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Abstract

Exploration based on state novelty has brought
great success in challenging reinforcement learn-
ing problems with sparse rewards. However, ex-
isting novelty-based strategies become inefficient
in real-world problems where observation con-
tains not only task-dependent state novelty of our
interest but also task-irrelevant information that
should be ignored. We introduce an information-
theoretic exploration strategy named Curiosity-
Bottleneck that distills task-relevant information
from observation. Based on the information bot-
tleneck principle, our exploration bonus is quanti-
fied as the compressiveness of observation with
respect to the learned representation of a com-
pressive value network. With extensive experi-
ments on static image classification, grid-world
and three hard-exploration Atari games, we show
that Curiosity-Bottleneck learns an effective ex-
ploration strategy by robustly measuring the state
novelty in distractive environments where state-
of-the-art exploration methods often degenerate.

1. Introduction
In reinforcement learning (RL), an agent learns to interact
with an unknown environment by maximizing the cumu-
lative reward. In this process, the agent should determine
whether to take the best sequence of actions based on previ-
ous experiences or to explore different actions in the hope
of discovering novel and potentially more rewarding tra-
jectories. This well-known dilemma is often coined as the
exploration-exploitation tradeoff.

Choosing an appropriate exploration strategy becomes more
crucial especially in an environment where observation also
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contains novel but task-irrelevant information1. For exam-
ple, suppose a robot navigating through a crowded street,
where it visits known locations (states) while facing various
strangers (task-irrelevant novelty). The robot should not
classify a state as novel because of strangers; instead, it
should ignore the distractions to effectively reach its destina-
tion and obtain rewards precisely. Although such situations
are widespread in real-world problems (e.g. navigating
drones in a crowd), many recent exploration strategies for
policy optimization (Mohamed & Rezende, 2015; Houthooft
et al., 2016; Pathak et al., 2017; Burda et al., 2019a; Belle-
mare et al., 2016; Tang et al., 2017; Ostrovski et al., 2017;
Choi et al., 2019) are designed to be effective in environ-
ments where observation is well-aligned to the target task
such as Atari games (Bellemare et al., 2013). Through a
series of experiments, we observe that those approaches are
often inaccurate to capture the state novelty when observa-
tion contains such novel but task-irrelevant information.

In this work, we propose an information-theoretic approach
to measuring state novelty in distractive environments. Our
method is task-specific in that it learns to identify the tar-
get task using sparse extrinsic rewards and filters out task-
irrelevant or distractive information from observation when
quantifying the state novelty. Motivated by neural network’s
ability to learn a compressive representation (Tishby & Za-
slavsky, 2015; Shwartz-Ziv & Tishby, 2017), we propose
to quantify the degree of compression of observation with
respect to the latent representation of a compressive value
network, and use it as a surrogate metric for task-specific
state novelty as intrinsic reward. The proposed exploration
algorithm is referred to as Curiosity-Bottleneck since it in-
troduces the information bottleneck (IB) principle (Tishby
& Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Alemi
et al., 2017; Alemi & Fischer, 2018; Alemi et al., 2018b;a)
to exploration problems to comprise following properties:
(i) encoding an observation of a higher probability to be
more compressive in representation and (ii) omitting task-
irrelevant information while learning a compressive rep-
resentation. The degree of compression of observation is
estimated by the variational upper-bound of mutual informa-
tion between observations and learned neural network rep-
resentations, which can be efficiently computed in a closed

1 The task-irrelevant information refers to ones that affect
neither the agent nor the target.
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form. Moreover, the Curiosity-Bottleneck is integrable with
any policy optimization algorithms and naturally scalable
to high-dimensional observations. Although there has been
an apporach that uses information theoretic approach with
action-predictive quality to enhance exploration (Still & Pre-
cup, 2012), to the best of our knowledge, this work is the
first to introduce the value-predictive information bottleneck
for exploration in RL problems.

We perform various qualitative and quantitative experiments
in static image classification, customized Grid-world envi-
ronment named Treasure Hunt and three hard-exploration
Atari games (Bellemare et al., 2013) including Gravitar,
Montezuma’s Revenge, and Solaris. We show that the
Curiosity-Bottleneck accurately captures the state novelty
in distractive environments where state-of-the-art methods
degenerate due to their over-sensitivity to some unexpected
visual information in the environment. We also provide an
in-depth analysis of the learned representation and adaptive
exploration strategy.

2. Related Work
A majority of task-agnostic exploration strategies in deep
RL context quantify the novelty of observation in terms
of counts (Bellemare et al., 2016; Ostrovski et al., 2017),
pseudo-counts (Bellemare et al., 2016; Tang et al., 2017;
Choi et al., 2019), information gain (Houthooft et al., 2016;
Chen et al., 2017) prediction error (Schmidhuber, 1991;
Stadie et al., 2015; Achiam & Sastry, 2016; Pathak et al.,
2017; Haber et al., 2018; Fox et al., 2018; Burda et al.,
2019b), or value-aware model prediction (Luo et al., 2019;
Farahmand et al., 2017). Despite the significant improve-
ment they have brought on hard exploration tasks, this group
of exploration strategies struggles to provide a meaningful
metric for exploration when observation contains informa-
tion that is irrelevant to the target task.

The degeneration in distractive environments partially origi-
nates from the task-agnostic objective for intrinsic reward
functions. For example, count or pseudo-count based ap-
proaches (Tang et al., 2017; Bellemare et al., 2016) encode
an observation into a feature space before they allocate the
observation to a cluster. Since the feature space is obtained
by a deterministic encoder or an autoencoder trained to re-
construct input images, those methods would misallocate an
observation to a novel cluster when the observation contains
familiar task-related information and novel task-irrelevant
information. The same analysis holds for information gain
and prediction based approaches. Most of those approaches
learn to preserve information about state dynamics (i.e. state
transition) or inverse-dynamics. However, they are easily
deceived by an unpredictable transition of visual stimulus;
such phenomenon is called the Noisy-TV problem (Burda
et al., 2019a). Though some recent methods (Savinov et al.,

2019; Burda et al., 2019b) are immune to the Noisy-TV
problem, they do not have mechanisms to prioritize task-
related information above task-irrelevant one.

Exploration methods in the temporal-difference learning
(e.g. deep Q-learning) can provide a natural way of incorpo-
rating task-relatedness into exploration. Many exploration
strategies in this group rely on the principle of optimism in
the face of uncertainty (Lai & Robbins, 1985). It encour-
ages an agent to explore by choosing an action that yields
some uncertainty about the action-value estimates. Classi-
cal examples utilize upper confidence bound (Auer et al.,
2002) and Thompson sampling (Thompson, 1933) for the
stochastic sampling of actions. Recent algorithms incorpo-
rate these ideas with finer uncertainty approximations, to be
applicable to extremely large state-spaces with deep explo-
ration (Osband et al., 2016; Chen et al., 2017; O’Donoghue
et al., 2018; Fortunato et al., 2018). Although they provide
a way to indirectly incorporate state novelty to the target
task via the minimization of overall uncertainty, there is
no explicit mechanism to prune out the uncertainty caused
by task-irrelevant perturbations. Another limitation is that
their algorithmic (e.g. the temporal-difference learning) or
architectural (e.g. Bayesian neural network) assumptions
hinder extension to policy optimization algorithms.

Therefore, it is desirable to have an exploration approach
that not only takes advantage of plug-and-play novelty mea-
sures but also is capable of filtering out task-irrelevant infor-
mation by identifying the target task and learning to exclude
distractions from its representation.

3. Preliminaries of Information Bottleneck
We introduce some background on information bottleneck
(IB) principle (Tishby et al., 2000) and variational informa-
tion bottleneck (VIB) (Alemi et al., 2017). Our Curiosity-
Bottleneck is closely related to VIB since it learns compres-
sive yet informative representation using VIB framework,
which is key to quantifying task-specific state novelty.

Let the input variable X and the target variable Y be dis-
tributed according to some joint data distribution p(x, y).
The IB principle provides an objective function to obtain a
compressive latent representation Z from the input X while
maintaining the predictive information about the target Y :

min−I(Z;Y ) + βI(X;Z) (1)

where I(·; ·) is mutual information (MI) and β ≥ 0 is a
Lagrange multiplier. The first term in Eq.(1) ensures the la-
tent representation Z to be predictive about the target, while
the second term forces Z to ignore irrelevant information
from the input X . As a consequence, the learned repre-
sentation generalizes better, is robust to adversarial attack
(Alemi et al., 2017), is invariant to nuance factors (Achille



Curiosity-Bottleneck: Exploration by Distilling Task-Specific Novelty

& Soatto, 2018a), and prevents weight over-fitting (Alemi
et al., 2018b; Achille & Soatto, 2018b; Vera et al., 2018).

Alemi et al. (2017) propose a variational approximation
of IB that is intuitively applicable to supervised learning
problems. The VIB can derive variational lower bounds
of the two MI terms in the IB objective. First, minimizing
the upper bound of −I(Z;Y ) is equivalent to optimizing a
standard supervised learning objective:

−I(Z;Y ) = −
∫
p(z, y) log

p(y|z)
p(y)

dzdy

≤ −
∫
p(z, y) log

q(y|z)
p(y)

dzdy

= Ez,y[− log q(y|z)]−H(Y ), (2)

where q(y|z) is a variational approximation of p(y|z), and
the inequality holds because KL[p(Y |Z)‖q(Y |Z)] ≥ 0.
The entropy of label H(Y ) can be ignored since it is of-
ten independent of the objective optimization.

For the second term βI(X;Z), we minimize the upper
bound of I(X;Z) by optimizing the KL-divergence be-
tween the posterior p(Z|X) and a variational approximation
r(Z) of the marginal distribution p(Z):

I(X;Z) =

∫
p(z, x) log

p(z|x)
p(z)

dzdx

≤
∫
p(z, x) log

p(z|x)
r(z)

dzdx

= KL[p(Z|X)‖r(Z)], (3)

where the inequality holds because KL[p(Z|X)‖r(Z)] ≥ 0.

Although Peng et al. (2019) apply the VIB to RL problems,
they focus on improving the discriminator of generative ad-
versarial networks in imitation learning tasks. To the best of
our knowledge, this work is the first to utilize VIB’s capa-
bility of learning compressive representation and detecting
out-of-distribution data (Alemi et al., 2018a) for exploration
in RL problems. We propose the Curiosity-Bottleneck which
ignores the task-irrelevant information (i.e. distractions) by
using KL[p(Z|x)‖q(Z)] as the novelty measure.

4. Approach
In Section 4.1, we introduce an information-theoretic ap-
proach for learning a compressor model named Curiosity-
Bottleneck (CB). CB can quantify task-specific novelty from
observation. In Section 4.2, we describe the novel behavior
of CB that leads to adaptive exploration respective to the
agent’s competence in the task. In Section 4.3, we describe
how to plug our method into policy optimization algorithms.

Fig.1 shows the overview of our approach. We assume a
standard RL setting where an agent interacts with environ-
ment E by getting an observation xt, executing an action
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Figure 1. Overview of Curiosity-Bottleneck (CB). (a) An agent
interacts with environment E by getting an observation xt, execut-
ing an action at sampled from its current policy π and receiving
extrinsic reward ret and intrinsic reward rit generated by CB. (b) In
CB, the compressor represents the observation xt in a latent space
according to a posterior distribution pθ(Z|xt). The value predictor
takes the representation zt as input and predicts the target value yt.
The KL-divergence, which is the per-instance approximation of
I(Z;X), quantifies the degree of compression of xt with respect
to the learned compressor. It becomes the intrinsic reward rit. The
prediction error− log qφ(yt|zt) with the KL-divergence forms the
objective of CB, Lθ,φ. CB allows task-specific exploration in a
distractive environment since it lets the model discard as much
information from xt as possible via the KL-divergence and retain
information that is useful to predict yt via the prediction error.

at sampled from its current policy π and receiving extrin-
sic reward ret and intrinsic reward rit. The role of CB is to
compute the intrinsic reward.

4.1. The Curiosity-Bottleneck

The key to the CB is to obtain a compressor model pθ(Z|X)
whose output representation Z satisfies the three desiderata.

• Minimize the average code-length of observation X to
obtain a meaningful novelty measure. It is based on
Minimum Description Length (MDL) principle (Ris-
sanen, 1978), which describes a one-to-one correspon-
dence between a code length function and a probability
distribution; it encodes a rare observation to a lengthy
code and a common observation to a shorter one. This
criterion motivates us to minimize the entropy H(Z)
that can be seen as an average code length of a random
variable (Cover & Thomas, 2006).

• Discard as much information about observation X as
possible to exclude task-irrelevant information. This
motivates us to disperse pθ(Z|X) by maximizing the
entropy H(Z|X).

• Preserve information related to target variable Y to
include the meaningful information for the task. In our
setting, Y is a value estimate since extrinsic rewards in-
directly define the task in RL problems. This criterion
can be addressed by maximizing mutual information
I(Z;Y ).

For optimizing the above three desiderata, we derive an
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objective function for our compressor model as

min
θ
−I(Z;Y ) + βI(X;Z), (4)

where we use the definition of mutual information (MI)
I(X;Z) = H(Z) −H(Z|X). β is a non-negative coeffi-
cient that trades off the relative importance of compression
and relevance to the task.

The MI between the input variable and the code has been
often used as a metric for quantifying the degree of compres-
sion (Cover & Thomas, 2006). We thus use the per-instance
mutual information i(x;Z) as the novelty metric for ob-
servation x; that is, i(x;Z) =

∫
z
p(z|x) log p(x,z)

p(x)p(z)dz

becomes our intrinsic reward function where I(X;Z) =∫
x
p(x)i(x;Z)dx. However, I(X;Z) is intractable in gen-

eral; instead, we estimate its variational upper bound.

Interestingly, Eq.(4) has the same form of IB objective as
discussed in Section 3. Hence, a tractable variational approx-
imation to the objective is derivable by plugging Eq.(2)–(3)
to Eq.(4):

Lθ,φ = E
x,y

[− log qφ(y|z) + βKL[pθ(Z|x)‖q(Z)]], (5)

where q indicates a variational distribution, z is sampled
from posterior pθ(Z|xn) and θ and φ denote the parameters
of the compressor and the value predictor respectively as
presented in Fig.1 (b). Finally, we can represent our intrinsic
reward function for observation xn in a KL-divergence term:

ri(xn) = KL[pθ(Z|xn)‖q(Z)]. (6)

Using the KL-divergence that approximates I(Z;X) as a
novelty measure is also supported by (Alemi et al., 2018a),
which show that KL[pθ(Z|xn)‖q(Z)] itself is a sound un-
certainty metric for out-of-distribution detection.

In practice, we assume a Gaussian distribution for
qφ(y|z) = N(µφ(z), σ

2). We use a simple fully-connected
layer that outputs the mean µφ(z) ∈ R of y. We set a con-
stant variance σ2 so that log qφ(y|z) in Eq.(5) reduces to
the mean-squared error (i.e. a standard value loss).

We also assume a Gaussian distribution for both compres-
sor output distribution pθ(z|x) = N(µθ(x), σθ(x)) and
variational prior q(z) = N(0, I). The compressor net-
work consists of a standard three-layer convolutional neural
network followed by an MLP that outputs both the mean
µθ(x) ∈ RK of z and the diagonal elements of covariance
matrix σθ(x) ∈ RK . We use the reparameterization trick
(Kingma & Welling, 2014) to sample z = µθ(x) + εσθ(x)
in a differentiable way with an auxiliary random variable
ε ∼ N(0, I). In this setting, the intrinsic reward is com-
puted in a closed form as

ri(x) =
1

2

K∑
k

µ2
θ,k(x) + σ2

θ,k(x)− log σ2
θ,k(x)− 1. (7)
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Figure 2. Illustration of adaptive exploration of our method. Sup-
pose xt is task-relevant observation, xd is task-irrelevant one. Solid
lines and dotted lines on the top row are the target values and the
predictions of CB, respectively. The black arrow indicates the sum
of gradients of two terms in an objective function in Eq.(5) that
transforms the posterior to a different shape depicted by the blurry
curve at the end of the black arrow. The numbers within the poste-
rior curves are the intrinsic rewards for the observation. (a) Before
having sufficient experience of receiving external reward signals,
KL[pθ(Z|x)‖q(Z)] pulls posteriors to the marginal q(Z), while
the value prediction loss − log qφ(y|z) makes relatively little con-
tribution. (b) The loss− log qφ(y|z) largely contributes to shaping
meaningful posteriors after collecting sufficient experiences.

4.2. Adaptive Exploration

One outstanding property of CB is adaptive exploration
respective to the agent’s competence in the target task. In-
duced by changing the balance between KL-divergence term
and negative log-probability term in the objective function
of Eq.(5), CB automatically shifts its exploration strategy
from the task-identification phase to the task-specific explo-
ration phase. Fig.2 illustrates how our method adaptively
calibrates intrinsic reward by identifying the target task.
Both task-relevant observation xt and distractive observa-
tion xd are mapped to Gaussian posteriors pθ(Z|x) on the
middle row in Fig.2. The KL-divergence term always re-
duces the intrinsic reward for observation x by forcing the
posterior pθ(Z|x) to collapse to the marginal q(Z) as we
denote using gray-colored arrow and ∇KL. The negative
log-probability term often increases the intrinsic reward
for x by encouraging pθ(Z|x) to be a meaningful posterior
in order to accurately predict the target value that is built
from the previous experiences of external rewards. The two
terms together change the intrinsic reward of an observation
by transforming the posterior to a different shape which
is indicated by blurry posterior at the end of the black ar-
row. Specifically, changes in the target values result in two
distinct exploration phases.

Task-identification. In RL problems with sparse rewards,
an agent often has no experience of receiving extrinsic re-
ward signals at the early training steps (See Fig.2 (a)). Then,
the target values are zero for all observations and the value
predictor achieves an arbitrarily small prediction loss (i.e.
negative log-probability) simply by collapsing model param-
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eters to zero. Such constant target values are illustrated by a
solid line in the top row and the predicted values are flat as
a dotted line. In this situation, the negative log-probability
term contributes little to making different intrinsic rewards
among observations.

For this reason, the KL-divergence term determines the land-
scape of the intrinsic reward function over observations. The
posterior pθ(Z|x) of frequently seen observations become
closer to the marginal q(Z). Thus, no matter whether x is
task-relevant or not, if x is novel, the KL-divergence induces
a high reward, resulting in a task-agnostic prediction-based
exploration strategy. Hence, the agent should explore a wide
range of the observation space, including distractive regions,
until it receives enough extrinsic reward signals (i.e. iden-
tifying the target task) so that negative log-probability can
make a meaningful contribution to the posterior shaping.

Task-specific exploration. After collecting sufficient ex-
trinsic rewards, CB gradually calibrates intrinsic rewards
by considering relevance to the target task as illustrated in
Fig.2 (b). That is, the prediction loss pushes pθ(Z|x) to
have different shapes from the prior q(Z) in order to con-
struct accurate mappings to the target values and increase
ri(x) = KL[pθ(Z|x)‖q(Z)] at x. As a result, CB allocates
high intrinsic rewards to observations that satisfy two joint
conditions of rareness and task-relevance. Extensive analy-
sis using Grad-CAM (Selvaraju et al., 2017) in Section 5.2
visualizes this behavior more clearly.

4.3. Plugging into Policy Optimization Algorithms

CB can be plugged into any RL algorithms that use intrinsic
reward functions. CB scales well to large parallel environ-
ments that require processing a large number of samples,
since it is simple to implement and requires a single forward
pass to the compressor network to compute intrinsic rewards.
In this work, we mainly use the Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) with two value heads
to combine the intrinsic reward with the extrinsic reward
as Burda et al. (2019b) suggested. We also adopt the same
normalization schemes of (Burda et al., 2019b) for the intrin-
sic reward and observation. Algorithm 1 shows the overall
picture of our method, where we omit the details of normal-
ization, hyperparameters and PPO algorithms for readability.
More details can be found in the supplementary file and the
code which is available at http://vision.snu.ac.kr/projects/cb.

5. Experiments
We design three environments to inspect different aspects
of our CB method. First, we perform static classification
tasks on MNIST (LeCun & Cortes, 2010) and Fashion-
MNIST (Xiao et al., 2017) to see whether the CB intrinsic
reward of Eq.(6) is a consistent novelty measure that can ig-

Algorithm 1 Curiosity-Bottleneck with PPO

Given current time step t0, the number of rollouts N ,
the number of optimization steps Nopt.
for t = t0 to t0 +N do

Sample at ∼ π(at|xt)
Sample xt+1, r

e
t ∼ p(xt+1, r

e
t |xt, at)

Calculate rit ← KL[pθ(Z|xt)‖q(Z)]
end for
Calculate returns Re and advantages Ae for re

Calculate returns Ri and advantages Ai for ri

yn ← Ren where n ∈ {1, . . . , N}
for j = 1 to Nopt do

Optimize PPO agent
Optimize θ and φ w.r.t. Lθ,φ in Eq.(5)

end for

nore various visual distractions irrelevant to the target label
(Section 5.1). Regardless of the task simplicity, this experi-
ment evaluates the CB’s ability to detect state novelty while
isolating environment-specific factors. Second, we test on
the Treasure Hunt as a customized grid-world environment
to inspect the explorative behavior when observation con-
tains distractive information (Section 5.2). We visualize
the internal representation of our model by using the recent
network interpretation method Grad-CAM (Selvaraju et al.,
2017). We also highlight that CB adaptively calibrates its
exploration strategy according to the agent’s proficiency to
the target task. Finally, we test the scalability of our method
with hard-exploration games in the Atari environment (Sec-
tion 5.3) using NAVER Smart Machine Learning (NSML)
platform (Sung et al., 2017; Kim et al., 2018).

For comparison, we choose four baseline exploration strate-
gies for policy optimization. As prediction-based methods,
we select the random network distillation (RND) and the dy-
namics model (Dynamics) proposed by Burda et al. (2019b).
The intrinsic reward for RND is the mean-squared error be-
tween two output features of a fixed encoder and a predictor
network. Dynamics uses the mean-squared error between
the two features for future observation. An encoder di-
rectly maps future observation to a feature and the predictor
predicts the feature of future observation from the current
one. For the two models, we use the code 2 released by the
original authors. As the count-based method, we choose
PPO-SimHash-BASS (SimHash) that uses hand-crafted fea-
ture transformation named BASS (Naddaf, 2010) within
the SimHash framework (Tang et al., 2017). Simhash dis-
cretizes observation according to a hash function and uses
the accumulated visitation count to calculate the intrinsic
reward. Finally, we test a non-compressive variant of our
method CB-noKL, which is a value function that has the
same architecture as CB, to highlight that the explicit com-

2https://github.com/openai/random-network-distillation.

http://vision.snu.ac.kr/projects/cb
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Figure 3. Novelty detection on MNIST and Fashion-MNIST. Each
curve visualizes test KL-divergence KL[pθ(Z|X)‖q(Z)] on held-
out target class examples over the proportions of training examples
of the target class. The number in the legend indicates the target
class. We draw the curves on average over 10 random seeds.

pression is the key to success of our task-specific novelty
measure. CB-noKL is trained without the KL-divergence
term in the objective of Eq.(5) (i.e. optimizing only with the
cross-entropy loss). We use the posterior uncertainty σθ(x)
instead of KL[pθ(Z|x)‖q(Z)] as the intrinsic reward.

5.1. Static Image Classification

We show that our CB’s intrinsic reward is a valid metric for
state novelty. We perform static image classification where
observation X is an image and target Y is the class label.
We describe the details of the classifier in supplementary
file. In order to make the target class rare compared to the
other classes, we randomly select a target class and discard
1 − pt proportions of images in the target class. Then we
compare novelty metric values for different retention ratios
pt ∈ {0.1, . . . , 0.9}. Fig.3 shows that the KL values of
test examples of the held-out target class monotonically
decrease as training examples of the target class increase,
presenting that CB correctly measures the state novelty.

We then validate how robust our method is in the presence
of task-irrelevant visual information. As done in a previ-
ous work (Zhang et al., 2018), we add various noises to
visual inputs to simulate task-irrelevant information. We
consider three types of visual distractions (See examples in
Fig.4 (a)): (i) Random Box (first row) simulates the case
where distractions are introduced in vastly various configu-
rations. A random number of small 7× 7 boxes appear in
random positions. Each box is filled with pixel-wise noise
ηi,j ∼ N(0, 0.3) to hinder neural networks from trivially
memorizing the box. (ii) Object (second row) simulates
facing unfamiliar objects. We add a 12× 12 resized image
patch of a different class to a randomly chosen position. (iii)
Pixel noise (last row) simulates sudden sensory noise. It
adds pixel-wise noise ηi,j ∼ N(0, 0.3) to observation. In all
types, the distractions are introduced with a Bernoulli prob-

(b) Ideal (c) CB (d) CB-noKL (e) RND (f) SimHash
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Figure 4. (a) Sample Fashion-MNIST images corrupted by three
types of distraction. (b-f) Heat maps show novelty measures of
test images for different retention ratios pt (vertical coordinate)
and distraction probabilities pd (horizontal coordinate). Dark blue
indicates the higher novelty values. (b) Heat maps for ideal novelty
detection. (c-f) CB reproduces more similar heat maps to the ideal
cases than the other baselines.

ability of pd ∈ {0.1, . . . , 0.9}. Note a smaller pd makes the
distraction more novel. We expect our model to correctly
ignore such distractions irrelevant of the target task.

Fig.4 visualizes the variation of novelty measures according
to the retention ratio pt and the distraction probability pd
on Fashion-MNIST dataset. The intensity of each cell in
the heat map indicates the average novelty values of test
images measured by different exploration models. We train
each model separately for all combinations of pt, pd and
distraction types to fill the heat map. Test images are chosen
from unseen images in the target class after corrupted by
distractions. Ideally, the novelty detection method needs
to generate the heat maps in Fig.4(b). That is, the varia-
tion should be gradual along the vertical axis, meaning that
the model correctly detects the strength of novelty, and no
variation should be along the horizontal axis, meaning that
the model perfectly ignores the novelty of task-irrelevant
distractions. Our CB method in Fig.4(c) produces the most
similar heat maps to the ideal cases for all kinds of corrup-
tions. On the other hand, the other baseline models (d-f)
fail to provide consistent novelty metrics since they have no
vehicle to process task-relevance in observation selectively.
Note that we exclude Dynamics since they are not applicable
to the static task. (i.e. it assumes temporal dependence).

Quantitative analysis on the heat maps makes clear distinc-
tion of CB from the other baselines. We introduce a novel
evaluation metric, Signal-to-Distraction Ratio (SDR) score,
which evaluates the robustness of a novelty measure to dis-
tractive information. A higher SDR score indicates that a
novelty measure is more tolerant to distractive information,
though exact formula and details of SDR score are deferred
to the supplementary file. Table 1 shows that CB signifi-
cantly outperforms the task-agnostic baselines on MNIST
and Fashion-MNIST datasets for all three distraction types.
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Table 1. SDR scores for CB and baseline models on MNIST and
Fashion-MNIST for three types of distraction.

DATA MODEL BOX NOISE OBJECT

MNIST CB 2.57 1.76 2.82
CB-noKL 1.11 0.85 0.80
RND 2.29 0.57 2.18
SimHash 0.06 0.06 0.05

FASHION CB 4.97 1.78 3.09
CB-noKL 0.39 0.26 0.24
RND 1.44 0.53 1.70
SimHash 0.22 0.07 0.22
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Figure 5. Comparison of mean episodic returns between CB and
baselines with 5 randon seeds in Treasure Hunt environment where
Random Box distractions are generated by two onset conditions.

5.2. Treasure Hunt

We test CB in a grid-world environment that requires explo-
ration under distraction. We also provide an in-depth analy-
sis of learned representation and exploration strategy. The
environment is designed to evaluate the following capabili-
ties of each method: (i) learning from temporally correlated
samples collected by the agent, (ii) exploring efficiently un-
til a reward signal is discovered, (iii) identifying the target
task from sparsely received reward signals and (iv) ignoring
visually novel but task-irrelevant distractions after collecting
sufficient reward signals.

In this environment, the agent should explore until it earns
the target item, which cannot be seen unless the distance
between them becomes less than a certain threshold. Once
the agent takes an item, it receives an extrinsic reward and
the next item is created in another random location. In the
example of Fig.6 (a), the agent is shown as a black circle
and the target item is a black triangle but hidden in Fig.6
(a) since the agent is not close enough to it. Each episode
terminates when the agent runs for 3, 000 steps. An effective
exploration strategy for the agent is to explore throughout
the map, undisturbed by distractions.

The distraction, visualized as gray noisy boxes in Fig.6 (a),
is the Random Box type in Section 5.1; a random number
of boxes appear in random positions. We experiment two
different onset conditions for the distraction generation: (i)

movement condition: distraction occurs when the agent
remains stationary for a specific length of steps and (ii)
location condition: when the agent is within a certain range
from any corner on the map. These conditions allure the
agent to the corners of the map or to immobility; hence they
hinder the agent’s exploration.

Fig.5 compares the maximum episodic rewards of our
method and baselines with 5 random seeds for 122M roll-
outs. Our method significantly outperforms the other base-
lines in both onset conditions for distraction; CB learns to ex-
plore efficiently by filtering out such distractive information,
while the other baselines often stops moving (movement
condition) or stay near the corner (location condition).

Visualization using Grad-CAM. We compare the explo-
ration strategies by visualizing the learned representation
of their policy networks using Grad-CAM (Selvaraju et al.,
2017). Fig.6 illustrates the gradient activation maps for
the last CONV layer of the PPO agent in Treasure Hunt
environment with both location and movement distraction
onset conditions. Agents are trained with different explo-
ration methods (b-g) for 10K updates of parameters. We
also present activation maps for non-distractive observations
in supplementary file.

When the agent has little experience of receiving extrin-
sic rewards during early phase of training (Fig.6 (b)), CB
encourages the agent to take any novel visual information
into consideration. We denote this as CB-Early since it
shows the behavior of a premature agent that had less than
150 updates. After experiencing enough extrinsic reward
throughout episodes, the agent with CB learns to ignore task-
irrelevant distractions (Fig.6 (c)); the gradient values on the
distraction regions are small while those on the useful re-
gions to the target task are large (e.g. current agent locations
or likely locations of target items). On the other hand, the
agents with baseline exploration methods still count much
on the distraction as novel information by assigning high
gradient values on the distraction regions (Fig.6 (d-g)).

5.3. Hard Exploration Games

We evaluate the proposed method for visually complicated
hard exploration games of Atari including Gravitar, Mon-
tezuma’s Revenge, and Solaris. Experiments run for up to
327M rollouts (40K updates of parameters with 64 parallel
environments). We measure the mean episodic returns of
our method against baselines. All three games require ex-
tensive exploration in order to receive a sparsely distributed
extrinsic reward. As the observations from Atari games are
well-aligned to the target tasks (Bellemare et al., 2013), we
introduce Random Box distraction used in previous sections
to the observations. We set the distraction to occur inde-
pendently in the environment with a Bernoulli probability
of pd = 0.1 since it is hard to localize or track the agent’s
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Figure 6. Grad-CAM visualization for the PPO agent that is trained with CB and baselines with two onset conditions for Random Box
distraction. We show gradient activation maps of (a) two examples (top and bottom) that are corrupted by the task-irrelevant distractions.
The black circle indicates the agent location, and the dark red color indicates large gradient values in the last CONV layer for the policy. (b)
In the early stage, our method encourages the policy to take distractions into account because they are novel but not yet fully determined
to be task-irrelevant. (c) As experiencing more extrinsic rewards, the policy with CB learns selectively from the information that is useful
for the task. The gradient values on the distraction regions are small while those on the useful regions to the target task are large (e.g.
current agent locations or likely locations of target items). (d-g) Baselines still consider distractive information as novel ones by assigning
high gradient values on the distraction regions.

G
ra

vi
ta

r
M

on
te

zu
m

a
So

la
ris

(a) CNN Policy (c) Without Distraction

CB CB-noKL RND Dynamics SimHash

(b) RNN Policy

Figure 7. Mean episodic returns on three Atari games with two
random seeds for 327M rollouts (40K iterations). CB outperforms
baselines with both CNN and RNN based policy (a-b) and is still
competitive without distraction (c).

movement in Atari environments.

Fig.7 shows that our method consistently outperforms strong
baselines on distractive Atari games. A recurrent policy is
often recommended to deal with partial observability in hard
exploration problems. We thus test all methods with recur-
rent policy on the same distractive environment, but it does
not improve performance much as in Fig.7 (b). Interestingly,
our method turns out to be a competitive exploration strat-
egy even when observation does not contain task-irrelevant
distractions (Fig.7 (c)). Note that RND is the current state-
of-the-art exploration strategy in Montezuma’s Revenge.

6. Conclusion
We introduced a task-specific exploration method named
Curiosity-Bottleneck that distills task-relevant information
from observation based on the information bottleneck princi-
ple. Our internal reward is quantified as the compressiveness
of observation with respect to the learned representation of
an auxiliary value network. Our analysis and visual in-
terpretation suggested that Curiosity-Bottleneck adaptively
calibrated the goal of exploration from task-identification
to task-specific exploration. A series of experiments on
static classification, customized grid-world, and Atari envi-
ronments confirmed that our method robustly measured the
state novelty, filtering out task-irrelevant or distractive infor-
mation, while previous strong baseline models often failed
to disregard distractions and resulted in weaker performance.
Improving our method on non-distractive environments and
finding an adaptive scheduling for β, which determines the
balance between compression and preservation of informa-
tion, are important directions for future work.
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