
Uniform Convergence Rate of the KDE Adaptive to Intrinsic Volume Dimension

SUPPLEMENTARY MATERIAL

A. Backgrounds and Basic Definitions
First, we define the Hausdorff measure ((Pesin, 1997, Section 6), (Falconer, 2014, Section 2.2)), which is a generalization of
the Lebesgue measure to lower dimensional subsets of Rd. For a subset A ⊂ Rd, we let diam(A) be its diameter, that is

diam(A) = sup{‖x− y‖ : x, y ∈ A}.

Definition 2. Fix ν > 0 and δ > 0. For any set A ⊂ Rd, define Hν
δ be

Hν
δ (A) := inf

{ ∞∑
i=1

(diamUi)
ν : A ⊂

∞⋃
i=1

Ui and diam(Ui) < δ

}
,

where the infimum is over all countable covers of A by sets Ui ⊂ Rd satisfying diam(Ui) < δ. Then, let the ν-dimensional
Hausdorff measure Hν be

Hν(A) := lim
δ→0

Hν
δ (A).

Then, the Hausdorff dimension of a set is the infimum over dimensions that make the Hausdorff measure on that set to be 0.

Definition 3. For any set A ⊂ Rd, its Hausdorff dimension dH(A) is

dH(A) := inf {ν : Hν(A) = 0} .

We use the normalized ν-dimensional Hausdorff measure so that when ν is an integer, its measure on ν-dimensional unit
cube is 1. This can be done by defining the normalized ν-dimensional Hausdorff measure λν as

λν =
π
ν
2

2νΓ(ν2 + 1)
Hν .

Now, we define the reach, which is a regularity parameter in geometric measure theory. Given a closed subset A ⊂ Rd, the
medial axis of A, denoted by Med(A), is the subset of Rd composed of the points that have at least two nearest neighbors
on A. Namely, denoting by d(x,A) = infq∈A ||q − x|| the distance function of a generic point x to A,

Med(A) =
{
x ∈ Rd \A|∃q1 6= q2 ∈ A, ||q1 − x|| = ||q2 − x|| = d(x,A)

}
. (22)

The reach of A is then defined as the minimal distance from A to Med(A).

Definition 4. The reach of a closed subset A ⊂ Rd is defined as

τA = inf
q∈A

d (q,Med(A)) = inf
q∈A,x∈Med(A)

||q − x||. (23)

B. Proof for Section 3
We show Lemma 4 first, which is a simple argument from the definition of dvol in (4) in Definition 1.

Lemma 4. Let P be a probability distribution on Rd, and dvol be its volume dimension. Then for any ν ∈ [0, dvol), there
exists a constant Cν,P depending only on P and ν such that for all x ∈ X and r > 0,

P (BRd(x, r))

rν
≤ Cν,P .

Proof of Lemma 4. From the definition of dvol in (4) in Definition 1, ν ∈ [0, dvol) implies that

lim sup
r→0

sup
x∈X

P (BRd(x, r))

rν
<∞.
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Then there exist r0 > 0 and C ′ν,P > 0 such that for all r ≤ r0 and for all x ∈ X,

P (BRd(x, r))

rν
≤ C ′ν,P . (24)

And for all r ≥ r0 and for all x ∈ X,
P (BRd(x, r))

rν
≤ 1

rν0
. (25)

Hence combining (24) and (25) gives that for all r > 0 and for all x ∈ X,

P (BRd(x, r))

rν
≤ max

{
C ′ν,P ,

1

rν0

}
.

Then we can show Proposition 1 by using Lemma 4 and the definition of Hausdorff dimension in Definition 3.

Proposition 1. Let P be a probability distribution on Rd, and dvol be its volume dimension. Suppose there exists a set
A satisfying P (A ∩ X) > 0 and with Hausdorff dimension dH . Then 0 ≤ dvol ≤ dH . Hence if A is a dM -dimensional
manifold, then 0 ≤ dvol ≤ dM . In particular, for any probability distribution P on Rd, 0 ≤ dvol ≤ d. Also, if P has a point
mass, i.e. there exists x ∈ X with P ({x}) > 0, then dvol = 0.

Proof of Proposition 1. We first show dvol ≥ 0. For any x ∈ X and r ≥ 0,

P (BRd(x, r))

r0
≤ 1 <∞.

Hence dvol ≥ 0 holds.

Now we show dvol ≤ dH = dH(A). Fix any ν < dvol, and we will show that Hν(A ∩ X) > 0. Let {Ui} be a countable
cover of A ∩ X, i.e. A ∩ X ⊂

⋃∞
i=1 Ui, and let ri = diam(Ui). For each i, we can assume that Ui ∩ (A ∩ X) 6= ∅ and

choose xi ∈ Ui ∩ (A ∩ X). Then Ui ⊂ BRd(xi, ri) ⊂ BRd(xi, 2ri), and hence

A ∩ X ⊂
∞⋃
i=1

BRd(xi, 2ri).

Then with xi ∈ X, applying (5) from Lemma 4 gives

P (A ∩ X) < P

( ∞⋃
i=1

BRd(xi, 2ri)

)
=

∞∑
i=1

P (BRd(xi, 2ri))

≤
∞∑
i=1

2νCν,P r
ν
i .

Hence
∞∑
i=1

rνi ≥
P (A ∩ X)

2νCν,P
> 0.

Since this holds for arbitrary covers of A ∩ X, Hν
δ (A ∩ X) ≥ P (A∩X)

2νCν,P
for all δ > 0. And A ∩ X ⊂ A implies

Hν(A) ≥ Hν(A ∩ X) = lim
δ→0

Hν
δ (A ∩ X) ≥ P (A ∩ X)

2νCν,P
> 0.

Since this holds for arbitrary ν < dvol, the definition of Hausdorff dimension in Definition 3 gives that

dH = inf {ν : Hν(A) = 0} ≥ dvol.

Now, if A is a dM -dimensional manifold, then the Hausdorff dimension of A is dM , and hence 0 ≤ dvol ≤ dM holds. In
particular, setting A = Rd gives 0 ≤ dvol ≤ d for all probability distributions. Also, if there exists x ∈ X with P ({x}) > 0,
then setting A = {x} gives dvol = 0.
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Proposition 2 is again a simple argument from the definition of dvol in (4) in Definition 1.

Proposition 2. Let P1, . . . , Pm be probability distributions on Rd, and λ1, . . . , λm ∈ (0, 1) with
∑m
i=1 λi = 1. Then

dvol

(
m∑
i=1

λiPi

)
= min {dvol(Pi) : 1 ≤ i ≤ m} .

In particular, when dvol is understood as a real-valued function on the space of probability distributions, both its sublevel
sets and superlevel sets are convex.

Proof of Proposition 2. It is enough to show for the case m = 2. Let P := λ1P1 + λ2P2.

We first show dvol(P ) ≥ min {dvol(P1), dvol(P2)}. Fix ν < min {dvol(P1), dvol(P2)}, then Definition 1 gives that

lim sup
r→0

sup
x∈X

P1(BRd(x, r))

rν
, lim sup

r→0
sup
x∈X

P2(BRd(x, r))

rν
<∞.

And hence

lim sup
r→0

sup
x∈X

P (BRd(x, r))

rν
= lim sup

r→0
sup
x∈X

{
λ1P1(BRd(x, r))

rν
+
λ2P2(BRd(x, r))

rν

}
≤ λ1 lim sup

r→0
sup
x∈X

P1(BRd(x, r))

rν
+ λ2 lim sup

r→0
sup
x∈X

P2(BRd(x, r))

rν
<∞.

And hence dvol(P ) ≥ min {dvol(P1), dvol(P2)} holds.

Next, we show dvol(P ) ≤ min {dvol(P1), dvol(P2)}. Without loss of generality, suppose dvol(P1) ≤ dvol(P2), and fix
ν > dvol(P1). Then Definition 1 gives that

lim sup
r→0

sup
x∈X

P1(BRd(x, r))

rν
=∞.

Then from P ≥ λ1P1,

lim sup
r→0

sup
x∈X

P (BRd(x, r))

rν
≥ lim sup

r→0
sup
x∈X

λ1P1(BRd(x, r))

rν
=∞.

And hence dvol(P ) ≤ dvol(P1) = min {dvol(P1), dvol(P2)} holds.

For Proposition 3 and 5, we need to bound the volume of the ball on the manifold. The following is rephrased from Lemma
3 in Kim et al. (2019).

Lemma 24. Let M ⊂ Rd be a dM -dimensional submanifold with reach τM . For a subset U ⊂ M and r < τM , let
Ur := {x ∈ Rd : dist(x, U) < r} be an r-neighborhood of U in Rd. Then

λdM (U) ≤ d!

dM !
rdM−dλd(Ur).

Then, the following Lemma is by combining Lemma 5.3 in Niyogi et al. (2008) and Lemma 24.

Lemma 25. Let M ⊂ Rd be a dM -dimensional submanifold with reach τM . Then, for x ∈M and r < τM ,(
1− r2

4τ2
M

) dM
2

rdMωd ≤ λdM (M ∩ BRd(x, r)) ≤ d!

dM !
2drdMωd.

Proof of Lemma 25. The LHS inequality is from Lemma 5.3 in Niyogi et al. (2008). The RHS inequality is applying
U = M ∩ BRd(x, r) to Lemma 24 and λd(Ur) ≤ λd(BRd(x, 2r)) = (2r)dωd.
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Now, we show Proposition 3 and 5 simultaneously via the following Proposition:

Proposition 26. Let P be a probability distribution on Rd, and dvol be its volume dimension. Suppose there exists a
dM -dimensional manifold M with positive reach satisfying P (M ∩X) > 0 and supp(P ) ⊂M . If P has a bounded density
p with respect to the normalized dM -dimensional Hausdorff measure λdM , then dvol = dM , and Assumption 1 and 2 are
satisfied. In particular, when P has a bounded density p with respect to the d-dimensional Lebesgue measure λd, then
dvol = d, and Assumption 1 and 2 are satisfied.

Proof for Proposition 26. Let τM be the reach of M .

We first show dvol = dM and Assumption 1. Since the density p is bounded, for all x ∈ X and r > 0, the probability on the
ball BRd(x, r) is bounded as

P (BRd(x, r)) ≤ ‖p‖∞ λdM (M ∩ BRd(0, r)). (26)

Then for r < τM , Lemma 25 implies λdM (M ∩ BRd(x, r)) ≤ d!
dM !2

drdMωd, and hence

lim sup
r→0

sup
x∈X

P (BRd(x, r))

rdM
≤ ‖p‖∞

d!

dM !
2dωd <∞, (27)

which implies
dvol ≥ dM .

Then from Proposition 1,
dvol = dM .

Now, (27) shows that Assumption 1 is satisfied.

For Assumption 2, define a density q : Rd → R as

q(x) = lim
r→0

Γ(dM2 + 1)

π
dM
2

P (BRd(x, r))

rdM
.

Since M is a submanifold with positive reach, P is λdM -rectifiable. This imply that such limit q(x) exists a.e. [λdM ], and
for any measurable set A,

P (A) =

∫
A∩M

q(x)dλdM (x).

See, for instance, Rinaldo & Wasserman (2010, Appendix), Mattila (1995, Corollary 17.9), or Ambrosio et al. (2000,
Theorem 2.83). Then from

P (M ∩ X) =

∫
M∩X

q(x)dλdM (x) > 0,

there exists x0 ∈M ∩ X with q(x0) > 0. And hence

sup
x∈X

lim inf
r→0

P (BRd(x, r))

rdM
≥ q(x0) > 0,

and hence Assumption 2 is satisfied.

The proof of Proposition 6 is simply checking the convexities for Assumption 1 and Assumption 2.

Proposition 6. The set of probability distributions satisfying Assumption 1 is convex. And so is the set of probability
distributions satisfying Assumption 2.

Proof of Proposition 6. Suppose P1, P2 are two probability distributions and λ ∈ (0, 1). Let P := λP1 + (1− λ)P2. Then
Proposition 2 implies that

dvol(P ) = min{dvol(P1), dvol(P2)}.
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Consider Assumption 1 first. Suppose P1 and P2 satisfies Assumption 1. Then for all x ∈ X and r ≤ 1, applying
dvol(P1) ≤ dvol(P1), dvol(P2) gives

P (BRd(x, r))

rdvol(P )
= λ

P1(BRd(x, r))

rdvol(P )
+ (1− λ)

P2(BRd(x, r))

rdvol(P )

≤ λP1(BRd(x, r))

rdvol(P1)
+ (1− λ)

P2(BRd(x, r))

rdvol(P2)
.

Hence,

lim sup
r→0

sup
x∈X

P (BRd(x, r))

rdvol(P )
≤ lim sup

r→0
sup
x∈X

{
λ
P1(BRd(x, r))

rdvol(P1)
+ (1− λ)

P2(BRd(x, r))

rdvol(P2)

}
≤ λ lim sup

r→0
sup
x∈X

P1(BRd(x, r))

rdvol(P1)
+ (1− λ) lim sup

r→0
sup
x∈X

P2(BRd(x, r))

rdvol(P2)

<∞,

and Assumption 1 is satisfied for P = λP1 + (1− λ)P2.

Now, consider Assumption 2. Suppose P1 and P2 satisfies Assumption 1, and without loss of generality, assume dvol(P1) ≤
dvol(P2). Then there exists x0 ∈ X such that

lim inf
r→0

P1(BRd(x0, r))

rdvol(P1)
> 0.

Then P ≥ λP1 and dvol(P ) = dvol(P1) give

lim inf
r→0

P (BRd(x0, r))

rdvol(P )
≥ lim inf

r→0

λP1(BRd(x0, r))

rdvol(P1)
>∞.

Hence

sup
x∈X

lim inf
r→0

P (BRd(x, r))

rdvol(P )
> 0,

and Assumption 2 is satisfied for P = λP1 + (1− λ)P2.

C. Volume Dimension and Other Dimensions
In this section, we compare the volume dimension with other various dimensions.

For a set, one commonly used dimension other than the Hausdorff dimension is the box dimension ((Pesin, 1997, Section 6),
(Falconer, 2014, Section 3.1)). This has various names as Kolmogorov entropy, entropy dimension, capacity dimension,
metric dimension, logarithmic density or Minkowski dimension.
Definition 5. For any set A ⊂ Rd and δ > 0, let N(A, δ) be the smallest number of balls of radius δ to cover A. Then the
lower box dimension of A is defined as

d−B(A) := lim inf
δ→0

logN(A, δ)

− log δ
,

and the upper box dimension of A is defined as

d+
B(A) := lim sup

δ→0

logN(A, δ)

− log δ
.

The Hausdorff dimension and the lower and upper box dimensions are related as (Pesin, 1997, Theorem 6.2 (2)):

forall A ⊂ Rd, dH(A) ≤ d−B(A) ≤ d+
B(A). (28)

So far the Hausdorff dimension in Section A and the box dimension is defined for a set. For a probability distribution,
there are two ways for natural extension. One way is to take the infimum of the set dimensions over all sets with positive
probabilities ((Mattila et al., 2000, Section 2), (Falconer, 2014, Section 13.7)). We will use this as the definition of the
Hausdorff dimension and the box dimension.
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Definition 6. Let P be a probability distribution on Rd. Its Hausdorff dimension dH(P ) is the infimum of the Hausdorff
dimensions over a set with positive probability, i.e.,

dH(P ) := inf
A:P (A)>0

dH(A).

Similarly, the lower box dimension d−B(P ) and the upper box dimension d+
B(P ) is the infimum of the lower box dimensions

and the upper box dimensions, respectively, over a set with positive probability, i.e.

d−B(P ) := inf
A:P (A)>0

d−B(A),

d+
B(P ) := inf

A:P (A)>0
d+
B(A).

Another way is to take the infimum of the set dimensions over all sets with probabilities 1 (Pesin, 1997, Section 6). We will
denote these dimensions as Hausdorff support dimension and the box support dimension to differentiate from the previous
dimensions.
Definition 7. Let P be a probability distribution on Rd. Its Hausdorff support dimension dHS(P ) is the infimum of the
Hausdorff dimensions over a set with probability 1, i.e.,

dHS(P ) := inf
A:P (A)=1

dH(A).

Similarly, the lower box dimension d−BS(P ) and the upper box dimension d+
BS(P ) is the infimum of the lower box dimensions

and the upper box dimensions, respectively, over a set with positive probability, i.e.

d−BS(P ) := inf
A:P (A)=1

d−B(A),

d+
BS(P ) := inf

A:P (A)=1
d+
B(A).

The volume dimension, the Hausdorff dimension, and the lower and upper box dimensions have the following relations.
Proposition 27. Let P be a probability distribution on Rd with P (X) > 0. Then its volume dimension, Hausdorff dimension,
lower and upper box dimension, Hausdorff support dimension, and lower and upper box support dimension satisfy the
following inequality:

dvol(P ) ≤ dH(P ) ≤ d−B(P ) ≤ d+
B(P ),

and
dvol(P ) ≤ dHS(P ) ≤ d−BS(P ) ≤ d+

BS(P ).

Proof. Since P (supp(P ) ∩ X) = P (X) > 0, dvol(P ) ≤ dH(P ) is direct from Proposition 1. Now, combining this with
dH(P ) ≤ d−B(P ) ≤ d+

B(P ) and dHS(P ) ≤ d−BS(P ) ≤ d+
BS(P ) from (28) and that dH(P ) ≤ dHS(P ) gives the statement.

Now, we introduce the q-dimension, which generalizes the box support dimension (Lee & Verleysen, 2007, Section 3.2.1).
Definition 8. Let P be a probability distribution on Rd. For q ≥ 0 and δ > 0, define Cq(P, δ) as

Cq(P, δ) :=

∫
[P (BRd(x, δ))]q−1dP (x).

Now for q ≥ 0 and q 6= 1, the lower q-dimension of P is

d−q (P ) := lim inf
δ→0

logCq(P, δ)

(q − 1) log δ
,

and the upper q-dimension of P is

d+
q (P ) := lim sup

δ→0

logCq(P, δ)

(q − 1) log δ
.

For q = 1, we understand in the limit sense, i.e., d−1 (P ) = limq→1 d
−
q (P ) and d+

1 (P ) = limq→1 d
+
q (P ).
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This q-dimension is a generalization of the box support dimension in the sense that when q = 0, the lower and upper
q-dimensions reduce to the lower and upper box support dimensions, respectively, i.e. d−0 (P ) = d−BS(P ) and d+

0 (P ) =
d+
BS(P ) Pesin (1997, Section 8). When q = 1, the q-dimension is called the information dimension, and when q = 2, the
q-dimension is called the correlation dimension.

The volume dimension and the q-dimension have the following relation.
Proposition 28. Let P be a probability distribution on Rd with P (X) = 1. Then for any q ≥ 0, the volume dimension and
the q-dimension has the following inequality:

dvol(P ) ≤ d−q (P ) ≤ d+
q (P ).

Proof. Since d−q (P ) ≤ d+
q (P ) is obvious, we only need to show dvol(P ) ≤ d−q (P ).

Fix any ν < dvol(P ). Then from P (X) = 1, Cq(P, δ) can be expressed as taking an integration over X. Hence applying (5)
from Lemma 4 gives

Cq(P, δ) =

∫
X

[P (BRd(x, δ))]q−1dP (x)

≤
∫
X

[P (BRd(x, 2δ))]q−1dP (x)

≤ (2νCν,P δ
ν)q−1.

And hence d−q (P ) is lower bounded as

d−q (P ) = lim inf
δ→0

logCq(P, δ)

(q − 1) log δ
≥ lim inf

δ→0

log(2νCν,P δ
ν)

log δ

= ν + lim inf
δ→0

log(2νCν,P )

log δ
= ν.

Since this holds for arbitrary ν < dvol(P ), we have

dvol(P ) ≤ d−q (P ).

We end this section by comparing the volume dimension and the Wasserstein dimension (Weed & Bach, 2017, Definition 4).
Definition 9. Let P be a probability distribution on Rd. For any δ > 0 and τ ∈ [0, 1], let the (δ, τ)-covering number of P
be

N(P, δ, τ) := inf{N(A, δ) : P (A) ≥ 1− τ},
and let the (δ, τ)-dimension be

dδ(P, τ) :=
logN(P, δ, τ)

− log δ
.

Then for a fixed p > 0, the lower and upper Wasserstein dimensions are respectively,

d∗(P ) = lim
τ→0

lim inf
δ→0

dδ(P, τ)

d∗p(P ) = inf{s ∈ (2p,∞) : lim sup
δ→0

dε(P, δ
sp
s−2p ) ≤ s}.

Proposition 29. Let P be a probability distribution on Rd with P (X) > 0. Then its volume dimension and lower and upper
Wasserstein dimensions satisfy the following inequality:

dvol(P ) ≤ dHS(P ) ≤ d∗(P ) ≤ d∗p(P ).

Proof. Since P (supp(P ) ∩ X) = P (X) > 0, dvol(P ) ≤ dH(P ) is direct from Proposition 1. The inequality dH(P ) ≤
d∗(P ) ≤ d∗p(P ) is from Weed & Bach (2017, Proposition 2).
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D. Uniform convergence on a function class
As we have seen in (8) in Section 4, uniform bound on the kernel density estimator suph≥ln,x∈X |p̂h(x)− ph(x)| boils
down to uniformly bounding on the function class supf∈F̃K,[ln,∞)

∣∣ 1
n

∑n
i=1 f(Xi)− E[f(X)]

∣∣. In this section, we derive

a uniform convergence for a more general class of functions. Let F be a class of functions from Rd to R, and consider a
random variable

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ . (29)

As discussed in Section 4, we combine the Talagrand inequality (Theorem 8) and VC type bound (Theorem 9) to bound
(29), which is generalizing the approach in Sriperumbudur & Steinwart (2012, Theorem 3.1).

Theorem 30. Let (Rd, P ) be a probability space and let X1, . . . , Xn be i.i.d. from P . Let F be a class of functions from Rd
to R that is uniformly bounded VC-class with dimension ν, i.e. there exists positive numbers A,B such that, for all f ∈ F ,
‖f‖∞ ≤ B, and for every probability measure Q on Rd and for every ε ∈ (0, B), the covering number N (F , L2(Q), ε)
satisfies

N (F , L2(Q), ε) ≤
(
AB

ε

)ν
.

Let σ > 0 with EP f2 ≤ σ2 for all f ∈ F . Then there exists a universal constant C not depending on any parameters such
that supf∈F

∣∣ 1
n

∑n
i=1 f(Xi)− E[f(X)]

∣∣ is upper bounded with probability at least 1− δ,

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤ C
νB

n
log

(
2AB

σ

)
+

√
νσ2

n
log

(
2AB

σ

)
+

√
σ2 log( 1

δ )

n
+
B log( 1

δ )

n

 .

Proof of Theorem 30. Let G := {f − EP [f ] : f ∈ F}. Then it is immediate to check that for all g ∈ G,

EP g = EP f − EP f = 0,

EP g2 = EP (f − EP f)2 ≤ EP f2 ≤ σ2,

‖g‖∞ ≤ ‖f‖∞ + EP f ≤ 2B. (30)

Now, supf∈F
∣∣ 1
n

∑n
i=1 f(Xi)− E[f(X)]

∣∣ is expanded as

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ = sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)

∣∣∣∣∣ .
Hence from (30), applying Proposition 8 to above gives the probabilistic bound on supg∈G

∣∣ 1
n

∑n
i=1 g(Xi)

∣∣ as

P

sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)

∣∣∣∣∣ < 4EP sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)

∣∣∣∣∣+

√
2σ2 log( 1

δ )

n
+

2B log( 1
δ )

n

 ≥ 1− δ. (31)

It thus remains to bound the term EP supg∈G
∣∣ 1
n

∑n
i=1 g(Xi)

∣∣. Let F̃ := {f − a : f ∈ F , a ∈ [−B,B]}. Then F being a
uniform VC-class with dimension ν implies that for all ε ∈ (0, B),

sup
P
N
(
F̃ , L2(P ), ε

)
≤ sup

P
N
(
F , L2(P ),

ε

2

)
sup
P
N
(

[−B,B], | · |, ε
2

)
≤
(

2AB

ε

)ν+1

.

Hence from (30), applying Proposition 9 yields the upper bound for EP supg∈G
∣∣ 1
n

∑n
i=1 g(Xi)

∣∣ as

EPn sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)

∣∣∣∣∣ ≤ 2C

(
2(ν + 1)B

n
log

(
2AB

σ

)
+

√
(ν + 1)σ2

n
log

(
2AB

σ

))
. (32)
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Hence applying (32) to (31) yields that, supf∈F
∣∣ 1
n

∑n
i=1 f(Xi)− E[f(X)]

∣∣ is upper bounded with probability at least
1− δ as

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤ 4C

(
2(ν + 1)B

n
log

(
2AB

σ

)
+

√
(ν + 1)σ2

n
log

(
2AB

σ

))

+

√
2σ2 log( 1

δ )

n
+

2B log( 1
δ )

n

≤ 16C

νB
n

log

(
2AB

σ

)
+

√
νσ2

n
log

(
2AB

σ

)
+

√
σ2 log( 1

δ )

n
+
B log( 1

δ )

n

 .

E. Proof for Section 4
Lemma 11 is shown by the calculation using integral by parts and change of variables.

Lemma 11. Let (Rd, P ) be a probability space and let X ∼ P . For any kernel K satisfying Assumption 3 with k > 0, the
expectation of the k-moment of the kernel is upper bounded as

EP

[∣∣∣∣K (x−Xh
)∣∣∣∣k
]
≤ Ck,P,K,εhdvol−ε,

for any ε ∈ (0, dvol), where Ck,P,K,ε is a constant depending only on k, P , K, and ε. Further, if dvol = 0 or under
Assumption 1, ε can be 0 in (11).

Proof of Lemma 11. We first consider the case when dvol = 0. Then EP
[∣∣K (x−Xh )∣∣k] is simply bounded as

EP

[∣∣∣∣K (x−Xh
)∣∣∣∣k
]
≤ ‖K‖k∞ h0.

Now, we consider the case when dvol > 0. Fix ε ∈ (0, dvol). Under Assumption 1, ε can be chosen to be 0.

Let Ck,K,dvol,ε :=
∫∞

0
tdvol−ε−1 sup‖x‖≤t |K(x)|kdt, then it is finite from (10) and ‖K‖∞ <∞ in Assumption 4 as∫ ∞

0

tdvol−ε−1 sup
‖x‖≤t

|K(x)|kdt ≤
∫ 1

0

tdvol−ε−1 ‖K‖∞ dt+

∫ ∞
1

tdvol−1 sup
‖x‖≤t

|K(x)|kdt

≤
‖K‖∞
dvol − ε

+

∫ ∞
0

tdvol−1 sup
‖x‖≤t

|K(x)|kdt <∞.

Fix η > 0, and let K̃η : [0,∞)→ R be a continuous and strictly decreasing function satisfying K̃η(t) > sup‖x‖≥t |K(x)|k

for all t ≥ 0 and
∫∞

0
tdvol−ε−1(K̃η(t)− sup‖x‖≥t |K(x)|k)dt = η. Such existence is possible since t 7→ sup‖x‖≥t |K(x)|k

is nonincreasing function, so have at most countable discontinuous points, and
∫∞

0
tdvol−ε−1 sup‖x‖≤t |K(x)|kdt < ∞.

Then it is immediate to check that
|K(x)|k < K̃η(‖x‖) for all x ∈ R. (33)

Then
∫∞

0
tdvol−ε−1K̃(t)dt can be expanded as∫ ∞

0

tdvol−ε−1K̃η(t)dt =

∫ ∞
0

tdvol−ε−1 sup
‖x‖≤t

|K(x)|kdt+

∫ ∞
0

tdvol−ε−1(K̃η(t)− sup
‖x‖≥t

|K(x)|k)dt

= Ck,K,dvol,ε + η <∞. (34)
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Now since K̃η is continuous and strictly decreasing, change of variables t = K̃η(u) is applicable, and then

EP
[∣∣K (x−Xh )∣∣k] can be expanded as

EP

[∣∣∣∣K (x−Xh
)∣∣∣∣k
]

=

∫ ∞
0

P

(∣∣∣∣K (x−Xh
)∣∣∣∣k > t

)
dt

=

∫ 0

∞
P

(∣∣∣∣K (x−Xh
)∣∣∣∣k > K̃η(u)

)
dK̃η(u).

Now, from (33) and K̃η being a strictly decreasing, we can upper bound EP
[∣∣K (x−Xh )∣∣k] as

EP

[∣∣∣∣K (x−Xh
)∣∣∣∣k
]
≤
∫ 0

∞
P

(
K̃η

(
‖x−X‖

h

)
> K̃η(u)

)
dK̃η(u)

=

∫ 0

∞
P

(
‖x−X‖

h
< u

)
dK̃η(u)

=

∫ 0

∞
P (BRd(x, hu)) dK̃η(u).

Now, from Lemma 4 (and (6) for Assumption 1 case), there exists Cdvol−ε,P <∞ with P (BRd(x, r)) ≤ Cdvol−ε,P rdvol−ε

for all x ∈ X and r > 0. Then EP
[∣∣K (x−Xh )∣∣k] is further upper bounded as

EP

[∣∣∣∣K (x−Xh
)∣∣∣∣k
]
≤
∫ 0

∞
Cdvol−ε,P (hu)dvol−εdK̃(u)

= Cdvol−ε,Ph
dvol−ε

∫ 0

∞
udvol−εdK̃(u). (35)

Now,
∫ 0

∞ udvol−εdK̃(u) can be computed using integration by part. Note first that
∫∞

0
tdvol−ε−1K̃(t)dt <∞ implies

lim
t→∞

tdvol−εK̃(t) = 0.

To see this, note that tdvol−εK̃(t) is expanded as

tdvol−εK̃(t) =

∫ t

0

udvol−εdK̃(u) +

∫ t

0

(dvol − ε)udvol−ε−1K̃(u)du,

then
∫∞

0
(dvol − ε)udvol−ε−1K̃(u)du < ∞ and

∫ t
0
udvol−εdK̃(u) being monotone function of t imply that

limt→∞ tdvol−εK̃(t) exists. Now, suppose limt→∞ tdvol−εK̃(t) = a > 0, then we can choose t0 > 0 such that
tdvol−εK̃(t) > a

2 for all t ≥ t0, and then

∞ >

∫ ∞
0

tdvol−ε−1K̃(t)dt ≥
∫ ∞
t0

tdvol−ε−1K̃(t)dt ≥ a

2

∫ ∞
t0

t−1dt =∞,

which is a contradiction. Hence limt→∞ tdvol−εK̃(t) = 0. Now, applying integration by part to
∫ 0

∞ udvol−εdK̃(u) with
dvol − ε > 0 gives ∫ 0

∞
udvol−εdK̃(u) =

[
udvol−εK̃(u)

]0
∞
−
∫ 0

∞
(dvol − ε)udvol−ε−1K̃(u)du

=

∫ ∞
0

(dvol − ε)udvol−ε−1K̃(u)du. (36)
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Then applying (34) and (36) to (35) gives an upper bound for EP
[∣∣K (x−Xh )∣∣k] as

EP

[∣∣∣∣K (x−Xh
)∣∣∣∣k
]
≤ Cdvol−ε,P (dvol − ε)hdvol−ε(Ck,K,dvol,ε + η). (37)

And then note that RHS of (37) holds for any η > 0, and hence EP
[∣∣K (x−Xh )∣∣k] is further upper bounded as

EP

[∣∣∣∣K (x−Xh
)∣∣∣∣k
]
≤ inf
η>0

{
Cdvol−ε,P (dvol − ε)hdvol−ε(Ck,K,dvol,ε + η)

}
= Cdvol−ε,P (dvol − ε)Ck,K,dvol,εhdvol−ε

= Ck,P,K,εh
dvol−ε,

where Ck,P,K,ε = Cdvol−ε,P (dvol − ε)Ck,K,dvol,ε.

E.1. Proof for Section 4.1

Theorem 12 follows from applying Theorem 30.

Theorem 12. Let P be a probability distribution and let K be a kernel function satisfying Assumption 3 and 4. Then, with
probability at least 1− δ,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| ≤ C

 (log (1/ln))+

nldn
+

√
(log (1/ln))+

nl2d−dvol+εn

+

√
log (2/δ)

nl2d−dvol+εn

+
log (2/δ)

nldn

 ,

for any ε ∈ (0, dvol), where C is a constant depending only on A, ‖K‖∞, d, ν, dvol, Ck=2,P,K,ε, ε. Further, if dvol = 0 or
under Assumption 1, ε can be 0 in (12).

Proof of Theorem 12. For x ∈ X and h ≥ ln, let Kx,h : Rd → R be Kx,h(·) = K
(
x−·
h

)
, and let F̃K,[ln,∞) :={

1
hd
Kx,h : x ∈ X, h ≥ ln

}
be a class of normalized kernel functions centered on X and bandwidth in [ln,∞). Note that

p̂h(x)− ph(x) can be expanded as

p̂h(x)− ph(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
− EP

[
1

hd
K

(
x−Xi

h

)]
=

1

n

n∑
i=1

1

hd
Kx,h(Xi)− EP

[
1

hd
Kx,h

]
.

Hence suph≥ln,x∈X |p̂h(x)− ph(x)| can be expanded as

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| = sup
f∈F̃K,[ln,∞)

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− EP [f(X)]

∣∣∣∣∣ . (38)

Now, it is immediate to check that
‖f‖∞ ≤ l

−d
n ‖K‖∞ . (39)

For bounding the VC dimension of F̃K,[ln,∞), consider FK,[ln,∞) := {Kx,h : x ∈ X, h ≥ ln} be a class of unnormalized
kernel functions centered on X and bandwidth in [ln,∞). Fix η < l−dn ‖K‖∞ and a probability measure Q on Rd.

Suppose
[
ln,
(

η
2‖K‖∞

)−1/d
]

is covered by balls
{(
hi − ld+1

n η
2d‖K‖∞

, hi +
ld+1
n η

2d‖K‖∞

)
: 1 ≤ i ≤ N1

}
and (FK,[ln,∞), L2(Q))

is covered by balls
{
BL2(Q)

(
fj ,

ldnη
2

)
: 1 ≤ j ≤ N2

}
, and let fi,j := h−di fj for 1 ≤ i ≤ N1 and 1 ≤ j ≤ N2. Also,

choose h0 >
(

η
2‖K‖∞

)−1/d

, x0 ∈ X, and let f0 = 1
hd0
Kx0,h0 . We will show that{

BL2(Q) (fi,j , η) : 1 ≤ i ≤ N1, 1 ≤ j ≤ N2

}
∪
{
BL2(Q) (f0, η)

}
covers F̃K,[ln,∞). (40)
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For the first case when h ≤
(

η
‖K‖∞

)−1/d

, find hi and fj with h ∈
(
hi − ld+1

n η
2d‖K‖∞

, hi +
ld+1
n η

2d‖K‖∞

)
and Kx,h ∈

BL2(Q)

(
fj ,

ldnη
2

)
. Then the distance between 1

hd
Kx,h and 1

hdi
fj is upper bounded as

∥∥∥∥ 1

hd
Kx,h −

1

hdi
fj

∥∥∥∥
L2(Q)

≤
∥∥∥∥ 1

hd
Kx,h −

1

hdi
Kx,h

∥∥∥∥
L2(Q)

+

∥∥∥∥ 1

hdi
Kx,h −

1

hdi
fj

∥∥∥∥
L2(Q)

. (41)

Now, the first term of (41) is upper bounded as∥∥∥∥ 1

hd
Kx,h −

1

hdi
Kx,h

∥∥∥∥
L2(Q)

=

∣∣∣∣ 1

hd
− 1

hdi

∣∣∣∣ ‖Kx,h‖L2(Q)

= |hi − h|
d−1∑
k=0

hk−di h−1−k ‖Kx,h‖L2(Q)

≤ |hi − h| dl−d−1
n ‖K‖∞ <

η

2
. (42)

Also, the second term of (41) is upper bounded as∥∥∥∥ 1

hdi
Kx,h −

1

hdi
fj

∥∥∥∥
L2(Q)

=
1

hdi
‖Kx,h − fj‖L2(Q)

≤ l−dn ‖Kx,h − fj‖L2(Q) <
η

2
. (43)

Hence applying (42) and (43) to (41) gives ∥∥∥∥ 1

hd
Kx,h −

1

hdi
fj

∥∥∥∥
L2(Q)

< η.

For the second case when h >
(

η
2‖K‖∞

)−1/d

,
∥∥ 1
hd
Kx,h

∥∥
L2(Q)

≤
∥∥ 1
hd
Kx,h

∥∥
∞ < η

2 holds, and hence

∥∥∥∥ 1

hd
Kx,h − f0

∥∥∥∥
L2(Q)

≤
∥∥∥∥ 1

hd
Kx,h

∥∥∥∥
L2(Q)

+ ‖f0‖L2(Q) < η.

Therefore, (40) is shown. Hence combined with Assumption 4 gives that for every probability measure Q on Rd and for
every η ∈ (0, h−d ‖K‖∞), the covering number N (F̃K,[ln,∞), L2(Q), η) is upper bounded as

sup
Q
N (F̃K,[ln,∞), L2(Q), η) ≤ N

([
ln,

(
η

2 ‖K‖∞

)−1/d
]
, | · |, ld+1

n η

2d ‖K‖∞

)
sup
Q
N
(
FK,[ln,∞), L2(Q),

ldnη

2

)
+ 1

≤
2d ‖K‖∞
ld+1
n η

(
2 ‖K‖∞

η

)1/d(
2A ‖K‖∞

ldnη

)ν
+ 1

≤
(

2Ad ‖K‖∞
ldnη

)ν+2

. (44)

Also, Lemma 11 implies that under Assumption 3, for any ε ∈ (0, dvol) (and ε can be 0 if dvol = 0 or under Assumption 1),

EP

[(
1

hd
Kx,h

)2
]
≤ Ck=2,P,K,εl

−2d+dvol−ε
n . (45)

Hence from (39), (44), and (45), applying Theorem 30 to (38) gives that suph≥ln,x∈X |p̂h(x)− ph(x)| is upper bounded
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with probability at least 1− δ as

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|

≤ C


2(ν + 2) ‖K‖∞ log

(
2Ad‖K‖∞√

Ck=2,P,K,εl
(dvol−ε)/2
n

)
nldn

+

√√√√√2(ν + 2)Ck=2,P,K,ε log

(
2Ad‖K‖∞√

Ck=2,P,K,εl
(dvol−ε)/2
n

)
nl2d−dvol+εn

+

√
Ck=2,P,K,ε log( 1

δ )

nl2d−dvol+εn

+
‖K‖∞ log( 1

δ )

nldn



≤ CA,‖K‖∞,d,ν,dvol,Ck=2,P,K,ε


(

log
(

1
ln

))
+

nldn
+

√√√√(log
(

1
ln

))
+

nl2d−dvol+εn

+

√
log
(

2
δ

)
nl2d−dvol+εn

+
log
(

2
δ

)
nldn

 ,

where CA,‖K‖∞,d,ν,dvol,Ck=2,P,K,ε,ε depends only on A, ‖K‖∞, d, ν, dvol, Ck=2,P,K,ε, ε.

Then Corollary 13 is just simplifying the result in Theorem 12.

Corollary 13. Let P be a probability distribution and let K be a kernel function satisfying Assumption 3 and 4. Fix
ε ∈ (0, dvol). Further, if dvol = 0 or under Assumption 1, ε can be 0. Suppose

lim sup
n

(log (1/`n))+ + log (2/δ)

n`dvol−εn

<∞.

Then, with probability at least 1− δ,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| ≤ C ′
√

(log( 1
ln

))+ + log( 2
δ )

nl2d−dvol+εn

,

where C ′ depending only on A, ‖K‖∞, d, ν, dvol, Ck=2,P,K,ε, ε.

Proof of Corollary 13. From (12) in Theorem 12, suph≥ln,x∈X |p̂h(x)− ph(x)| is upper bounded with probability at least
1− δ as

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|

≤ CA,‖K‖∞,d,ν,dvol,Ck=2,P,K,ε,ε


(

log
(

1
ln

))
+

nldn
+

√√√√(log
(

1
ln

))
+

nl2d−dvol+εn

+

√
log
(

2
δ

)
nl

2d−dvol+ε+ε
n

+
log
(

2
δ

)
nldn



= CA,‖K‖∞,d,ν,dvol,Ck=2,P,K,ε,ε


√√√√(log

(
1
ln

))
+

nl2d−dvol+εn


√√√√(log

(
1
ln

))
+

nldvol−εn

+ 1

+

√
log
(

2
δ

)
nl2d−dvol+εn

√ log
(

2
δ

)
nldvol−εn

+ 1


 .

Then from lim supn
(log( 1

ln
))

+
+log( 2

δ )

nl
dvol−ε
n

< ∞, there exists some constant C ′ with
(

log
(

1
ln

))
+

+ log
(

2
δ

)
≤ C ′nldvol+εn .
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And hence suph≥ln,x∈X |p̂h(x)− ph(x)| is upper bounded with probability 1− δ as

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|

≤ CA,‖K‖∞,d,ν,dvol,Ck=2,P,K,ε,ε


√√√√(log

(
1
ln

))
+

nl2d−dvol+εn

(√
C ′ + 1

)
+

√
log
(

1
δ

)
nl2d−dvol+εn

(√
C ′ + 1

)

≤ C ′A,‖K‖∞,d,ν,dvol,Ck=2,P,K,ε,ε

√√√√(log
(

1
ln

))
+

+ log
(

1
δ

)
nl2d−dvol+εn

,

where C ′A,‖K‖∞,d,ν,dvol,Ck=2,P,K,ε,ε
depending only on A, ‖K‖∞, d, ν, dvol, Ck=2,P,K,ε, ε.

E.2. Proof for Section 4.2

Lemma 14 is by covering X and then using the Lipschitz property of the kernel function K.

Lemma 14. Suppose there exists R > 0 with X ⊂ BRd(0, R). Let the kernel K is MK-Lipschitz continuous. Then for all
η ∈ (0, ‖K‖∞), the supremum of the η-covering number N (FK,h, L2(Q), η) over all measure Q is upper bounded as

sup
Q
N (FK,h, L2(Q), η) ≤

(
2RMKh

−1 + ‖K‖∞
η

)d
.

Proof of Lemma 14. For fixed η > 0, let x1, . . . , xM be the maximal η-covering of BRd(0, R), with M =
M (BRd(0, R), ‖·‖2 , η) being the packing number of BRd(0, R). Then BRd(xi, η) and BRd(xj , η) do not intersect for
any i, j and

⋃M
i=1 BRd(xi, η) ⊂ BRd(xi, R+ η), and hence

M∑
i=1

λd (BRd(xi, η)) ≤ λd (BRd(xi, R+ η)) . (46)

Then λd (BRd(x, r)) = rdλd (BRd(0, 1)) gives the upper bound onM(BRd(0, R), ‖·‖2 , η) as

M (BRd(0, R), ‖·‖2 , η) ≤
(

1 +
R

η

)d
.

Then X ⊂ BRd(0, R) and the relationship between covering number and packing number gives the upper bound on the
covering number N (X, ‖·‖2 , η) as

N (X, ‖·‖2 , η) ≤ N (BRd(0, R), ‖·‖2 , η) ≤M
(
BRd(0, R), ‖·‖2 ,

η

2

)
≤
(

1 +
2R

η

)d
. (47)

Now, note that for all x, y ∈ X and for all z ∈ Rd, |Kx,h(z)−Ky,h(z)| is upper bounded as

|Kx,h(z)−Ky,h(z)| =
∣∣∣∣K (x− zh

)
−K

(
y − z
h

)∣∣∣∣ ≤ MK

h
‖(x− z)− (y − z)‖2 =

MK

h
‖x− y‖2 .

Hence for any measure Q on Rd, ‖Kx,h −Ky,h‖L2(Q) is upper bounded as

‖Kx,h −Ky,h‖L2(Q) =

√∫
(Kx,h(z)−Ky,h(z))2dQ(z) ≤ MK

h
‖x− y‖2 .
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Hence applying this to (47) implies that for all η > 0, the supremum of the covering number N (FK,h, L2(Q), η) over all
measure Q is upper bounded as

sup
Q
N (FK,h, L2(Q), η) ≤ N

(
X, ‖·‖2 ,

hη

MK

)
≤
(

1 +
2RMK

hη

)d
.

Hence for all η ∈ (0, ‖K‖∞),

sup
Q
N (FK,h, L2(Q), η) ≤

(
2RMKh

−1 + ‖K‖∞
η

)d
.

Then Corollary 15 follows from applying Theorem 30 with bounding the covering number from Lemma 14.

Corollary 15. Suppose there exists R > 0 with X ⊂ BRd(0, R). Let K be a MK-Lipschitz continuous kernel function
satisfying Assumption 3. Fix ε ∈ (0, dvol). Further, if dvol = 0 or under Assumption 1, ε can be 0. Suppose

lim sup
n

(log (1/hn))+ + log (2/δ)

nhdvol−εn

<∞.

Then with probability at least 1− δ,

sup
x∈X
|p̂hn(x)− phn(x)| ≤ C ′′

√
(log( 1

hn
))+ + log( 2

δ )

nh2d−dvol+ε
n

,

where C ′′ is a constant depending only on R, MK , ‖K‖∞, d, ν, dvol, Ck=2,P,K,ε, ε.

Proof of Corollary 15. For x ∈ X, let Kx,h : Rd → R be Kx,h(·) = K
(
x−·
h

)
, and let F̃K,h :=

{
1
hd
Kx,h : x ∈ X

}
be a

class of normalized kernel functions centered on X and bandwidth h. Note that p̂h(x)− ph(x) can be expanded as

p̂h(x)− ph(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
− EP

[
1

hd
K

(
x−Xi

h

)]
=

1

n

n∑
i=1

1

hd
Kx,h(Xi)− EP

[
1

hd
Kx,h

]
.

Hence supx∈X |p̂h(x)− ph(x)| can be expanded as

sup
x∈X
|p̂h(x)− ph(x)| = sup

f∈F̃K,h

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− EP [f(X)]

∣∣∣∣∣ . (48)

Now, it is immediate to check that
‖f‖∞ ≤ h

−d ‖K‖∞ . (49)

Also, Since F̃K,h = h−dFK,h, VC dimension is uniformly bounded as Lemma 14 gives that for every probability measure
Q on Rd and for every η ∈ (0, h−d ‖K‖∞), the covering number N (F̃K,h, L2(Q), η) is upper bounded as

sup
Q
N (F̃K,h, L2(Q), η) = sup

Q
N (FK,h, L2(Q), hdη)

≤
(

2RMKh
−1 + ‖K‖∞
hdη

)d
≤
(

2RMK ‖K‖∞
hd+1η

)d
. (50)

Also, Lemma 11 implies that under Assumption 3, for any ε ∈ (0, dvol) (and ε can be 0 if dvol = 0 or under Assumption 1),

EP

[(
1

hd
Kx,h

)2
]
≤ Ck=2,P,K,εh

−2d+dvol−ε. (51)
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Hence from (49), (50), and (51), applying Theorem 30 to (48) gives that supx∈X |p̂h(x)− ph(x)| is upper bounded with
probability at least 1− δ as

sup
x∈X
|p̂h(x)− ph(x)|

≤ C


2d ‖K‖∞ log

(
2RMK‖K‖∞√

Ck=2,P,K,εh
1+(dvol−ε)/2

)
nhd

+

√√√√√2dCk=2,P,K,ε log

(
2RMK‖K‖∞√

Ck=2,P,K,εh
1+(dvol−ε)/2

)
nh2d−dvol+ε

+

√
Ck=2,P,K,ε log( 1

δ )

nh2d−dvol+ε
+
‖K‖∞ log( 1

δ )

nhd


≤ CR,MK ,‖K‖∞,d,ν,dvol,Ck=2,P,K,ε,ε

(log
(

1
h

))
+

nhd
+

√ (
log
(

1
h

))
+

nh2d−dvol+ε
+

√
log
(

2
δ

)
nh2d−dvol+ε

+
log
(

2
δ

)
nhd

 ,

where CR,MK ,‖K‖∞,d,ν,dvol,Ck=2,P,K,ε,ε depends only on R, MK , ‖K‖∞, d, ν, dvol, Ck=2,P,K,ε, ε.

F. Proof for Section 5
Proposition 16 is shown by finding x0 ∈ X where the volume dimension is obtained, and analyzing the behavior of
|p̂hn(x0)− phn(x0)| by applying Central Limit Theorem.

Proposition 16. Suppose P is a distribution satisfying Assumption 2 and with positive volume dimension dvol > 0. Let K
be a kernel function satisfying Assumption 3 with k = 1 and limt→0 inf‖x‖≤tK(x) > 0. Suppose limn nh

dvol
n =∞. Then,

with probability 1− δ, the following holds for all large enough n and small enough hn:

sup
x∈X
|p̂hn(x)− phn(x)| ≥ CP,K,δ

√
1

nh2d−dvol
n

.

where CP,K,δ is a constant depending only on P , K,and δ.

Proof of Proposition 16. Note that limt→0 inf‖x‖≤tK(x) > 0 implies that there exists t0,K0 ∈ (0,∞) such that

K(x) ≥ K0I(‖x‖ ≤ t0). (52)

Also, from supx∈X lim infr→0
P (BRd (x,r))

rdvol
> 0, we can choose x0 ∈ X such that lim infr→0

P (BRd (x0,r))

rdvol
> 0. From

{hn}n∈N bounded, there exists r0 > 0 and p0 > 0 such that r0 ≥ hnt0 for all n ∈ N and for all r ≤ r0,

P (BRd(x0, r)) ≥ p0r
dvol . (53)

For x ∈ X and h > 0, let fx,h : Rd → R be fx,h = 1
hd

(Kx,h − EP [Kx,h]), so that at x0 ∈ X, p̂hn(x0) − phn(x0) is
expanded as

p̂hn(x0)− phn(x0) =
1

n

n∑
i=1

fx0,hn(Xi).

Below we get a lower bound for EP [f2
x0,hn

]. First, fix ε < dvol
2 . Then from Lemma 11,

EP [|Kx0,h|] ≤ Ck=1,P,K,εh
dvol−ε. (54)

Now, we lower bound EP [K2
x0,h

]. By applying (52), EP [K2
x0,h

] is lower bounded as

EP
[
K2
x0,h

]
≥ EP

[
K0I

(∥∥∥∥x0 −Xi

h

∥∥∥∥ ≥ t0)]
= K2

0P (BRd(x0, ht0)).
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Then applying (53) gives a further lower bound as

EP
[
K2
x0,h

]
≥ K2

0p0t
dvol
0 hdvol . (55)

Then combining (54) and (55) gives a lower bound of EP [f2
x0,h

] as

EP
[
f2
x0,h

]
=

1

h2d

(
EP
[
K2
x0,h

]
− (EP [Kx0,h])

2
)

≥ hdvol−2d(K2
0p0t

dvol
0 − C2

k=1,P,K,εh
dvol−2ε).

Hence from dvol − 2ε > 0, there exists hP,K and C ′P,K depending only on P and K such that hn ≤ hP,K implies

EP
[
f2
x0,hn

]
≥ C ′P,Khdvol−2d

n . (56)

Now, let sn :=
√∑n

i=1 EP [f2
x0,hn

(Xi)]. Then (56) gives

sn ≥
√
C ′P,Knh

dvol−2d
n .

Then for any ε > 0, when n is large enough so that nhdvoln >
‖K‖2∞
ε2C′P,K

, then

‖fx0,hn‖∞ ≤ h
−d ‖K‖∞ < ε

√
C ′P,Knh

dvol−2d
n ≤ sn.

Hence Lindeberg condition holds as for n large enough so that nhdvoln >
‖K‖2∞
ε2C′P,K

, then

1

s2
n

n∑
i=1

E
[
f2
x0,hn(Xi)I (|fx0,hn(Xi)| ≥ εsn)

]
= 0.

Hence, Lindeberg-Feller Central Limit Theorem gives√
n

EP [f2
x0,hn

]
(p̂hn(x0)− phn(x0))

d→ N (0, 1) .

Hence, for fixed δ ∈ (0, 1), let qδ/2 ∈ R be such that P (|Z| ≤ qδ/2) = δ
2 for Z ∼ N(0, 1), then

lim
n→∞

P

(∣∣∣∣∣
√

n

EP [f2
x0,hn

]
(p̂hn(x0)− phn(x0))

∣∣∣∣∣ ≥ qδ/2
)

= 1− δ

2
.

And hence there exists N <∞ that for all n ≥ N ,

P

|p̂hn(x0)− phn(x0)| ≥ qδ/2

√
EP [f2

x0,hn
]

n

 ≥ 1− δ.

Then applying (56) implies that with probability at least 1− δ,

|p̂hn(x0)− phn(x0)| ≥

√
q2
δ/2C

′
P,K

nh2d−dvol
n

= CP,K,δ

√
1

nh2d−dvol
n

,

where CP,K,δ = qδ/2
√
C ′P,K depends only on P , K, and δ. Then from

sup
x∈X
|p̂hn(x)− phn(x)| ≥ |p̂hn(x0)− phn(x0)| ,

we get the same lower bound for supx∈X |p̂hn(x)− phn(x)| with probability at least 1− δ as

sup
x∈X
|p̂hn(x)− phn(x)| ≥

√
q2
δ/2C

′
P,K

nh2d−dvol
n

= CP,K,δ

√
1

nh2d−dvol
n

.
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G. Proof for Section 6
For showing Lemma 19, we proceed similarly to proof of Lemma 11, where we plug in DsK in the place of K.

Lemma 19. Let (Rd, P ) be a probability space and let X ∼ P . For any kernel K satisfying Assumption 6, the expectation
of the square of the derivative of the kernel is upper bounded as

EP

[(
DsK

(
x−X
h

))2
]
≤ Cs,P,K,εhdvol−ε,

for any ε ∈ (0, dvol), where Cs,P,K,ε is a constant depending only on s, P , K, ε. Further, if dvol = 0 or under Assumption 1,
ε can be 0 in (18).

Proof of Lemma 19. We first consider the case when dvol = 0. Then EP
[(
DsK

(
x−X
h

))2]
is simply bounded as

EP

[(
DsK

(
x−X
h

))2
]
≤ ‖DsK‖2∞ h0.

Now, we consider the case when dvol > 0. Fix ε ∈ (0, dvol). Under Assumption 1, ε can be chosen to be 0.

Let Cs,K,dvol,ε :=
∫∞

0
tdvol−ε−1 sup‖x‖≤t(D

sK(x))2dt, then it is finite from (17) and ‖DsK‖∞ <∞ in Assumption 7 as

∫ ∞
0

tdvol−ε−1 sup
‖x‖≤t

(DsK(x))2dt ≤
∫ 1

0

tdvol−ε−1 ‖DsK‖∞ dt+

∫ ∞
1

tdvol−1 sup
‖x‖≤t

(DsK(x))2dt

≤
‖DsK‖∞
dvol − ε

+

∫ ∞
0

tdvol−1 sup
‖x‖≤t

(DsK(x))2dt <∞.

Fix η > 0, and let K̃η : [0,∞) → R be a continuous and strictly decreasing function satisfying K̃η(t) >

sup‖x‖≥t(D
sK(x))2 for all t ≥ 0 and

∫∞
0
tdvol−ε−1(K̃η(t) − sup‖x‖≥t(D

sK(x))2)dt = η. Such existence is pos-
sible since t 7→ sup‖x‖≥t(D

sK(x))2 is nonincreasing function, so have at most countable discontinuous points, and∫∞
0
tdvol−ε−1 sup‖x‖≤t(D

sK(x))2dt <∞. Then it is immediate to check that

(DsK(x))2 < K̃η(‖x‖) for all x ∈ R. (57)

Then
∫∞

0
tdvol−ε−1K̃(t)dt can be expanded as∫ ∞

0

tdvol−ε−1K̃η(t)dt =

∫ ∞
0

tdvol−ε−1 sup
‖x‖≤t

(DsK(x))2dt+

∫ ∞
0

tdvol−ε−1(K̃η(t)− sup
‖x‖≥t

(DsK(x))2)dt

= Cs,K,dvol,ε + η <∞. (58)

Now since K̃η is continuous and strictly decreasing, change of variables t = K̃η(u) is applicable, and then

EP
[(
DsK

(
x−X
h

))2]
can be expanded as

EP

[(
DsK

(
x−X
h

))2
]

=

∫ ∞
0

P

((
DsK

(
x−X
h

))2

> t

)
dt

=

∫ 0

∞
P

((
DsK

(
x−X
h

))2

> K̃η(u)

)
dK̃η(u).
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Now, from (57) and K̃η being a strictly decreasing, we can upper bound EP
[(
DsK

(
x−X
h

))2]
as

EP

[(
DsK

(
x−X
h

))2
]
≤
∫ 0

∞
P

(
K̃η

(
‖x−X‖

h

)
> K̃η(u)

)
dK̃η(u)

=

∫ 0

∞
P

(
‖x−X‖

h
< u

)
dK̃η(u)

=

∫ 0

∞
P (BRd(x, hu)) dK̃η(u).

Now, from Lemma 4 (and (6) for Assumption 1 case), there exists Cdvol−ε,P <∞ with P (BRd(x, r)) ≤ Cdvol−ε,P rdvol−ε

for all x ∈ X and r > 0. Then EP
[(
DsK

(
x−X
h

))2]
is further upper bounded as

EP

[(
DsK

(
x−X
h

))2
]
≤
∫ 0

∞
Cdvol−ε,P (hu)dvol−εdK̃(u)

= Cdvol−ε,Ph
dvol−ε

∫ 0

∞
udvol−εdK̃(u). (59)

Now,
∫ 0

∞ udvol−εdK̃(u) can be computed using integration by part. Note first that
∫∞

0
tdvol−ε−1K̃(t)dt <∞ implies

lim
t→∞

tdvol−εK̃(t) = 0.

To see this, note that tdvol−εK̃(t) is expanded as

tdvol−εK̃(t) =

∫ t

0

udvol−εdK̃(u) +

∫ t

0

(dvol − ε)udvol−ε−1K̃(u)du,

then
∫∞

0
(dvol − ε)udvol−ε−1K̃(u)du < ∞ and

∫ t
0
udvol−εdK̃(u) being monotone function of t imply that

limt→∞ tdvol−εK̃(t) exists. Now, suppose limt→∞ tdvol−εK̃(t) = a > 0, then we can choose t0 > 0 such that
tdvol−εK̃(t) > a

2 for all t ≥ t0, and then

∞ >

∫ ∞
0

tdvol−ε−1K̃(t)dt ≥
∫ ∞
t0

tdvol−ε−1K̃(t)dt ≥ a

2

∫ ∞
t0

t−1dt =∞,

which is a contradiction. Hence limt→∞ tdvol−εK̃(t) = 0. Now, applying integration by part to
∫ 0

∞ udvol−εdK̃(u) with
dvol − ε > 0 gives ∫ 0

∞
udvol−εdK̃(u) =

[
udvol−εK̃(u)

]0
∞
−
∫ 0

∞
(dvol − ε)udvol−ε−1K̃(u)du

=

∫ ∞
0

(dvol − ε)udvol−ε−1K̃(u)du. (60)

Then applying (58) and (60) to (59) gives an upper bound for EP
[(
DsK

(
x−X
h

))2]
as

EP

[(
DsK

(
x−X
h

))2
]
≤ Cdvol−ε,P (dvol − ε)hdvol−ε(Cs,K,dvol,ε + η). (61)

And then note that RHS of (61) holds for any η > 0, and hence EP
[(
DsK

(
x−X
h

))2]
is further upper bounded as

EP

[(
DsK

(
x−X
h

))2
]
≤ inf
η>0

{
Cdvol−ε,P (dvol − ε)hdvol−ε(Cs,K,dvol,ε + η)

}
= Cdvol−ε,P (dvol − ε)Cs,K,dvol,εhdvol−ε

= Cs,P,K,εh
dvol−ε,



Uniform Convergence Rate of the KDE Adaptive to Intrinsic Volume Dimension

where Ck,P,K,ε = Cdvol−ε,P (dvol − ε)Cs,K,dvol,ε.

For proving Theorem 20, we proceed similarly to the proof of Theorem 12. Analogous to bounding EP [K2
x,h] by Lemma

11, we bound EP [(DsKx,h)2] by Lemma 19.

Theorem 20. Let P be a distribution and K be a kernel function satisfying Assumption 5, 6, and 7. Then, with probability
at least 1− δ,

sup
h≥ln,x∈X

|Dsp̂h(x)−Dsph(x)| ≤ C

(
(log (1/ln))+

nl
d+|s|
n

+

√
(log (1/ln))+

nl
2d+2|s|−dvol+ε
n

+

√
log (2/δ)

nl
2d+2|s|−dvol+ε
n

+
log (2/δ)

nl
d+|s|
n

)
,

for any ε ∈ (0, dvol), where C is a constant depending only on A, ‖DsK‖∞, d, ν, dvol, Cs,P,K,ε, ε. Further, if dvol = 0 or
under Assumption 1, ε can be 0 in (19).

Proof of Theorem 20. For x ∈ X and h ≥ ln, let DsKx,h : Rd → R be DsKx,h(·) = DsK
(
x−·
h

)
, and let F̃sK,[ln,∞) :={

1
hd+|s|

DsKx,h : x ∈ X, h ≥ ln
}

be a class of normalized kernel functions centered on X and bandwidth in [ln,∞). Note
that Dsp̂h(x)−Dsph(x) can be expanded as

Dsp̂h(x)−Dsph(x) =
1

nhd+|s|

n∑
i=1

DsK

(
x−Xi

h

)
− EP

[
1

hd+|s|D
sK

(
x−Xi

h

)]

=
1

n

n∑
i=1

1

hd+|s|D
sKx,h(Xi)− EP

[
1

hd+|s|D
sKx,h

]
.

Hence suph≥ln,x∈X |D
sp̂h(x)−Dsph(x)| can be expanded as

sup
h≥ln,x∈X

|Dsp̂h(x)−Dsph(x)| = sup
f∈F̃s

K,[ln,∞)

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− EP [f(X)]

∣∣∣∣∣ . (62)

Now, it is immediate to check that
‖f‖∞ ≤ l

−d−|s|
n ‖DsK‖∞ . (63)

For bounding the VC dimension of F̃sK,[ln,∞), considerFsK,[ln,∞) := {DsKx,h : x ∈ X, h ≥ ln} be a class of unnormalized

kernel functions centered on X and bandwidth in [ln,∞). Fix η < l
−d−|s|
n ‖DsK‖∞ and a probability measure Q on Rd.

Suppose
[
ln,
(

η
2‖DsK‖∞

)−1/(d+|s|)
]

is covered by balls
{(
hi − ld+|s|+1

n η
2(d+|s|)‖DsK‖∞

, hi +
ld+|s|+1
n η

2(d+|s|)‖DsK‖∞

)
: 1 ≤ i ≤ N1

}
and (FsK,[ln,∞), L2(Q)) is covered by balls

{
BL2(Q)

(
fj ,

ld+|s|n η
2

)
: 1 ≤ j ≤ N2

}
, and let fi,j := h

−d−|s|
i fj for 1 ≤ i ≤

N1 and 1 ≤ j ≤ N2. Also, choose h0 >
(

η
2‖DsK‖∞

)−1/(d+|s|)
, x0 ∈ X, and let f0 = 1

h
d+|s|
0

DsKx0,h0
. We will show that

{
BL2(Q) (fi,j , η) : 1 ≤ i ≤ N1, 1 ≤ j ≤ N2

}
∪
{
BL2(Q) (f0, η)

}
covers F̃sK,[ln,∞). (64)

For the first case when h ≤
(

η
2‖DsK‖∞

)−1/(d+|s|)
, find hi and fj with h ∈

(
hi − ld+|s|+1

n η
2(d+|s|)‖DsK‖∞

, hi +
ld+|s|+1
n η

2(d+|s|)‖DsK‖∞

)
and Kx,h ∈ BL2(Q)

(
fj ,

ld+|s|n η
2

)
. Then the distance between 1

hd+|s|
DsKx,h and 1

h
d+|s|
i

fj is upper bounded as

∥∥∥∥∥ 1

hd+|s|D
sKx,h −

1

h
d+|s|
i

fj

∥∥∥∥∥
L2(Q)

≤

∥∥∥∥∥ 1

hd+|s|D
sKx,h −

1

h
d+|s|
i

DsKx,h

∥∥∥∥∥
L2(Q)

+

∥∥∥∥∥ 1

h
d+|s|
i

DsKx,h −
1

h
d+|s|
i

fj

∥∥∥∥∥
L2(Q)

.

(65)
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Now, the first term of (65) is upper bounded as

∥∥∥∥∥ 1

hd+|s|D
sKx,h −

1

h
d+|s|
i

DsKx,h

∥∥∥∥∥
L2(Q)

=

∣∣∣∣∣ 1

hd+|s| −
1

h
d+|s|
i

∣∣∣∣∣ ‖DsKx,h‖L2(Q)

= |hi − h|
d+|s|−1∑
k=0

h
k−d−|s|
i h−1−k ‖DsKx,h‖L2(Q)

≤ |hi − h| (d+ |s|)l−d−|s|−1
n ‖DsK‖∞ <

η

2
. (66)

Also, the second term of (65) is upper bounded as

∥∥∥∥∥ 1

h
d+|s|
i

DsKx,h −
1

h
d+|s|
i

f

∥∥∥∥∥
L2(Q)

=
1

h
d+|s|
i

‖DsKx,h − f‖L2(Q)

≤ l−d−|s|n ‖DsKx,h − f‖L2(Q) <
η

2
. (67)

Hence applying (66) and (67) to (65) gives

∥∥∥∥∥ 1

hd+|s|D
sKx,h −

1

h
d+|s|
i

fj

∥∥∥∥∥
L2(Q)

< η.

For the second case when h >
(

η
2‖DsK‖∞

)−1/(d+|s|)
,
∥∥ 1
hd+|s|

DsKx,h

∥∥
L2(Q)

≤
∥∥ 1
hd+|s|

DsKx,h

∥∥
∞ < η

2 holds, and hence

∥∥∥∥ 1

hd+|s|D
sKx,h − f0

∥∥∥∥
L2(Q)

≤
∥∥∥∥ 1

hd+|s|D
sKx,h

∥∥∥∥
L2(Q)

+ ‖f0‖L2(Q) < η.

Therefore, (64) is shown. Hence combined with Assumption 7 gives that for every probability measure Q on Rd and for
every η ∈ (0, h−d ‖DsK‖∞), the covering number N (F̃K,[ln,∞), L2(Q), η) is upper bounded as

sup
Q
N (F̃K,[ln,∞), L2(Q), η)

≤ N

([
ln,

(
η

2 ‖DsK‖∞

)−1/(d+|s|)
]
, | · |, l

d+|s|+1
n η

2(d+ |s|) ‖DsK‖∞

)
sup
Q
N

(
FK,[ln,∞), L2(Q),

l
d+|s|
n η

2

)
+ 1

≤
2(d+ |s|) ‖DsK‖∞

l
d+|s|+1
n η

(
2 ‖DsK‖∞

η

)1/(d+|s|)
(

2A ‖DsK‖∞
l
d+|s|
n η

)ν
+ 1

≤

(
2A(d+ |s|) ‖DsK‖∞

l
d+|s|
n η

)ν+2

. (68)

Also, Lemma 19 implies that under Assumption 6, for any ε ∈ (0, dvol) (and ε can be 0 if dvol = 0 or under Assumption 1),

EP

[(
1

hd+|s|D
sKx,h

)2
]
≤ Cs,P,K,εl−2d−2|s|+dvol−ε

n . (69)

Hence from (63), (68), and (69), applying Theorem 30 to (62) gives that suph≥ln,x∈X |D
sp̂h(x)−Dsph(x)| is upper
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bounded with probability at least 1− δ as

sup
h≥ln,x∈X

|Dsp̂h(x)−Dsph(x)|

≤ C


2(ν + 2) ‖DsK‖∞ log

(
2A(d+|s|)‖DsK‖∞√
Cs,P,K,εl

(dvol−ε)/2
n

)
nl
d+|s|
n

+

√√√√√2(ν + 2)Cs,P,K,ε log

(
2A(d+|s|)‖DsK‖∞√
Cs,P,K,εl

(dvol−ε)/2
n

)
nl

2d+2|s|−dvol+ε
n

+

√
Cs,P,K,ε log( 1

δ )

nl
2d+2|s|−dvol+ε
n

+
‖DsK‖∞ log( 1

δ )

nl
d+|s|
n

)

≤ CA,‖DsK‖∞,d,ν,dvol,Cs,P,K,ε


(

log
(

1
ln

))
+

nl
d+|s|
n

+

√√√√ (
log
(

1
ln

))
+

nl
2d+2|s|−dvol+ε
n

+

√
log
(

2
δ

)
nl

2d+2|s|−dvol+ε
n

+
log
(

2
δ

)
nl
d+|s|
n

 ,

where CA,‖DsK‖∞,d,ν,dvol,Cs,P,K,ε,ε depends only on A, ‖DsK‖∞, d, ν, dvol, Cs,P,K,ε, ε.

For showing Corollary 21, we proceed similarly to the proof of Corollary 13, where we plug in DsK in the place of K.

Corollary 21. Let P be a distribution and K be a kernel function satisfying Assumption 5, 6, and 7. Suppose

lim sup
n

(log (1/ln))+ + log (2/δ)

nldvol−εn

<∞,

for fixed ε ∈ (0, dvol). Then, with probability at least 1− δ,

sup
h≥ln,x∈X

|Dsp̂h(x)−Dsph(x)| ≤ C ′
√

(log (1/ln))+ + log (2/δ)

nl
2d+2|s|−dvol+ε
n

,

where C ′ is a constant depending only on A, ‖DsK‖∞, d, ν, dvol, Cs,P,K,ε, ε. Further, if dvol = 0 or under Assumption 1,
ε can be 0.

Proof of Corollary 21. From (19) in Theorem 20, suph≥ln,x∈X |D
sp̂h(x)−Dsph(x)| is upper bounded with probability at

least 1− δ as

sup
h≥ln,x∈X

|Dsp̂h(x)−Dsph(x)|

≤ CA,‖DsK‖∞,d,ν,dvol,Cs,P,K,ε


(

log
(

1
ln
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+

nl
d+|s|
n

+

√√√√ (
log
(

1
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+

nl
2d+2|s|−dvol+ε
n

+

√
log
(

2
δ

)
nl
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n

+
log
(

2
δ

)
nl
d+|s|
n



= CA,‖DsK‖∞,d,ν,dvol,Cs,P,K,ε


√√√√ (

log
(

1
ln

))
+

nl
2d+2|s|−dvol+ε
n


√√√√(log

(
1
ln

))
+

nldvol−εn

+ 1

+

√
log
(

2
δ

)
nl

2d+2|s|−dvol+ε
n

√ log
(

2
δ

)
nldvol−εn

+ 1


 .

Then from lim supn
(log( 1

ln
))

+
+log( 2

δ )

nl
dvol−ε
n

< ∞, there exists some constant C ′ with
(

log
(

1
ln

))
+

+ log
(

2
δ

)
≤ C ′nldvol+εn .
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And hence suph≥ln,x∈X |D
sp̂h(x)−Dsph(x)| is upper bounded with probability 1− δ as

sup
h≥ln,x∈X

|Dsp̂h(x)−Dsph(x)|

≤ CA,‖DsK‖∞,d,ν,dvol,Cs,P,K,ε


√√√√ (

log
(

1
ln

))
+

nl
2d+2|s|−dvol+ε
n

(√
C ′ + 1

)
+

√
log
(

1
δ

)
nl

2d+2|s|−dvol+ε
n

(√
C ′ + 1

)

≤ C ′A,‖DsK‖∞,d,ν,dvol,Cs,P,K,ε

√√√√(log
(

1
ln

))
+

+ log
(

1
δ

)
nl

2d+2|s|−dvol+ε
n

,

where C ′A,‖DsK‖∞,d,ν,dvol,Cs,P,K,ε depending only on A, ‖DsK‖∞, d, ν, dvol, Cs,P,K,ε, ε.

For proving Lemma 22, we proceed similarly to the proof of Lemma 14, where we plug in DsK in the place of K.

Lemma 22. Suppose there exists R > 0 with X ⊂ BRd(0, R). Also, suppose that DsK is MK-Lipschitz, i.e.

‖DsK(x)−DsK(y)‖2 ≤MK ‖x− y‖2 .

Then for all η ∈ (0, ‖DsK‖∞), the supremum of the η-covering number N (FsK,h, L2(Q), η) over all measure Q is upper
bounded as

sup
Q
N (FsK,h, L2(Q), η) ≤

(
2RMKh

−1 + ‖DsK‖∞
η

)d
.

Proof of Lemma 22. For fixed η > 0, let x1, . . . , xM be the maximal η-covering of BRd(0, R), with M =
M (BRd(0, R), ‖·‖2 , η) being the packing number of BRd(0, R). Then BRd(xi, η) and BRd(xj , η) do not intersect for
any i, j and

⋃M
i=1 BRd(xi, η) ⊂ BRd(xi, R+ η), and hence

M∑
i=1

λd (BRd(xi, η)) ≤ λd (BRd(xi, R+ η)) . (70)

Then λd (BRd(x, r)) = rdλd (BRd(0, 1)) gives the upper bound onM(BRd(0, R), ‖·‖2 , η) as

M (BRd(0, R), ‖·‖2 , η) ≤
(

1 +
R

η

)d
.

Then X ⊂ BRd(0, R) and the relationship between covering number and packing number gives the upper bound on the
covering number N (X, ‖·‖2 , η) as

N (X, ‖·‖2 , η) ≤ N (BRd(0, R), ‖·‖2 , η) ≤M
(
BRd(0, R), ‖·‖2 ,

η

2

)
≤
(

1 +
2R

η

)d
. (71)

Now, note that for all x, y ∈ X and for all z ∈ Rd, |DsKx,h(z)−DsKy,h(z)| is upper bounded as

|DsKx,h(z)−DsKy,h(z)| =
∣∣∣∣DsK

(
x− z
h

)
−DsK

(
y − z
h

)∣∣∣∣ ≤ MK

h
‖(x− z)− (y − z)‖2 =

MK

h
‖x− y‖2 .

Hence for any measure Q on Rd, ‖DsKx,h −DsKy,h‖L2(Q) is upper bounded as

‖DsKx,h −DsKy,h‖L2(Q) =

√∫
(DsKx,h(z)−DsKy,h(z))2dQ(z) ≤ MK

h
‖x− y‖2 .



Uniform Convergence Rate of the KDE Adaptive to Intrinsic Volume Dimension

Hence applying this to (71) implies that for all η > 0, the supremum of the covering number N (FK,h, L2(Q), η) over all
measure Q is upper bounded as

sup
Q
N (FsK,h, L2(Q), η) ≤ N

(
X, ‖·‖2 ,

hη

MK

)
≤
(

1 +
2RMK

hη

)d
.

Hence for all η ∈ (0, ‖DsK‖∞),

sup
Q
N (FsK,h, L2(Q), η) ≤

(
2RMKh

−1 + ‖DsK‖∞
η

)d
.

For Corollary 23, we proceed similarly to the proof of Corollary 15, where we plug in DsK in the place of K.

Corollary 23. Suppose there existsR > 0 with supp(P ) = X ⊂ BRd(0, R). LetK be a kernel function withMK -Lipschitz
continuous derivative satisfying Assumption 6. If

lim sup
n

(log (1/hn))+ + log (2/δ)

nhdvol−εn

<∞,

for fixed ε ∈ (0, dvol). Then, with probability at least 1− δ,

sup
x∈X
|Dsp̂h(x)−Dsph(x)| ≤ C ′′

√
(log( 1

hn
))+ + log( 2

δ )

nh
2d+2|s|−dvol+ε
n

,

whereC ′′ is a constant depending only onA, ‖DsK‖∞, d,Mk, dvol, Cs,P,K,ε, ε. Further, if dvol = 0 or under Assumption 1,
ε can be 0.

Proof of Corollary 23. For x ∈ X, let DsKx,h : Rd → R be DsKx,h(·) = DsK
(
x−·
h

)
, and let F̃sK,h :={

1
hd+|s|

DsKx,h : x ∈ X
}

be a class of normalized kernel functions centered on X and bandwidth h. Note that
Dsp̂h(x)−Dsph(x) can be expanded as

Dsp̂h(x)−Dsph(x) =
1

nhd+|s|

n∑
i=1

DsK

(
x−Xi

h

)
− EP

[
1

hd+|s|D
sK

(
x−Xi

h

)]

=
1

n

n∑
i=1

1

hd+|s|D
sKx,h(Xi)− EP

[
1

hd+|s|D
sKx,h

]
.

Hence supx∈X |Dsp̂h(x)−Dsph(x)| can be expanded as

sup
x∈X
|Dsp̂h(x)−Dsph(x)| = sup

f∈F̃K,h

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− EP [f(X)]

∣∣∣∣∣ . (72)

Now, it is immediate to check that
‖f‖∞ ≤ h

−d−|s| ‖DsK‖∞ . (73)

Also, since F̃sK,h = h−d−|s|FsK,h, VC dimension is uniformly bounded as Lemma 22 gives that for every probability
measure Q on Rd and for every η ∈ (0, h−d−|s| ‖DsK‖∞), the covering number N (F̃sK,h, L2(Q), η) is upper bounded as

sup
Q
N (F̃sK,h, L2(Q), η) = sup

Q
N (FK,h, L2(Q), hd+|s|η)

≤
(

2RMKh
−1 + ‖DsK‖∞
hd+|s|η

)d
≤
(

2RMK ‖DsK‖∞
hd+|s|+1η

)d
. (74)
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Also, Lemma 19 implies that under Assumption 3, for any ε ∈ (0, dvol) (and ε can be 0 if dvol = 0 or under Assumption 1),

EP

[(
1

hd+|s|D
sKx,h

)2
]
≤ Cs,P,K,εh−2d−2|s|+dvol−ε. (75)

Hence from (73), (74), and (75), applying Theorem 30 to (72) gives that supx∈X |Dsp̂h(x)−Dsph(x)| is upper bounded
with probability at least 1− δ as

sup
x∈X
|p̂h(x)− ph(x)|

≤ C
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 ,

where CR,MK ,‖DsK‖∞,d,ν,dvol,Cs,P,K,ε,ε depends only on R, MK , ‖DsK‖∞, d, ν, dvol, Cs,P,K,ε, ε.




