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Abstract
Contextual multi-armed bandit (MAB) algorithms
have been shown promising for maximizing cumu-
lative rewards in sequential decision tasks such
as news article recommendation systems, web
page ad placement algorithms, and mobile health.
However, most of the proposed contextual MAB
algorithms assume linear relationships between
the reward and the context of the action. This
paper proposes a new contextual MAB algorithm
for a relaxed, semiparametric reward model that
supports nonstationarity. The proposed method
is less restrictive, easier to implement and faster
than two alternative algorithms that consider the
same model, while achieving a tight regret upper
bound. We prove that the high-probability up-
per bound of the regret incurred by the proposed
algorithm has the same order as the Thompson
sampling algorithm for linear reward models. The
proposed and existing algorithms are evaluated
via simulation and also applied to Yahoo! news
article recommendation log data.

1. Introduction
The multi-armed bandit (MAB) problem (Robbins, 1952)
formulates the sequential decision problem in which a
learner must choose an action among several actions given
by the environment at each step so as to maximize the cumu-
lative rewards. The actions are often described as the arms
of a bandit slot machine with multiple arms. By choosing
an action or pulling an arm, the learner receives possibly
different rewards. By repeating the process of pulling arms
and receiving rewards, the learner accumulates information
about the reward compensation mechanism, learns from it,
and chooses the arm close to optimal as time elapses. Appli-
cation areas include the mobile healthcare system (Tewari
and Murphy, 2017), web page ad placement algorithms
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(Langford et al., 2008), news article placement algorithms
(Li et al., 2010), revenue management (Ferreira et al., 2018),
marketing (Schwartz et al., 2017), and recommendation
systems (Kawale et al., 2015).

For example, the Yahoo! web system uses a news article rec-
ommendation algorithm to select one article among a large
pool of available articles and displays it on the Featured tab
of the web page every time a user visits. The user clicks the
article if he or she is interested in the contents. The goal of
the algorithm is to maximize the cumulative number of user
clicks. After each visit, the algorithm reinforces its article
selection strategy based on the past user click feedback. In
this setting, available articles correspond to different actions
and the user click corresponds to a reward. The challenging
part of the MAB problem is that the reward of the action that
the learner has not previously chosen is forever unknown,
i.e., whether the user would have clicked or not remains
missing for the article that is not chosen. Therefore, the
learner should balance between “exploitation”, selecting the
best action based on information accumulated so far, and
“exploration”, choosing an action that will assist in future
choices, although it does not seem to be the best option at
the moment.

The MAB problem was first theoretically analyzed by Lai
and Robbins (1985). The algorithms widely used in mobile
healthcare systems or news article placement algorithms are
of a more extended form, called contextual MAB algorithms.
A contextual MAB algorithm enables at each selection step
the use of side information, called context, about each ac-
tion given in the form of finite-dimensional covariates. For
example, in the news article recommendation, information
on the visiting user as well as the articles are given in the
form of a context vector. In 2010, the Yahoo! team (Li et al.,
2010) proposed a contextual MAB algorithm that achieved
a 12.5% click lift compared to a context-free MAB algo-
rithm. Nonetheless, the method of Li et al. (2010) and other
existing algorithms rely on rather strong assumptions on the
distribution of rewards. In particular, most of the existing
algorithms assume that the expectation of the reward of a
particular action has a time-invariant linear relationship with
the context vector. This assumption can be restrictive in real
world settings where the rewards typically vary with time.

In this paper, we propose a novel contextual MAB algorithm
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which works well under a relaxed assumption on the dis-
tribution of rewards. The relaxed nature of the assumption
involves nonstationarity of the reward via an additive inter-
cept term to the original time-invariant linear term. This
intercept term changes with time but does not depend on
the action. We propose a consistent estimation of the regres-
sion parameter in the linear term by centering the context
vectors with weights. Using new martingale inequalities,
we prove that the high probability upper bound of the total
regret incurred by the proposed algorithm has the same or-
der as the regret bound achieved by the Thompson sampling
algorithm which is developed under a more restrictive linear
assumption.

Greenewald et al. (2017) and Krishnamurthy et al. (2018)
suggested algorithms under the same nonstationary assump-
tion we considered. The performance of the method by
Greenewald et al. (2017) is guaranteed under restrictive con-
ditions on the action choice probabilities. The method by
Krishnamurthy et al. (2018) takes an action-elimination ap-
proach which is computationally heavy as it requiresO(N2)
computations at each iteration where N denotes the num-
ber of arms. Moreover in Krishnamurthy et al. (2018), the
action selection distribution is not given explicitly when
N > 2. Our method improves on these previous results in
that it does not restrict action choice probabilities, requires
O(N) computations, and explicitly provides the action se-
lection distribution for every N . Furthermore, the proposed
estimator for the regression parameter achieves the same
convergence rate as the estimator for linear reward models.

As a summary, our main contributions are:

• We propose a new MAB algorithm for the nonsta-
tionary semiparametric reward model. The proposed
method is less restrictive, easier to implement and com-
putationally faster than previous works.

• We prove that the high-probability upper bound of the
regret for the proposed method is of the same order as
the Thompson Sampling algorithm for linear reward
models.

• We propose a new estimator for the regression param-
eter without requiring an extra tuning parameter and
prove that it converges to the true parameter faster than
existing estimators.

• Simulation studies show that in most cases, the cumu-
lative reward of the proposed method increases faster
than existing methods which assume the same nonsta-
tionary reward model. Application to Yahoo! news
article recommendation log data shows that the pro-
posed method increases the user click rate compared to
the algorithms that assume a stationary reward model.

2. Preliminaries
In this section, we describe the problem settings and nota-
tions. As a preliminary, we also present a review of contex-
tual bandit methods for the comparison purpose with the
proposed method given in Section 4.

In the MAB setting, the learner is repeatedly faced with
N alternative actions where at time t, the i-th arm (i =
1, · · · , N ) yields a random reward ri(t) with unknown mean
θi(t). In the contextual MAB problem, we assume that there
is a finite-dimensional context vector bi(t) ∈ Rd associated
with each arm i at time t and that the mean of ri(t) depends
on bi(t), i.e., θi(t) = θt(bi(t)), where θt(·) is an arbitrary
function. Among the N arms, the learner pulls one arm
a(t), and observes reward ra(t)(t). The optimal arm at
time t is a∗(t) := argmax

1≤i≤N
{θt(bi(t))}. Let regret(t) be the

difference between the expected reward of the optimal arm
and the expected reward of the arm chosen by the learner at
time t, i.e.,

regret(t) = E
(
ra∗(t)(t)− ra(t)(t)

∣∣ {bi(t)}Ni=1, a(t)
)

= θt(ba∗(t)(t))− θt(ba(t)(t)).

Then, the goal of the learner is to minimize the sum of
regrets over T steps, R(T ) :=

∑T
t=1 regret(t).

Linear contextual MAB problems specifically assume that
θt(bi(t)) is linear in bi(t),

θt(bi(t)) = bi(t)
Tµ, i = 1, · · · , N, (1)

where µ ∈ Rd is unknown. For the linear contextual MAB
problem, Dani et al. (2008) proved a lower bound of order
Ω(d
√
T ) for the regret R(T ) when N is allowed to be in-

finite. When N is finite and d2 ≤ T , Chu et al. (2011)
showed a lower bound of Ω(

√
dT ).

Auer (2002), Li et al. (2010) and Chu et al. (2011) proposed
an upper confidence bound (UCB) algorithm for the lin-
ear contextual MAB problem. The algorithm selects the
arm which has the highest UCB of the reward. Since the
UCB reflects the current estimate of the reward as well as
its uncertainty, the algorithm naturally balances between
exploitation and exploration. The success of the UCB algo-
rithm hinges on a valid upper confidence bound Ui(t) of the
i-th arm’s reward, bi(t)Tµ. Li et al. (2010) and Chu et al.
(2011) proposed

Ui(t) = bi(t)
T µ̂(t) + αst,i,

where µ̂(t) is the regression estimator of µ at time t,

µ̂(t) = B(t)−1
t−1∑
τ=1

ba(τ)(τ)ra(τ)(τ), (2)
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B(t) = Id +
∑t−1
τ=1 ba(τ)(τ)ba(τ)(τ)T and st,i =√

bi(t)TB(t)−1bi(t).

Under additional assumptions that the error ηi(t) := ri(t)−
E(ri(t)|bi(t)) = ri(t) − bi(t)

Tµ is R-sub-Gaussian for
some R > 0 and that the L2-norms of bi(t) and µ are
bounded by 1, Abbasi-Yadkori et al. (2011) proved that
if we set α = R

√
3dlog(T/δ) + 1, Ui(t) is a (1 − δ)-

probability upper bound of bi(t)Tµ for ∀δ ∈ (0, 1), for all
i = 1, · · · , N and t = 1, · · · , T . Since the errors ηa(τ)(τ)’s
of the observed rewards are intercorrelated, Abbasi-Yadkori
et al. (2011) used a concentration inequality for vector-
valued martingales to derive a tight α. Additionally, Abbasi-
Yadkori et al. (2011) proved that with probability at least
1− δ, the UCB algorithm achieves,

R(T ) ≤ O
(
d
√
T log(T/δ)log(1 + T/d)

)
. (3)

The bound (3) matches the lower bound Ω(d
√
T ) for in-

finite N by a factor of log(T ). When N is finite, (3) is
slightly higher than the lower bound Ω(

√
dT ) by a factor of√

dlog(T ).

Thompson sampling (Thompson, 1933) has been widely
used as a simple heuristic based on Bayesian ideas. Agrawal
and Goyal (2013) was the first to propose and analyze the
Thompson sampling (TS) algorithm for linear contextual
MABs.

The heuristic of the algorithm is to randomly pull the arm
according to the posterior probability that it is the opti-
mal arm. This can be done by sampling µ̃(t) from the
posterior distribution of µ at time t, and pulling the arm
a(t) = argmax

1≤i≤N
bi(t)

T µ̃(t). The posterior distribution

N (µ̂(t), v2B(t)−1) with µ̂(t) defined in (2) is easily de-
rived by assuming a gaussian prior N (0d, v

2Id) on µ for
some v > 0 and that ri(t) given µ follows a gaussian distri-
bution N (bi(t)

Tµ, v2).

Agrawal and Goyal (2013) derived the high-probability up-
per bound of R(T ) for the TS algorithm. This bound does
not require the Bayesian framework nor the gaussian as-
sumption for the rewards. Under (1) and R-sub-gaussianity
of the errors, it can be shown that with probability greater
than 1− δ,

R(T ) ≤ O
(
d

3
2

√
T log(Td)log(T/δ)(

√
log(1 + T/d)

+
√

log(1/δ) )
)
. (4)

The bound (4) matches the bound (3) by a factor of√
d
√

log(T ), which is the price for randomness. On the
other hand, the TS algorithm does not require to compute the
s′t,is for each arm i at every time t, which is computationally
advantageous when N is large.

Unlike aforementioned linear contextual MABs, adversarial
contextual MABs do not impose a stationary assumption on

θt(·). Hence, the distribution of ri(t) is allowed to change
over time, and it can also change adaptively depending on
the history. In fact, we assume that an unknown adversary
controls the value of ri(t) in a way that hampers the learner.
In this relaxed setting, it is hard to achieve low regret(t)
with respect to the best choice ra∗(t)(t). Instead, the learner
competes with a predefined, finite set of K policies and the
regret is defined with respect to the best policy in that set.

The EXP4.P algorithm proposed by Beygelzimer et al.
(2011) achieves O(

√
TN log(K/δ)) regret upper bound.

However, for the best policy in the predefined set to be
close to the optimal policy which chooses a∗(t) for every t,
K should be as large as possible, resulting in actual large
regret. Therefore, when a simple parametric or semiparamet-
ric assumption is not considered so farfetched, algorithms
that exploit this structure can have better performance than
adversarial MAB algorithms.

3. Semiparametric Contextual MAB
Greenewald et al. (2017) and Krishnamurthy et al. (2018)
considered a middle ground between stochastic, stationary,
linear contextual MABs and complex adversarial MABs:
a semiparametric contextual MAB. In this section, we for-
mally present the semiparametric contextual MAB problem
and related works.

3.1. Semiparametric Additive Reward Model

Hereinafter, we defineHt−1 as the history until time t− 1,
i.e., Ht−1 = {a(τ), ra(τ)(τ), {bi(τ)}Ni=1, τ = 1, · · · , t −
1}, and the filtration Ft−1 as the union of Ht−1 and the
contexts at time t, i.e., Ft−1 = {Ht−1, {bi(t)}Ni=1} for
t = 1, · · · , T. Given Ft−1, we assume that the expectation
of the reward ri(t) can be decomposed into a time-invariant,
linear component depending on action (bi(t)

Tµ) and a non-
parametric component depending on time and possibly on
Ft−1, but not on the action (ν(t)):

E(ri(t)|Ft−1) = ν(t) + bi(t)
Tµ. (5)

In (5), we do not impose any distributional assumption on
ν(t) except that it is bounded, |ν(t)| ≤ 1. If ν(t) = 0,
the problem reduces to a linear contextual MAB problem,
whereas if ν(t) depends on the action as well, the reward dis-
tribution is completely nonparametric and can be addressed
by adversarial MAB algorithms.

In the news article recommendation example, ν(t) can rep-
resent the baseline tendency of the user visiting at time t
to click any article in the Featured tab, regardless of the
contents of the article. This baseline tendency can change
in an unexpected manner, because different users visit at
each time and the clicking tendency can change within the
same user according to the user’s mood or schedule, both
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of which cannot be captured as contextual information. It
is reasonable to assume that given this baseline tendency,
the probability that the user clicks an article is linear with
respect to context information of the article and the user.

Under (5), we note that the optimal action a∗(t) at time t
does not depend on ν(t) but only on the value of µ, and the
regret does not depend on ν(t) either:

regret(t) = ba∗(t)(t)
Tµ− ba(t)(t)

Tµ.

However, ν(t) confounds the estimation of µ. The nature of
the bandit problem renders the distinction of ν(t) from the
linear part especially difficult because only one observation
is allowed at each time t.

Besides (5), we make the usual assumption that given Ft−1,
the error ηi(t) := ri(t)−E(ri(t)|Ft−1) is R-sub-Gaussian
for some R > 0, i.e., for every λ ∈ R,

E[exp(ληi(t))|Ft−1] ≤ exp(λ2R2/2). (6)

Note that this assumption is satisfied whenever ri(t) ∈
[ν(t) + bi(t)

Tµ − R, ν(t) + bi(t)
Tµ + R]. Also without

loss of generality, we assume

||bi(t)||2 ≤ 1, ||µ||2 ≤ 1, |ν(t)| ≤ 1, (7)

where || · ||p denotes the Lp-norm.

3.2. Related Work

Greenewald et al. (2017) proposed the action-centered TS al-
gorithm for the new reward model (5). In their settings, they
assumed that the first action is the base action, of which the
context vector is b1(t) = 0d for all t. Hence, the expected
reward of the base action is ν(t), which can vary with time
and also in a way that depends on the past. Greenewald et al.
(2017) followed the basic framework of the randomized, TS
algorithm but in two stages. In the first stage, the learner se-
lects one action among the non-base actions in the same way
as in TS algorithm using random µ̃(t). Let this action be
ā(t). In the second stage, the learner chooses once again be-
tween ā(t) and the base action using the distribution of µ̃(t).
This finally chosen action is set as a(t) and only this action
is actually taken. In the second stage, the probability of
a(t) = ā(t) is computed using the Gaussian distribution of

µ̃(t), P(a(t) = ā(t)|Ft−1, ā(t)) = 1− ψ
(
−bā(t)(t)

T µ̂(t)

vst,ā(t)(t)

)
,

where ψ(·) is the CDF of the standard Gaussian distribution.

Instead of choosing a(t) = ā(t) with this exact probability
however, Greenewald et al. (2017) constrained the probabil-
ity of not choosing the base action to lie in a predefined set
[pmin, pmax] ⊂ [0, 1]. This is to prevent the algorithm from
converging to a determinisitic policy which can be ineffec-
tive in the mobile health setting that the authors considered.
Hence, the algorithm selects a(t) = ā(t) with probability

pt = max
(
pmin, min

(
1 − ψ

(
−bā(t)(t)

T µ̂(t)

vst,ā(t)(t)

)
, pmax

))
.

Under this probability constraint, the definition of the
optimal policy and regret(t) changes accordingly. Let
ā∗(t) = argmax

2≤i≤N
bi(t)

Tµ. Thus, ā∗(t) is the optimal ac-

tion among the non-base actions. Then the optimal policy
chooses the action a∗(t) = ā∗(t) with probability π∗(t) :=
pmaxI(bā∗(t)(t)

Tµ > 0) + pminI(bā∗(t)(t)
Tµ ≤ 0) and

a∗(t) = 1 with probability 1− π∗(t).

To consistently estimate µ, Greenewald et al. (2017) defined
a pseudo-reward, r̂ā(t)(t) = {I(a(t) = ā(t))− pt}ra(t)(t).
An important property of the pseudo-reward is that its condi-
tional expectation does not depend on ν(t). Greenewald
et al. (2017) used this pseudo-reward instead of the ac-
tual reward ra(t)(t) for estimating µ. They showed that
the high probability upper bound of R(T ) for the action-
centered TS algorithm matches that of the original TS al-
gorithm for linear reward models, but by a constant factor
M = 1/{pmin(1 − pmax)}. This factor M can be large
when we do not want to restrict action selection probabili-
ties, i.e., when we want to set either pmin = 0 or pmax = 1.

Krishnamurthy et al. (2018) proposed the BOSE (Bandit
Orthogonalized Semiparametric Estimation) algorithm for
the semiparametric reward model (5). This algorithm takes
an action elimination method adapted from Even-Dar et al.
(2006). At each time t, an action i is eliminated if there
exists another action j such that

(
bj(t) − bi(t)

)T
µ̂(t) >

ω
√

(bi(t)− bj(t))TV −1
t (bi(t)− bj(t)), where ω is a pre-

defined constant, µ̂(t) is an estimate of µ, and Vt is a d-
dimensional matrix. The algorithm then picks up one action
randomly among the survivors according to a particular
distribution.

For estimating µ, Krishnamurthy et al. (2018) used a cen-
tering trick on the context vectors bi(t)’s to cancel out ν(t).
They proposed the following estimator for µ:

µ̂(t) =
(
γId +

t−1∑
τ=1

XτX
T
τ

)−1
t−1∑
τ=1

Xτra(τ)(τ), (8)

where Xτ = ba(τ)(τ) − E(ba(τ)(τ)|Fτ−1) and γ > 0.
Given Fτ−1, we see that E(Xτ |Fτ−1) = 0d. Hence,
{
∑t
τ=1Xτ}∞t=1 is a vector martingale process adapted to

filtration {Ft}∞t=1. Krishnamurthy et al. (2018) derived a
(1−δ)-probability upper bound for bT (µ̂(t)−µ) using a new
concentration inequality for self-normalized vector-valued
martingales established by de la Peña et al. (2009) and de la
Peña et al. (2004).

The BOSE algorithm does not require any constraint on the
action choice probabilities but achieves a O(d

√
T log(T/δ))

regret bound. This bound matches the best known re-
gret bound (3) for linear reward models. However, the
action elimination step requires O(N2) computations at
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each round. Also, the distribution used to select the ac-
tion should satisfy a specific condition to guarantee the
O(d
√
T log(T/δ)) regret bound. The authors only show

that there exists a distribution to satisfy this condition
when N > 2. The construction of such distribution is
not a trivial matter since it requires to solve a convex
program with N quadratic conditions at every iteration.
Furthermore, the bound of bT (µ̂(t) − µ) is valid under
γ ≥ 4dlog(9T ) + 8log(4T/δ) when N > 2, which can
dominate the denominator term of µ̂(t) when t is small. For
example, when d = 35 and T = 1900000 as in the news
article recommendation example in Section 6, γ ≥ 2476.8
if we take δ = 0.1. When γ is set to be a tuning parameter,
the BOSE algorithm requires in total two tuning parameters,
including ω used in the action elimination step.

4. Proposed Method
In this paper, we propose a new algorithm for the semipara-
metric reward model (5) which improves on the results of
Greenewald et al. (2017) while keeping the framework of
the TS algorithm. Our method requires only O(N) com-
putations at each round, while Krishnamurthy et al. (2018)
requires O(N2). An action selection distribution for every
N is given and does not need to be solved as in Krishna-
murthy et al. (2018). The proposed algorithm uses a new
estimator µ̂(t) for µ which enjoys a tighter high-probability
upper bound than (8) without having to deal with any po-
tentially big constant, γ. We prove that the high-probability
upper bound of the regret R(T ) incurred by the proposed
algorithm has the same order as the TS algorithm for linear
reward models without restricting the action choice proba-
bilities as in Greenewald et al. (2017).

4.1. Proposed Algorithm

Algorithm 1 Proposed TS algorithm

Set B = Id, y = 0d, v = (2R + 6)
√

6dlog(T/δ), δ ∈
(0, 1).
for t = 1, 2, · · · , T do

Compute µ̂(t) = B−1y.
Sample µ̃(t) from distribution N (µ̂(t), v2B−1).
Pull arm a(t) = argmax

1≤i≤N
bi(t)

T µ̃(t) and get reward

ra(t)(t).
for i = 1, · · · , N do

Compute πi(t) = P(a(t) = i|Ft−1).
end for
Update B and y:
B ← B +

(
ba(t)(t)− b̄(t)

)(
ba(t)(t)− b̄(t)

)T
,

B ← B +
∑N
i=1 πi(t)

(
bi(t)− b̄(t)

)(
bi(t)− b̄(t)

)T
,

y ← y + 2
(
ba(t)(t)− b̄(t)

)
ra(t)(t).

end for

Besides (5), we make the same assumptions as in Section 3,
(6) and (7). The proposed Algorithm 1 follows the frame-
work of the TS algorithm with two major modifications:
the mean and variance of µ̃(t). First, we propose a new
estimator µ̂(t) of µ for the mean of µ̃(t):

µ̂(t) =
(
Id + Σ̂t + Σt

)−1 t−1∑
τ=1

2Xτra(τ)(τ), (9)

where Σ̂t=
∑t−1
τ=1XτX

T
τ and Σt=

∑t−1
τ=1 E(XτX

T
τ |Fτ−1).

Compared to (8), we note that the proposed estimator sta-
bilizes the denominator using a new term Σt instead of
γId. As a result, we do not need an extra tuning pa-
rameter. Hereinafter, let b̄(τ) denote E(ba(τ)(τ)|Fτ−1)
for simplicity. This term can be calculated as b̄(τ) =

E
(∑N

i=1 I(a(τ) = i)bi(τ)
∣∣Fτ−1

)
=
∑N
i=1 πi(τ)bi(τ),

where πi(τ) = P(a(τ) = i|Fτ−1) is the probability of
pulling the i-th arm at time τ , which is determined by the dis-
tribution of µ̃(τ). Also, the covariance E(XτX

T
τ |Fτ−1) can

be computed as E(XτX
T
τ |Fτ−1) =

∑N
i=1 πi(τ)(bi(τ) −

b̄(τ))(bi(τ)− b̄(τ))T . As for the variance of µ̃(t), we pro-
pose v2B(t)−1, where v = (2R + 6)

√
6dlog(T/δ) and

B(t) = Id + Σ̂t + Σt.

In the following theorem, we establish a high-probability
regret upper bound for the proposed algorithm.

Theorem 4.1. Under (5), (6), and (7), the regret of Al-
gorithm 1 is bounded as follows. For ∀δ ∈ (0, 1), with
probability 1− δ,

R(T ) ≤ O
(
d3/2
√
T
√

log(Td)log(T/δ)
(√

log(1 + T/d)

+
√

log(1/δ)
))
.

This bound matches the bound (4) of the original TS algo-
rithm for linear reward models. Table 1 compares the prop-
erties of the proposed TS algorithm with action-centered
TS and BOSE algorithms. The proof of Theorem 4.1 es-
sentially follows the lines of the proof given by Agrawal
and Goyal (2013) with some modifications. A complete
proof is presented in the Supplementary Material. The main
contribution of this paper is a new theorem for the first
stage, which bounds |(bi(t)− b̄(t))T (µ̂(t)− µ)| with high
probability with respect to the new estimator (9).

Theorem 4.2. Let the event Eµ̂(t) be defined as follows:

Eµ̂(t) =
{
∀i : |

(
bi(t)− b̄(t)

)T
(µ̂(t)− µ)| ≤ l(t)sct,i

}
,

where sct,i =

√(
bi(t)− b̄(t)

)T
B(t)−1

(
bi(t)− b̄(t)

)
and

l(t) = (2R+ 6)
√
dlog(6t3/δ) + 1. Then for all t ≥ 1, for

any 0 < δ < 1, P(Eµ̂(t)) ≥ 1− δ
t2 .
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Table 1. Comparison of the three semiparametric contextual MAB algorithms.
Properties Action-Centered TS BOSE Proposed TS
Restriction on optimal policy π∗ā∗(t)(t) ∈ [pmin, pmax] None None
Derivation of π(t) from µ̃(t) not specified when N > 2 from µ̃(t)
Number of computations O(T ) O(N2T ) O(NT )
Tuning parameters v ω and γ (when N > 2) v

R(T ) O(Md
3
2

√
T
√

log(T/δ)
3
) O(d

√
T log(T/δ)) O(d

3
2

√
T
√

log(T/δ)
3
)

4.2. A Sketch of Proof for Theorem 4.2

By decomposition of (µ̂(t)− µ),

µ̂(t)− µ = B(t)−1
t−1∑
τ=1

2Xτra(τ)(τ)− µ

= B(t)−1
{ t−1∑
τ=1

2Xτηa(τ)(τ)

+

t−1∑
τ=1

2Xτ

(
ν(τ) + b̄(τ)Tµ

)
− µ+

t−1∑
τ=1

D(τ)µ
}
,

where Xτ = ba(τ)(τ) − b̄(τ) and D(τ) = XτX
T
τ −

E
(
XτX

T
τ |Fτ−1

)
. Let bci (t) := bi(t) − b̄(t). Hereinafter,

we define ||x||A :=
√
xTAx for any d-dimensional vector

x and any d× d matrix A. By Cauchy-Schwarz inequality,∣∣bci (t)T (µ̂(t)− µ)
∣∣ ≤ sct,i{2C1 + 2C2 + C3 + C4},

(10)

where C1 =
∣∣∣∣∑t−1

τ=1Xτηa(τ)(τ)
∣∣∣∣
B(t)−1 ,

where C2 =
∣∣∣∣∑t−1

τ=1Xτ

(
ν(τ) + b̄(τ)Tµ

)∣∣∣∣
B(t)−1 ,

where C3 =
∣∣∣∣∑t−1

τ=1D(τ)µ
∣∣∣∣
B(t)−1 ,

andC4 =
∣∣∣∣µ∣∣∣∣

B(t)−1 . First, we haveC4 ≤ 1.Now we need
to bound C1, C2, and C3. The term C1 is a familiar term,
which we can bound using the technique of Abbasi-Yadkori
et al. (2011). Since ηa(τ)(τ) is R-sub-gaussian given Fτ−1

and a(τ) while Xτ is fixed given Fτ−1 and a(τ), we have
for any λ ∈ Rd,

E
[
exp
{ηa(τ)(τ)

R
λTXτ −

1

2
λTXτX

T
τ λ
}∣∣∣Fτ−1, a(τ)

]
≤ 1.

Then it follows,

E
[
exp
{
λT

t−1∑
τ=1

ηa(τ)(τ)

R
Xτ −

1

2
λT Σ̂tλ

}]
≤ 1. (11)

From (11), we can apply the following lemma, which is a
simplified version of the Corollary 4.3 of de la Peña et al.
(2004).

Lemma 4.3. Let Xτ ∈ Rd and cτ ∈ R be some random
variables, τ = 1, · · · , t. Suppose ∃d×d symmetric, positive
semi-definite matrix A(t) such that for any λ ∈ Rd,

E
[
exp
{
λT

t∑
τ=1

Xτ cτ −
1

2
λTA(t)λ

}]
≤ 1. (12)

Then for any 0 < δ < 1 and any symmetric, positive definite
matrix Q, with probability at least 1− δ,∣∣∣∣∣∣ t∑
τ=1

Xτ cτ

∣∣∣∣∣∣2
(Q+A(t))−1

≤ log
(det(Q+A(t)

)
/det

(
Q
)

δ2

)
.

Taking cτ = 1
Rηa(τ)(τ), Q = Id + Σt, and A(t) = Σ̂t,

we see that (11) corresponds to the condition (12) of the
lemma. Also, C1 = R

∣∣∣∣∣∣∑t−1
τ=1Xτ cτ

∣∣∣∣∣∣
(Q+A(t))−1

. There-

fore by Lemma 4.3, for any 0 < δ < 1, with probability at
least 1− δ

3t2 ,

C1 ≤ R

√
log
(det(Q+A(t))

(δ/(3t2))2

)
= R

√
log
( det(B(t))

(δ/(3t2))2

)
.

(13)

Now, we need to bound C2 and C3, which are terms that
arise due to the ν(τ)’s and the use of a new estimator (9).
Although C2 looks similar to C1, the term (ν(τ) + b̄(τ)Tµ)
is not sub-Gaussian, so we can no longer use the tech-
nique of Abbasi-Yadkori et al. (2011). Instead, we have
E[Xτ |Fτ−1] = 0. To bound a similar term to C2, Krish-
namurthy et al. (2018) proposed to use Lemma 7 of de la
Peña et al. (2009) for vector-valued martingales to derive an
inequality analogous to (11). Using Lemma 7 of de la Peña
et al. (2009), we can prove that for any λ ∈ Rd,

E
[
exp
{
λT

t−1∑
τ=1

Xτ cτ −
1

2
λT
(
Σ̂t + Σt

)
λ
}]
≤ 1. (14)

where cτ =
(
ν(τ)+b̄(τ)Tµ

2

)
. Taking A(t) = Σ̂t + Σt and

Q = Id, (14) corresponds to condition (12). Also, C2 =

2
∣∣∣∣∣∣∑t−1

τ=1Xτ cτ

∣∣∣∣∣∣
(Q+A(t))−1

. Hence by Lemma 4.3, for any

0 < δ < 1, with probability at least 1− δ
3t2 ,

C2 ≤ 2
√

log
(
det(B(t))/(δ/3t2)2

)
. (15)
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The final step is to boundC3. However, C3 does not take the
form ||

∑
Xτ cτ ||B(t)−1 , so we require additional work. Let

Yτ = D(τ)µ. Then, note that Yτ ∈ Rd and E
[
Yτ |Fτ−1

]
=

0. We propose the following lemma.

Lemma 4.4. For any λ ∈ Rd,

E
[
exp
{
λT

t−1∑
τ=1

1√
2
Yτ −

1

2
λT
(
Σ̂t + Σt

)
λ
}]
≤ 1.

The proof of Lemma 4.4 is presented in the Supplemen-
tary Material. Taking A(t) = Σ̂t + Σt and Q = Id,
Lemma 4.4 corresponds to condition (12). Also, C3 =

2
∣∣∣∣∣∣∑t−1

τ=1
1√
2
Yτ

∣∣∣∣∣∣
(Q+A(t))−1

. By Lemma 4.3, for any 0 <

δ < 1, with probability at least 1− δ
3t2 ,

C3 ≤ 2
√

log
(
det(B(t))/(δ/3t2)2

)
. (16)

Plugging the bounds (13), (15) and (16) into (10) completes
the proof. For any 0 < δ < 1, for all i = 1, · · · , N, with
probability at least 1− δ

t2 ,

∣∣bci (t)T (µ̂(t)− µ)
∣∣ ≤ sct,i{(2R+ 6)

√
log
( det(B(t))

(δ/(3t2))2

)
+ 1
}

≤ l(t)sct,i,

where the second inequality is due to the determinant-trace
inequality, det(B(t)) ≤

(
trace(B(t))/d

)d ≤ (2t)d.

5. Simulation Study
We conduct simulation studies to evaluate the proposed algo-
rithm, the original TS algorithm (Agrawal and Goyal, 2013),
the action-centered TS (ACTS) algorithm (Greenewald et al.,
2017) and the BOSE algorithm (Krishnamurthy et al., 2018).
We set N=2 or 6 and d=10. We let the first action to be the
base action, i.e., b1(t)=0d for all t, and form the other con-
text vectors as bi(t)=[I(i=2)zi(t)

T , · · · , I(i=N)zi(t)
T ]T ,

where zi(t) ∈ Rd′ , d′=d/(N−1), and zi(t) is generated uni-
formly at random from the d′-dimensional unit sphere. We
generate ηi(t)

i.i.d.∼ N (0, 0.12) and the rewards from (5),
where we set µ = [−0.55, 0.666,−0.09,−0.232, 0.244,
0.55,−0.666, 0.09, 0.232,−0.244]T and consider four
cases for ν(t): (i) ν(t) = 0, (ii) ν(t) =−ba∗(t)(t)Tµ, (iii)
ν(t)=log(t+ 1), (iv) ν(t)=cos(tπ/5000)log(t+ 1). We
conduct 50 replications in total for each case. Note that all
four algorithms have one tuning parameter each that con-
trols the degree of exploration. For the TS algorithms, the
tuning parameter is v in the variance of µ̃(t), and for the
BOSE algorithm, ω in the action elimination step. For each
algorithm, we use the value of the parameter which incurs
minimum median regret. These values can be found by grid
search.

Table 2. Median of R(T ) over 50 simulations.
Algorithms N (i) (ii) (iii) (iv)
TS

2

2.4 57.4 981.2 1724.1
ACTS 20.6 21.3 605.7 1407.5
Proposed TS 19.9 17.4 644.6 1619.3
BOSE 22.7 20.6 657.2 1660.9
TS

6

6.9 74.5 9411.6 11299.2
ACTS 200.1 257.4 3837.8 4592.3
Proposed TS 59.0 30.0 1118.7 2245.3
BOSE —– —– —– —–

Figures 1 and 2 show the cumulative regret R(t) according
to time t. The solid lines represent the median values and the
dashed lines represent the lower and upper 25% percentiles.
The values of R(T ) for each algorithm in each case are
reported in Table 2. Figure 1 summarizes the results when
N = 2. When ν(t) = 0, the original TS algorithm achieves
lowest cumulative regret. The proposed method shows the
second best performance in this case, while the BOSE and
ACTS algorithms are also competitive. In cases where ν(t)
changes with time, the original TS algorithm hardly learns
at all, while the three other methods developed under the
nonparametric intercept term are competitive. WhenN = 6,
Figure 2 exhibits a similar trend for the original TS and the
proposed algorithms as in the N = 2 case. On the other
hand, the BOSE algorithm has no explicit method so the
results are not shown and the ACTS algorithm has much
slower learning speed than the proposed TS method.

6. Real Data Analysis
We present the results of the proposed and existing methods
using the R6A dataset provied by Yahoo! Webscope. The
dataset is observational log data of user clicks from May 1st,
2009 to May 10th, 2009, which corresponds to 45,811,883
user visits. At every visit, one article was chosen uniformly
at random from 20 articles (N = 20) and was displayed on
the Featured tab of the Today module on Yahoo! front page.
The reward ri(t) is binary, taking value 1 if the visiting user
clicked the i-th article, and ri(t) = 0 otherwise. For each
article i, there is a context vector bi(t) ∈ R35, which is
constituted of 5 extracted user features, 5 extracted article
features and their products. The extracted features were
constructed from high-dimensional raw data for user and
article features using a dimension reduction method of Chu
et al. (2009).

Evaluating a new reinforcement learning policy retrospec-
tively using observational log data is a challenging task itself
and calls for off-policy evaluation methods. This is because
in the log data, the rewards of the actions that were not
chosen by the original logging policy are missing. In our
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Figure 1. Median (solid), 1st and 3rd quartiles (dashed) of cumulative regret over 50 simulations when N = 2.

Figure 2. Median (solid), 1st and 3rd quartiles (dashed) of cumulative regret over 50 simulations when N = 6.

log data, only the rewards of articles chosen by the uniform
random policy are observed and recorded.

Denote the policy that we want to evaluate as A and the
total T -trial reward of A as GA(T ) := E

[∑T
t=1 ra(t)(t)

]
,

where a(t) is chosen by A. Li et al. (2011) proposed an
offline evaluation algorithm for estimating GA(T ). Given
the stream of events (b = {bi}Ni=1, a, ra) from log data, the
algorithm picks up the events of which the chosen action a
matches the choice of A and stacks them into the history of
A. Rewards in the history are used to construct the estimate
ĜA(T ). In the case where A is an online learning policy, the
history is used to update the action selection distribution of
A as well. Under the condition that (b(t), r(t)) are i.i.d. and
the logging policy is the uniform random policy, ĜA(T ) is
shown to be unbiased. We note that the i.i.d. condition does
not cover the case where ν(t) is adaptive to the past trials.

We evaluate the uniform random policy, TS algorithm and
the proposed algorithm using the method of Li et al. (2011).
We use data of May 1st, 2009 as tuning data to choose the
optimal exploration parameter v for the TS algorithm and
the proposed algorithm, respectively. Then we conduct main
analysis on data from May 2nd to May 10th, 2009. Note that
the method of Li et al. (2011) picks up over 1/N = 1/20 of
the log data. This corresponds to over T = 1900000. We
fix the value of T to T = 1900000 a priori, and conduct
the evaluation algorithm for 10 times on the same data for
each policy. Since the evaluated policies are all randomized

Table 3. Mean, 1st quartile (1st Q.) and 3rd quartile (3rd Q.) of
user clicks achieved by each policy over 10 runs.

Policies Mean 1st Q. 3rd Q.
Uniform policy 66696.7 66515.0 66832.8
TS algorithm 86907.0 85992.8 88551.3
Proposed TS 90689.7 90177.3 91166.3

algorithms, each of the 10 runs pick up different actions,
giving 10 different estimates. We report the mean, 1st quar-
tile and 3rd quartile of the estimates for each policy in Table
3. We verify that the contextual bandit algorithms achieve
substantially higher user click rates than the uniform ran-
dom policy. Among the contextual bandit algorithms, the
proposed algorithm increases the average user click rate by
4.4% compared to the original TS algorithm.

7. Concluding Remarks
This paper proposes a new contextual MAB algorithm for a
semiparametric reward model which is well suited to real
problems where baseline rewards are bound to change with
time. The proposed algorithm improves on existing methods
that consider the same model. Simulation study and real
data analysis demonstrate the advantage of the proposed
method.
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