedding learning process during training. Please refer to
supplementary Section 4, 5, and 6 for further analyses.

5.5. Regularization of embedding distributions

In order to visually examine
the learned embedding repre-
sentations, we designed a sim-
ple image-based 2D environ-
ment which we call BoxImage.
In BoxImage, the agent exists
at a position with real-valued
coordinates and moves by per-
forming actions in a confined
2D space. Then the agent re-
ceives the top-down view of the environment as image states
(examples shown in Figure 6). For the implementation de-
tails, please refer to supplementary Section 7.

Figure 6: Example ob-
servations from BoxIm-
age. White agent moves
inside the black box.

When the state embedding function ¢ : R%2*52 — R?, and
the action embedding function ¢» : R? — R? are trained
with the regularization on the action embedding distribution
with Dgr (P7, || N(0, 1)), the learned embedding represen-
tations successfully represent the distributions of the agent’s
2D positions and actions, as shown in Figure 7. On the
other hand, employing the regularization on the state em-
bedding distribution with Dxr (PF || A(0,1)) results in
severe degradation in the embedding quality, mainly due to
the skewness of the state sample distribution.

6. Conclusion

We presented EMI, a practical exploration method that does
not rely on the direct generation of high dimensional obser-
vations and instead extracts the predictive signal that can

Dy (PF || N(0,T))  Dxi(PF || N(0,))

Figure 7: (Left) Agent’s actual 2D positions and actions at
the top and bottom respectively. (Center) Learned state and
action embeddings when the action embedding is regular-
ized. (Right) Learned state and action embeddings when the
state embedding is regularized.

be used for exploration within a compact representation
space. Our results on challenging robotic locomotion tasks
with continuous actions and high dimensional image-based
games with sparse rewards show that our approach transfers
to a wide range of tasks. As future work, we would like
to explore utilizing the learned linear dynamic model for
optimal planning in the embedding representation space. In
particular, we would like to investigate how an optimal tra-
jectory from a state to a given goal in the embedding space
under the linear representation topology translates to the
optimal trajectory in the observation space under complex
dynamical systems.
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