Uniform Convergence Rate of the KDE Adaptive to Intrinsic Volume Dimension

SUPPLEMENTARY MATERIAL

A. Backgrounds and Basic Definitions

First, we define the Hausdorff measure ((Pesin, 1997, Section 6), (Falconer, 2014, Section 2.2)), which is a generalization of
the Lebesgue measure to lower dimensional subsets of R<. For a subset A C R%, we let diam(A) be its diameter, that is

diam(A) = sup{|lz —y[| : =,y € A}.
Definition 2. Fix v > 0 and § > 0. For any set A C RY, define HY be

[e.°]

HY(A) := inf {Z(diamUi)” : AC | Ui and diam(U;) < 5} :

i=1 =1

where the infimum is over all countable covers of A by sets U; C R? satisfying diam(U;) < 6. Then, let the v-dimensional
Hausdorff measure H" be

HY(4) = lim Hy (A).

Then, the Hausdorff dimension of a set is the infimum over dimensions that make the Hausdorff measure on that set to be 0.

Definition 3. For any set A C R, its Hausdorff dimension d (A) is

dpg(A) :=inf{v: H"(A) =0}.

We use the normalized v-dimensional Hausdorff measure so that when v is an integer, its measure on v-dimensional unit
cube is 1. This can be done by defining the normalized v-dimensional Hausdorff measure A, as
s

= H".
2/T(% + 1)

Ay

Now, we define the reach, which is a regularity parameter in geometric measure theory. Given a closed subset A C RY, the
medial axis of A, denoted by Med(A), is the subset of R? composed of the points that have at least two nearest neighbors
on A. Namely, denoting by d(x, A) = inf,c 4 ||¢ — x| the distance function of a generic point x to A,

Med(A) = {z € R*\ A|3q1 # @2 € A, |1 — ]| = ||z — z|| = d(x, A)} . (22)
The reach of A is then defined as the minimal distance from A to Med(A).

Definition 4. The reach of a closed subset A C R? is defined as

= inf d (g, Med(A)) = inf —z|l. 23
= t;gA (g, Med(4)) qEA,;clenMed(A)Hq zll (23)

B. Proof for Section 3

We show Lemma 4 first, which is a simple argument from the definition of d.,) in (4) in Definition 1.

Lemma 4. Let P be a probability distribution on R%, and d) be its volume dimension. Then for any v € [0, dyo)), there
exists a constant C,, p depending only on P and v such that for all x € X and r > 0,

PBga(z,7))

v S CV,P~

Proof of Lemma 4. From the definition of dy, in (4) in Definition 1, v € [0, dy,}) implies that

P(Bra(x
lim sup sup M < 00.
r—0 zeX rv



Uniform Convergence Rate of the KDE Adaptive to Intrinsic Volume Dimension

Then there exist 7o > 0 and C}, p > 0 such that for all r < r and forall z € X,

PBga(z,7))

Tl/

<C,p (24)

And for all » > rg and for all x € X,
rv Ty
Hence combining (24) and (25) gives that for all » > 0 and for all z € X,
PBae,r) _ { Vp,ly}.
To

/'nl/

Then we can show Proposition 1 by using Lemma 4 and the definition of Hausdorff dimension in Definition 3.

Proposition 1. Let P be a probability distribution on R?, and d.) be its volume dimension. Suppose there exists a set
A satisfying P(ANX) > 0 and with Hausdorff dimension dg. Then 0 < dyo < dg. Hence if A is a dp;-dimensional
manifold, then 0 < dyo1 < dyps. In particular, for any probability distribution P on R, 0 < dyo < d. Also, if P has a point
mass, i.e. there exists © € X with P({x}) > 0, then dyo = 0.

Proof of Proposition 1. We first show dy, > 0. For any x € X and r > 0,
P(Bga(x,r))

0 <1< o0
Hence d,, > 0 holds.

Now we show dyo < dg = di(A). Fix any v < d., and we will show that H”(A N X) > 0. Let {U;} be a countable
coverof ANX, ie. ANX C Uj2, U;, and let ; = diam(U;). For each 4, we can assume that U; N (A N X) # () and

choose x; € U; N (ANX). Then U; C Bra(x;,7;) C Bra(a;,2r;), and hence

ANXcC U ERd(ibi,Q'f’i).

=1

Then with z; € X, applying (5) from Lemma 4 gives

P(ANX) <P (U Bra (z;, 2”)) = P(Bga(zi,2r,))

i=1 i=1
oo
S E ZVCVVPT’,I;.
i=1
Hence

i AmX)>O

Since this holds for arbitrary covers of A N X, HY (ANX) > Iggng) forall § > 0. And ANX C A implies

P(ANX)
2VCV7P

Since this holds for arbitrary v < dy,1, the definition of Hausdorff dimension in Definition 3 gives that

dg =inf{v: H"(A) =0} > dyo-

H"(A) > H'(ANX) = lim HY (ANX) > > 0.
—

Now, if A is a djs-dimensional manifold, then the Hausdorff dimension of A is dj;, and hence 0 < dyo1 < djs holds. In
particular, setting A = R4 gives 0 < dyo1 < d for all probability distributions. Also, if there exists € X with P({z}) > 0,
then setting A = {z} gives dyo = 0. O
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Proposition 2 is again a simple argument from the definition of d,) in (4) in Definition 1.

Proposition 2. Let Py, ..., P, be probability distributions on RY, and My, ..., Ay, € (0,1) with > 7" \; = 1. Then

i=1

dyol <Z )\1P¢> =min{dyo1(F;): 1 <i<mj}.

In particular, when d) is understood as a real-valued function on the space of probability distributions, both its sublevel
sets and superlevel sets are convex.

Proof of Proposition 2. It is enough to show for the case m = 2. Let P := A\ P} + A2 Ps.

We first show dyo1(P) > min {dyo1(P1), dyol(P2)}. Fix v < min {dyo1(P1), dyo1(P2) }, then Definition 1 gives that

P (B P (B
i sup sup BT o sup 2B @)
r—0 zeX rY r—0 zeX rv

And hence

: PBga(z, 1)) _ . .
lim sup sup ——————= = lim sup sup
r—0 zeX [ r—0 zeX

AP (Bga(z, 7)) n AQPQ(BRd(%”))}

TrV /’11/
P (Bra P (Bra

< A1 limsup sup 71( re(2,7)) + Ao lim sup sup 72( re(2,7)) < 0.

r—0 zeX rv r—0 zeX rY

And hence dyo (P) > min {dyo1(P1), dyo1(P2)} holds.

Next, we show dyo1(P) < min {dye1(P1), dvoi(P2)}. Without loss of generality, suppose dyo1(P1) < dyo1(P2), and fix
v > dyo1(P1). Then Definition 1 gives that

P (B
lim sup sup LLERAET) _
r—0 zeX rv

Then from P > A\ Py,

P(Bga(z, A\ P (B
lim sup sup M > lim sup sup M - .
r—0 zeX rv 0 zeX v

And hence dyo1(P) < dyoi(P1) = min {dyo1(P1), dvol(Ps) } holds.
O

For Proposition 3 and 5, we need to bound the volume of the ball on the manifold. The following is rephrased from Lemma
3 in Kim et al. (2019).

Lemma 24. Let M C R¢ be a dys-dimensional submanifold with reach ty;. For a subset U C M and r < Ty, let
U, = {z € R : dist(x,U) < r} be an r-neighborhood of U in R%. Then

d!
Ny (U) < —rI1=d),(U,.).
dp!
Then, the following Lemma is by combining Lemma 5.3 in Niyogi et al. (2008) and Lemma 24.
Lemma 25. Let M C R% be a d,;-dimensional submanifold with reach Tp;. Then, for x € M and r < Ty,
dyr

r2 2 d!
(1 - 47_]%4) Mg < Mgy, (M N Bga(z, 7)) < d—M!Qdede.

Proof of Lemma 25. The LHS inequality is from Lemma 5.3 in Niyogi et al. (2008). The RHS inequality is applying
U = M N Bga(x,r) to Lemma 24 and \;(U,.) < A\g(Bga(z,2r)) = (2r)%w,.

O
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Now, we show Proposition 3 and 5 simultaneously via the following Proposition:

Proposition 26. Let P be a probability distribution on R?, and d.o1 be its volume dimension. Suppose there exists a
dpr-dimensional manifold M with positive reach satisfying P(M NX) > 0 and supp(P) C M. If P has a bounded density
p with respect to the normalized d yr-dimensional Hausdorff measure \g,,, then dyo) = dys, and Assumption 1 and 2 are
satisfied. In particular, when P has a bounded density p with respect to the d-dimensional Lebesgue measure \g, then
dyol = d, and Assumption I and 2 are satisfied.

Proof for Proposition 26. Let T); be the reach of M.

We first show dy, = djps and Assumption 1. Since the density p is bounded, for all x € X and r > 0, the probability on the
ball Bga(z,r) is bounded as

PBga(z,7)) < [|Pllog Adar (M N BRa(0,7)). (26)
Then for r < 7)7, Lemma 25 implies Ag,, (M N Bga(z,7)) < $2drded, and hence
P(B d!
lim sup supw <Pl =—2%a < o0, (27)
r—0  weX e dnr!
which implies
dvol = dpr.
Then from Proposition 1,
dvol = dp-

Now, (27) shows that Assumption 1 is satisfied.

For Assumption 2, define a density ¢ : R? — R as

() — tim T D) P(Be(a, 1))

Y rdm

Since M is a submanifold with positive reach, P is A4,,-rectifiable. This imply that such limit g(z) exists a.e. [Ag,,], and
for any measurable set A,

P(4) = /A al@)da, (@)

See, for instance, Rinaldo & Wasserman (2010, Appendix), Mattila (1995, Corollary 17.9), or Ambrosio et al. (2000,
Theorem 2.83). Then from

P(MnX)= /]VIOX q(z)dAg,, (x) > 0,

there exists 2o € M N X with ¢(xg) > 0. And hence

P(B
sup lim inf M

zex 0 rdm Z a(x0) > 0,

and hence Assumption 2 is satisfied.

The proof of Proposition 6 is simply checking the convexities for Assumption 1 and Assumption 2.

Proposition 6. The set of probability distributions satisfying Assumption 1 is convex. And so is the set of probability
distributions satisfying Assumption 2.

Proof of Proposition 6. Suppose P, Py are two probability distributions and A € (0,1). Let P := AP; + (1 — A)P,. Then
Proposition 2 implies that
dvol(P) = min{dvol<P1)7dvol(P2>}-
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Consider Assumption 1 first. Suppose P; and P, satisfies Assumption 1. Then for all x € X and r < 1, applying
dvol(Pl) S dvol(Pl)a dvol(PZ) giVeS

P(Bga(z,7)) P, (Bra(x,r)) Py(Bra(z,7))

TdVOI(P) = )\ rdvol(P) + (1 - )\) rdvol(P)
Pl(BRd(Qj?r)) PQ(BRCL(SC’T))
<A dvol (P1) (=) pdvor(P2)
Hence,
. P(BR‘1<$7T)) . Pl(]B]Rd(xar)) P2(BRd(xvr))
lim sup sup —3 7y < limsupsup ) A—=50m + (1= ) =3 Ty

Py (Bga(z, 7))
'rdvol (Pl)

Py (Bga(z, 7))

+ (1 _ )\) lim sup sup rdvor (P2)

r—0 zeX

< Alim sup sup
r—0 zeX

< 00,
and Assumption 1 is satisfied for P = AP; + (1 — \) Ps.

Now, consider Assumption 2. Suppose P; and P, satisfies Assumption 1, and without loss of generality, assume dyoi(P1) <
dyo1(P2). Then there exists o € X such that

lim inf D1 (Bge(2o,7)) (Bra (z0,7))

> 0.
r—0 rdvor (P1)

Then P > AP; and dyo1(P) = dyo1(P1) give

. P(Bra(xo,7) _ . . . AP1(Bga(zo,7))
lim inf ——7="7— = lim inf —— 57755 > oo,
Hence P(B ( ))
supliminf =5 " @ > 0,

and Assumption 2 is satisfied for P = APy + (1 — \) P.

C. Volume Dimension and Other Dimensions

In this section, we compare the volume dimension with other various dimensions.

For a set, one commonly used dimension other than the Hausdorff dimension is the box dimension ((Pesin, 1997, Section 6),
(Falconer, 2014, Section 3.1)). This has various names as Kolmogorov entropy, entropy dimension, capacity dimension,
metric dimension, logarithmic density or Minkowski dimension.

Definition 5. For any set A C R? and § > 0, let N(A, ) be the smallest number of balls of radius 0 to cover A. Then the
lower box dimension of A is defined as

_ . . logN(A,0)
A):=1 f——————=
Tp(A) =t = g
and the upper box dimension of A is defined as
. log N(A, )
d5(A) ;= limsup —————~.
B = IR ™ o s

The Hausdorff dimension and the lower and upper box dimensions are related as (Pesin, 1997, Theorem 6.2 (2)):

forall A C RY, dyr(A) < d(A) < di(A). (28)

So far the Hausdorff dimension in Section A and the box dimension is defined for a set. For a probability distribution,
there are two ways for natural extension. One way is to take the infimum of the set dimensions over all sets with positive
probabilities ((Mattila et al., 2000, Section 2), (Falconer, 2014, Section 13.7)). We will use this as the definition of the
Hausdorff dimension and the box dimension.
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Definition 6. Let P be a probability distribution on RY. Its Hausdorff dimension dy; (P) is the infimum of the Hausdorff
dimensions over a set with positive probability, i.e.,
dg(P):= inf dg(A).
H( ) A:P}&)>0 H( )
Similarly, the lower box dimension d; (P) and the upper box dimension d;(P) is the infimum of the lower box dimensions
and the upper box dimensions, respectively, over a set with positive probability, i.e.
dz(P):= inf dz(A
p(P):=  dnf  dp(4),

+ o +
Ah(P)i= | nf  di(4).

Another way is to take the infimum of the set dimensions over all sets with probabilities 1 (Pesin, 1997, Section 6). We will
denote these dimensions as Hausdorff support dimension and the box support dimension to differentiate from the previous
dimensions.

Definition 7. Let P be a probability distribution on R?. Its Hausdorff support dimension dgs(P) is the infimum of the
Hausdorff dimensions over a set with probability 1, i.e.,

dHS(P) = APl(nj):ldH(A)

Similarly, the lower box dimension d 4 (P) and the upper box dimension ds s(P) is the infimum of the lower box dimensions
and the upper box dimensions, respectively, over a set with positive probability, i.e.

ps(P) = inf dp(A
dps(P) = inf  dp(4),
+ . +

dps(P) = A;Pl(nAf):1 d(A).

The volume dimension, the Hausdorff dimension, and the lower and upper box dimensions have the following relations.

Proposition 27. Let P be a probability distribution on R? with P(X) > 0. Then its volume dimension, Hausdorff dimension,
lower and upper box dimension, Hausdorff support dimension, and lower and upper box support dimension satisfy the
following inequality:

dvol(P) < dH(P) < dé(P) < dE(P)u

and
dvol(P) < dps(P) < dpg(P) < dfs(P).

Proof. Since P(supp(P) N X) = P(X) > 0, dvoi(P) < dg(P) is direct from Proposition 1. Now, combining this with
du(P) < dg(P) < d5(P)and dys(P) < dgg(P) < df¢(P) from (28) and that dy (P) < dys(P) gives the statement.

O

Now, we introduce the g-dimension, which generalizes the box support dimension (Lee & Verleysen, 2007, Section 3.2.1).
Definition 8. Let P be a probability distribution on R%. For ¢ > 0 and § > 0, define C,y(P, ) as

Cy(P,5) = / [P(Bga(,0))]* LdP ().

Now for ¢ > 0 and q # 1, the lower g-dimension of P is

1 )
4= (P) = lim inf 108G
4 5—0 (¢—1)logd
and the upper g-dimension of P is
log Cy (P, 0)

dt(P) := limsu .
o (P) =l o ) log

For q = 1, we understand in the limit sense, i.e., di (P) = limg_1 d; (P) and df (P) = limg_,1 d} (P).
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This g-dimension is a generalization of the box support dimension in the sense that when ¢ = 0, the lower and upper
g-dimensions reduce to the lower and upper box support dimensions, respectively, i.e. dy (P) = dpg(P) and d§ (P) =
dg S(P) Pesin (1997, Section 8). When ¢ = 1, the g-dimension is called the information dimension, and when ¢ = 2, the
g-dimension is called the correlation dimension.

The volume dimension and the g-dimension have the following relation.

Proposition 28. Let P be a probability distribution on R® with P(X) = 1. Then for any q > 0, the volume dimension and
the q-dimension has the following inequality:

dvol(P) < d;(P) < d;r(P)

Proof. Since d, (P) < df (P) is obvious, we only need to show dye1(P) < d (P).

Fix any v < dyo1(P). Then from P(X) = 1, C,4(P, §) can be expressed as taking an integration over X. Hence applying (5)
from Lemma 4 gives

C,(P,5) = /X [P(Bga(z,0))]" 'dP(z)

< [ 1P(Bus(a.20)) dP(@)
X
< (2C, pd")1 L.
And hence d;; (P) is lower bounded as

_ .. . logCy(P,0) .. dog(2vC, pd”)
_ > )
dg (P) hgn—g(l)lf (g—1)logéd — hgnﬁl(r)lf log é
= v+ liminf 71(%(2 Cv.p) =v

50 log §
Since this holds for arbitrary v < dye1(P), we have

dvr(P) < d; (P).
O

We end this section by comparing the volume dimension and the Wasserstein dimension (Weed & Bach, 2017, Definition 4).

Definition 9. Let P be a probability distribution on RY. For any § > 0 and T € [0, 1], let the (6, T)-covering number of P
be
N(P,§,7) :=inf{N(A,d): P(A) >1—7},

and let the (6, T)-dimension be

_logN(P,0,7)

~ —logé

Then for a fixed p > 0, the lower and upper Wasserstein dimensions are respectively,

d.(P) = lim liminf ds(P, 7)
70 §—0

ds(P,7) :

d,(P) = inf{s € (2p,00) : limsup d(P,65-2) < s}.
6—0

Proposition 29. Let P be a probability distribution on R¢ with P(X) > 0. Then its volume dimension and lower and upper
Wasserstein dimensions satisfy the following inequality:

dyot(P) < dys(P) < du(P) < d%(P).

— P

Proof. Since P(supp(P) NX) = P(X) > 0, dyoi(P) < dy(P) is direct from Proposition 1. The inequality dg (P) <
d«(P) < dy(P) is from Weed & Bach (2017, Proposition 2).

O
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D. Uniform convergence on a function class

As we have seen in (8) in Section 4, uniform bound on the kernel density estimator supy,>; ,ex |[Pr(7) — pn()| boils
down to uniformly bounding on the function class sup e 7, |20, f(Xi) — E[f(X)]]. In this section, we derive

a uniform convergence for a more general class of functions. Let F be a class of functions from R? to R, and consider a
random variable

sup
fer

L5 ) E[f(X)]‘- (29)

n-
=1

As discussed in Section 4, we combine the Talagrand inequality (Theorem 8) and VC type bound (Theorem 9) to bound
(29), which is generalizing the approach in Sriperumbudur & Steinwart (2012, Theorem 3.1).

Theorem 30. Let (RY, P) be a probability space and let X1, .. ., X, be i.i.d. from P. Let F be a class of functions from R?
to R that is uniformly bounded VC-class with dimension v, i.e. there exists positive numbers A, B such that, for all f € F,
| fll.o < B, and for every probability measure Q on R? and for every € € (0, B), the covering number N'(F, L2(Q), €)
satisfies

€

N(F, L5(Q),e) < (AB>

Let o > 0 withEp f2 < o? forall f € F. Then there exists a universal constant C not depending on any parameters such
that sup ¢ » |30 | F(Xi) — E[f(X)]] is upper bounded with probability at least 1 — 6,

2 2log(+)  Blog(:
<C VBlog<2AB>+\/VJ 10g<2AB>+ o og(5)+ 0g(3)
n o n o

n n

sup |~ 37 £(X0) — B[F(X)]

feF M i=1

Proof of Theorem 30. Let G := {f —Ep[f]: f € F}. Then it is immediate to check that for all g € G,
Epg=Epf—Epf =0,
Epg> =Ep(f —Epf)* <Epf® <o?,
19]loc < Iflle +Epf <2B. (30)

Now, sup ez |+ 37| f(X;) — E[f(X)]] is expanded as

L > 9(X)|.

n <
=1

1
n

sup

fer 9€eg

> rx) - E[f(X)]’ = sup

Hence from (30), applying Proposition 8 to above gives the probabilistic bound on sup ¢ |% Yo g(Xi)’ as

n

%ZQ(XO

=1

n

% Z 9(X3)| +

=1

202log(%) N 2Blog(%)
n n

>1-4. (€20

< 4Ep sup
9c€g

P | sup
geg

It thus remains to bound the term Ep sup,cg |2 Y0 g(X;)|. Let F := {f —a: f € F, a € [-B, B]}. Then F being a
uniform VC-class with dimension v implies that for all € € (0, B),

st;p]\f (]j", LQ(P),e) < SIIIDpN (.7-", Ly(P), %) Sl;)p./\/ ([fB,B], |-, g)

(2AB>V+1
< .
€

Hence from (30), applying Proposition 9 yields the upper bound for Ep sup g ‘ DD g(Xi)| as

<20 (2(V + 1B log (2AB> + \/(V + 1) log (2A3)> . (32)
n g n g

n

%ZQ(XT:)

=1

Epn sup
geg
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Hence applying (32) to (31) yields that, sup s+ ’% S f(X) —E[f(X )]| is upper bounded with probability at least

1—4as
2
§4C<2(y+1)310g<2,43>+\/(y+1)a 10g<2AB>>
n g n g

sup |~ 37 £(X0) — B[F(X)]

fer |3
202log(%) N 2Blog(%)
n n
§ 2log()  Blog(}
< 16C ”Blog(MB)+\/’”’10g(2AB>+ o2log(3) , Blog()
n o n o n n
O
E. Proof for Section 4

Lemma 11 is shown by the calculation using integral by parts and change of variables.

Lemma 11. Let (R%, P) be a probability space and let X ~ P. For any kernel K satisfying Assumption 3 with k > 0, the
expectation of the k-moment of the kernel is upper bounded as

z—X
o 1 (57)
for any € € (0,dyo1), where Cy, p . is a constant depending only on k, P, K, and €. Further, if dyoi = 0 or under
Assumption 1, € can be 0 in (11).

k
dyol—
1 < Cr,pir,h™ ¢,

Proof of Lemma 11. We first consider the case when dy, = 0. Then Ep [|K ("E’hX ) |k} is simply bounded as

()

Now, we consider the case when dy, > 0. Fix € € (0, dyo1). Under Assumption 1, € can be chosen to be 0.

Ep

b k
] < |IK| 5 hO.

Let Cy k.q

vol,€

= [y~ tho = supy <, [ K ()| Fdt, then it is finite from (10) and [ K[|, < oo in Assumption 4 as

[e%e} 1 [e’s}
dvo -—c= 2 vol —E&— vol =™ Q
/ plvor=e=1 g |K(x)|kdt§/ v 1HKHOOdt+/ pho=1 sup K (z)[Fdt
0 leli<e 0 | leli<t
1K oo % deai—1 k
< —= 4 t sup |K(z)|"dt < oo.
dvor =€ Jo lzll<t

Fix 7 > 0, and let K, : [0, 00) — R be a continuous and strictly decreasing function satisfying K, (t) > SUP||y(|>¢ [ K (z)|"

forall ¢ > 0 and [ tde1 ==L (K, () — supy, >, [K (2)|F)dt = n. Such existence is possible since ¢ — sup|,; [K (z)[*
is nonincreasing function, so have at most countable discontinuous points, and fooo tdvor—e=1 SUD|| )<t |K (2)|*dt < oo.

Then it is immediate to check that R
|K (2)|* < K, (]|z|) forall z € R. (33)

Then [ t4v1 <"1 K (t)dt can be expanded as

/0 tdvol*e*lf(n(t)dt:/() thver=e=l qup |K(:c)|kdt+/0 ther =LK, (t) — sup |K(x)|*)dt

llzll<t llzll =t

= Ck K,dygr,e + 1 < 00. (34)
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Now since f(n is continuous and strictly decreasing, change of variables ¢ = f(n(u) is applicable, and then

Ep “K (“;X)Vq can be expanded as
k k
x—X e x—X
Ep || K = P||K t]dt
e N L (e 5 )
0
z—X
= Pl |K
[ (e (5)
Now, from (33) and f(n being a strictly decreasing, we can upper bound Ep UK (””;X ) H as
k 0
- X . - X . .
(52 o 5 (52) - s
0 _xX ~
:/ p(””’ ”<u)dK,,(u)
oo h

0
= / P (Bga(x, hu)) dK, (u).

o

k

Now, from Lemma 4 (and (6) for Assumption 1 case), there exists Cy,, . p < 0o with P (Bga(x,7)) < Cy,,—c prdver—
forall z € Xand r > 0. Then Ep UK (2%) ’k} is further upper bounded as

h

z—X\|" 0 ~
e |5 (25F) ]s [ Caseeantiy<ak(w
O ~
=Cy,., e phdo—e / utol=¢dK (u). (35)

Now, fi u™~¢dK (u) can be computed using integration by part. Note first that fooo tdver=e=1 [ (4)dt < oo implies

lim t®e K (t) = 0.

t—o0

To see this, note that %~ K (t) is expanded as
the T K (t) = / uhor " dK (u) + / (dvot — €)u™' 1K (u)du,
0 0

then [°(dvor — €)u™ " 1K(u)du < oo and [ju®~“dK(u) being monotone function of ¢ imply that
limg oo tdvor—€ [ (t) exists. Now, suppose lim; tvor—€ ¢ (t) = a > 0, then we can choose ty > 0 such that
ther =K (t) > & forall t > to, and then

o0 - o0 - a (o)
00 > / o=~ (4)dt > / thor =<1 (t)dt > f/ t~1dt = oo,
0 to 2 to
which is a contradiction. Hence lim,_, o, t* €K (t) = 0. Now, applying integration by part to fooo u™o~¢dK (u) with

dyol — € > 0 gives

0 . . 0 0 .
/ utor=¢dK (u) = [udV"‘_eK(u)} —/ (dyot — €)u® =" K (u)du

o o o

= /Oo(dvol — ) u " K (u)du. (36)
0
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Then applying (34) and (36) to (35) gives an upper bound for E p [|K (=) ﬂ as

s e (455

And then note that RHS of (37) holds for any 7 > 0, and hence Ep U K (QC_X ) ’k} is further upper bounded as

k

< Cpr—e.P(dvol — R " (Ch iy c +1)- 37

h

k
] < inf {Cy,o—e,p(dvol — )R (C K dyone + n}

o | (=5)
h n>0

dyol—€
= Cyr—e,P(dvol — €)Ch K dypy,e R

dyol—€
= Ck,p,i,ch™"¢,

where Cy p i, = Cdyo—e,P(dvol = €)Ck K dyor e

E.1. Proof for Section 4.1
Theorem 12 follows from applying Theorem 30.

Theorem 12. Let P be a probability distribution and let K be a kernel function satisfying Assumption 3 and 4. Then, with
probability at least 1 — 9,

sup_|pn(x) — pu(2)] < C

— — b
h>1,,z€X nld nl2d—dvorte nl2d—dvorte nld

(log (1/0)). \/aog(l/zn))++ \/ log (2/5) __log (2/9)

for any € € (0, dyo1), where C'is a constant depending only on A,
under Assumption 1, € can be 0 in (12).

K| o, d, v, dyol, Cr=2,p,K e, € Further, if dyo1 = 0 or

Proof of Theorem 12. For x € X and h > I, let K, : R — R be K, ,(-) = K(””T_) and let ]i'K,[lmoo) =

{h—ldK eh:rE€X h2> ln} be a class of normalized kernel functions centered on X and bandwidth in [,,, 00). Note that
pr(x) — pp(z) can be expanded as

. J— r—X; 1 r—X; | 1
ph(x) 7ph(x) = W ZK ( h ) — Ep |:th ( h >:| = E Z ﬁKm,h(Xz) — EP |:thach:| .
i=1 i=1

Hence supy,>,;, ,ex [Pr(z) — pn()| can be expanded as

A 1
sup [pn(2) —pn(z)| = sup |— Z f(Xi) = Ep [f(X)] (38)
h>1, ,z€X fEﬁK,[ln,:x:) n P
Now, it is immediate to check that
oo < 1K - (39)

For bounding the VC dimension of ]:"K’[lmoc), consider F (1, c0) := {Kgn: z€X, h>1,} beaclass of unnormalized

kernel functions centered on X and bandwidth in [I,,00). Fix n < [;%|K||_ and a probability measure Q on R%.
1+t

—-1/d . d+1 .
Suppose {ln, (m) ] is covered by balls {(hL — QdHKHnoc Jhi + QCZiﬁKHT;) 1 1<i < Nl} and (Fxg [1,,,00)5 L2(Q))

is covered by balls {]B%LQ(Q) (fj, l%") 1< < NQ}, and let f; ; = h;dfj for1 <7< Nyand1 < j < N,. Also,

—1/d
choose hg > (ﬁ) , o € X, and let fy = ﬁKIO,ho- We will show that
oo 8]

{Br,) (fij;m): 1<i< Ny, 1<j < No}U{Br,q) (fo,n)} covers ]:-K,[ln,oo)- (40)
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For the fi hen b < (—2—) """ find hy and f; with b € (hy — 25 p Y and K
or the first case when < (W) , 1In 5 an fj wit € (i_2dHK”oo’ i+2dHK”oo) an z,h €

Br,) ( f]7 . ) Then the distance between hld K, p and hd f; is upper bounded as

1 1 1 1
d :ch df] < H deh 7Ka:,h H d de . (41)
H h NI CEE P L T IR
Now, the first term of (41) is upper bounded as
1 1 1 1
—Ken — 5 Ken :‘_ HKCEhH
d= T d d d Ly (@
” h hi L2 (Q) h h; 2(@)
d—1
= [l = bSO B TR K
k=0
< |hi = bl di; " K < 3 “2)
Also, the second term of (41) is upper bounded as
1 1 1
aKen =31 = 7 [I1Kzn = fill
dTs dJi d ) INL2(Q)
H hi hi L2(Q) hi :
—d n
< ln ||Kx,h - fj||L2(Q) < 5 43)

Hence applying (42) and (43) to (41) gives

<.

1 1
H Kw,h -
L2(Q)

hd il

-1/
For the second case when h > ( 7 ) , LKNLHLZ(Q) < H%Kﬂ%hnm < 7 holds, and hence

21K
1 1
‘ 7 — fo < ‘ ﬁKx,h + ol 1,0 <n-
L2(Q) L2(Q)

Therefore, (40) is shown. Hence combined with Assumption 4 gives that for every probability measure ) on R? and for
every 7 € (0,h™% | K| ,), the covering number N (F 1, o0); L2(Q), ) is upper bounded as

~ n —-1/d 19+1y 19y
s NP @) <A (|1 (=) |l g ) oo (Ficim 2@ 5 ) 1

1/d v
< 20| K], (2||K||oo)/ <2A||K||oo> 1
-ty 7 lin

<2Ad||K||m>”+2
<|————= .

Idn

(44)

Also, Lemma 11 implies that under Assumption 3, for any € € (0, dy,1) (and € can be 0 if dy; = 0 or under Assumption 1),

1 2
Ep Kthm,h> 1 < Cheg, p il 24 Hdver=e, 45)

Hence from (39), (44), and (45), applying Theorem 30 to (38) gives that sup,~; ,ex [Pr(z) — pa(x)| is upper bounded
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with probability at least 1 — ¢ as

sup |pn(z) — pu(2)|
h>l,,0eX

2Ad|| K
%v+2MKWwbg( 'deam)

Cr=2,pP K, cln

2Ad|| K] o
2(v + Z)C'kzz,P,K,e log (dyo1—€)/2
Cr=2,P,K,cln

<C +

nlg nl%d—dv01+e

N Cr—z,pk.c10g(3)  [K| . log(5)
nl%d*dvolJrE nl%

(s (1)),

nld

(o (), | [Tos ) 1os(3)

— — b
’I’Ll%d dyol+e€ nl%d dyol+e€ nl;{

+

< CA1HKHOO7dvyadvol7ck=2,P,K,e

where C | K| d,v.dyot,Cres.p.xc .« d€pends only on A, || K| ., d, v, dyol, Ck=2, P K c» €

Then Corollary 13 is just simplifying the result in Theorem 12.

Corollary 13. Let P be a probability distribution and let K be a kernel function satisfying Assumption 3 and 4. Fix
€ € (0,dyo1). Further, if dyo) = 0 or under Assumption 1, € can be 0. Suppose

lim sup (log (1/€5)), +log (2/4) “ o

n nﬁi]”‘ —€

Then, with probability at least 1 — 0,

(£))+ +log(3)
nl%d_dvol"re

)

lo
9m|%@%m%ﬂ§d¢(g

h>ly,,zeX

where C' depending only on A, ||K|| ., d, v, dvol, Cr=2,p,K e, €.

Proof of Corollary 13. From (12) in Theorem 12, sup;,~,; ,ex |Pn(2) — pn()] is upper bounded with probability at least
1—4as

sup__ |pn(x) — pn ()]
h>l,,ceX

(e (:)),

nld

re(2).

nl%d—dwl-i-e

log (%) log (%)
nlid_dVOl+e+6 nl;‘ll

+

< CAvHK”OO7d7’/7dvolyck=2,P,K,ea€

= CA,HKHOO,d7V7dvol,Ck:2,P,K,e,€

(1o (&), (MQ9L+1+¢I%@> S

nl%d_dvol+€ nl;ilvol_s nl%d—dvol-i-e nl;ilvol_s

(los(7;)) , +1o8(3)

d. —e€
nan°1

Then from lim sup,, < 00, there exists some constant C’ with (log (li)) + log (%) < C'nldverte,
n))



Uniform Convergence Rate of the KDE Adaptive to Intrinsic Volume Dimension

And hence supy,>,;, ex [Pr(z) — pn()] is upper bounded with probability 1 — ¢ as

sup  |pn(x) — pu(z)]
h>ly,zeX

(e (1)),

nl%d_dvol+€

(W+ 1) 1y —els) (5) (WJr 1)

< CAvHKHxvdvyvdvulvck=2,P,K,€75 2d—dyo1te
nly

(1og (i))+ + log (%)

’
< CAv”K”oc7daV7dvolvck:2,P,K,ev€ nl2d—dvol+e ’
n

, .
where C', K| dd . depending only on A, || K|| . d, v, dvol, Cr=2,P,K e €.

vol;Ck=2 P K e,

E.2. Proof for Section 4.2
Lemma 14 is by covering X and then using the Lipschitz property of the kernel function K.

Lemma 14. Suppose there exists R > 0 with X C Bra(0, R). Let the kernel K is Mg -Lipschitz continuous. Then for all
n € (0, || K||,) the supremum of the n-covering number N (F 1, L2(Q),n) over all measure Q is upper bounded as

2RMch™ + ||K||oo)d
- .

Sup A (Fic s L2(Q).1) < (

Proof of Lemma 14. For fixed n > 0, let x1,...,x) be the maximal 7-covering of Bra(0, R), with M =
M (Bga(0, R), ||-||5 ;) being the packing number of Bra (0, R). Then Bga(z;,n) and Bgra(z;,n) do not intersect for

any 7, j and U?; Bga(zi,n) C Bra(z;, R+ 1), and hence
M
> Ad (Bra(zi,n)) < Aa (Bra(zi, R+1)) . (46)
i=1

Then g (Bga(z,7)) = 79\ (Bra(0, 1)) gives the upper bound on M (Bga (0, R), ||||, , n) as

d
M (Bya (0, R). | 7m) < (1+f) .

Then X C Bra(0, R) and the relationship between covering number and packing number gives the upper bound on the
covering number N (X, ||-||, , ) as

2R\ “
NG,y o) < N (B0, ), [ ) < M (B0, R, 5) < (142 @

Now, note that for all #,y € X and for all z € R%, | K, 5(2) — Ky 1 ()] is upper bounded as

o) = Kyl = [ (T55) = 5 (U5)] < e = 2) = = 21l = 2 o = il

Hence for any measure Q on R?, | K, , — K, 1,

| L»(¢) 18 upper bounded as

||Kw,h - Ky,h

L) = \//(Kz,h(Z) — Ky n(2))?dQ(z) < % lz—yll, .
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Hence applying this to (47) implies that for all > 0, the supremum of the covering number N (Fx p, L2(Q), ) over all
measure () is upper bounded as

h 2RM \
sup A Ficn La(Q)n) < A (%1 ) < (14 25005 )
Q K

Hence for all € (0, || K| ),

2RMich~ + ||K||oo>d.

S N (Frcs La(Q), ) < (
Q n

Then Corollary 15 follows from applying Theorem 30 with bounding the covering number from Lemma 14.

Corollary 15. Suppose there exists R > 0 with X C Bra(0, R). Let K be a M -Lipschitz continuous kernel function
satisfying Assumption 3. Fix € € (0,dyo1). Further, if dyo1 = 0 or under Assumption 1, € can be 0. Suppose

oy 108 (1)) 108 (2/9)

" nh%\mlff

< o0

Then with probability at least 1 — 0,

9

\/ (log(;2))+ +log(2)

sup |ﬁhn (I) — Ph,, ($)| < C” nh%d*dvolﬂLe

zeX

where C" is a constant depending only on R, My, || K|| ., d, v, dyol, Cr=2,p,K e €.

Proof of Corollary 15. Forz € X, let K, , : R — Rbe K, 5(-) = K (”‘T_) and let }ZK’h = {%Kzﬁ T € X} be a
class of normalized kernel functions centered on X and bandwidth h. Note that py,(x) — pp,(z) can be expanded as

. 1 «— x—X; 1 x—X; T 1 1
ph(.’b) —ph(x) = nhdZK( h ) —Ep |:th< h >:| = EZﬁKm’h(Xl) —Ep |:tha:h:| .
i=1 i=1

Hence sup,.cx [Pn(x) — pn(x)| can be expanded as

R I
sup [pr(z) — pu(@)| = sup |= Y f(X;) —Ep [f(X)]]. (48)
zeX fE€EFK N n i=1
Now, it is immediate to check that
£l < B HIK || - (49)

Also, Since F Kb = h=F K,h» YC dimension is uniformly bounded as Lemma 14 gives that for every probability measure
Q on R? and for every i € (0,h~¢|| K| ), the covering number N (Fx p, L2(Q), n) is upper bounded as

SgpN(]}K,h» Ly(Q),n) = SgpN(]:K,h: Ly(Q), h'n)

_ (2RMKh—1 + Koo>d

2RMp ||K|.\*
< (hd+177 . (50)

Also, Lemma 11 implies that under Assumption 3, for any € € (0, dy,1) (and € can be 0 if dy; = 0 or under Assumption 1),

2
1 _ —e
Ep (thm,h> < Cgea p i, ch 23T dver=e, (51)
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Hence from (49), (50), and (51), applying Theorem 30 to (48) gives that sup,cx [pr(z) — pn(z)| is upper bounded with
probability at least 1 — § as

sup [pr(z) — pr(z)]

zeX
2RM || K| 2RM || K|
2d || K| log (\/Ck=2 e hit(dvol—9)/2 2dCr=2,p,K log V/Crms o, hi o~ /2
<C P.K, " P.K,
- nhd nh2d—dvorte

N Cr—z,pi.c10g(3) [ K| log(5)
nh2d—dvorte + nhé

< OR M, | K| o sdotsdor, e, p s, 6

o8 (1)), ¢ (o8 (1)), ¢ log (3)__ log (3)

nhd nh2d—dvorte nh2d—dvorte nhd )
where Cr vy | K| dyvidvor,Cis.p.xc.c .« d€Pends only on R, M, | K| o ds v, dyol, Ch=2,P,K e, €. O

F. Proof for Section 5

Proposition 16 is shown by finding zy € X where the volume dimension is obtained, and analyzing the behavior of
|Dn, (o) — pn, (z0)| by applying Central Limit Theorem.

Proposition 16. Suppose P is a distribution satisfying Assumption 2 and with positive volume dimension do > 0. Let K
be a kernel function satisfying Assumption 3 with k = 1 and lim; o inf}| <, K () > 0. Suppose lim,, nhdvl = oo, Then,
with probability 1 — 6, the following holds for all large enough n and small enough h.,:

1
sup |pn,, () — pn, ()| > Crxs4 ) —57——-
up 91, (2) =, (2)] 2 Crscsy | g

where Cp i 5 is a constant depending only on P, K,and é.

Proof of Proposition 16. Note that lim;_,¢ inf);<; K (x) > 0 implies that there exists to, Ko € (0, c0) such that

K(z) > KolI(||z| < to)- (52)
Also, from sup,x liminf, ¢ W > 0, we can choose xy € X such that liminf, g w > 0. From
{hn } nen bounded, there exists 79 > 0 and pg > 0 such that g > h,,t for all n € N and for all r < rq,

P(Bga(xo,7)) = por®™. (53)

Forz € Xand h > 0, let f,, : R — Rbe f,, = % (Kzn —Ep[K; 1)), so that at zg € X, P, (x0) — ph,, (o) is
expanded as

Pn,. (o) — pn, (o) meo, hn

Below we get a lower bound for Ep| fmo n,)- First, fix e < V°1 . Then from Lemma 11,

Ep [|Kuonl] < Crei1.p i, choc. (54)

Now, we lower bound Ep[K? By applying (52), Ep[K?2 ] is lower bounded as
zo,hl zo,h

o)

Ep [Kio,h] >Ep [Kof< %

= K2 P(Bga(zo, htp)).
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Then applying (53) gives a further lower bound as
Ep [K2,,] = Kgpotg ™ h*t. (55)

x

Then combining (54) and (55) gives a lower bound of Ep| fﬁo’ 5l as

2
Br (12,0 = 12 (Ep [K2,] — (B [Kepi))?)
> Jdvor— 2d(KOp0tgvol _ CI?:l,P,K,EthO1726)'
Hence from dyo1 — 2¢ > 0, there exists hp x and Cp ;c depending only on P and K such that h,, < hp i implies

EP [fx,o hn] > CED,Kh;ileiQd' (56)

Now, let s,, := \/Z?:l Ep[f2 , (X;)]. Then (56) gives

sp >1/Ch Knhf]"‘_z’i.

2
Then for any € > 0, when 7 is large enough so that nhdvet > !lzlé‘i °Z , then

1 f oot lloe < BN K o < €4) Cp i = < s,

HKH

Hence Lindeberg condition holds as for n large enough so that nhdv > , then

QZ 2 i (XD (g, (X0)] = €5,)] = 0.

Hence, Lindeberg-Feller Central Limit Theorem gives

m(ﬁhn (x0) — ph,, (z0)) i) N (0,1).

Hence, for fixed § € (0,1), let g5/2 € R be such that P(|Z] < g5/2) = ¢ for Z ~ N(0,1), then

> Q5/2> =l 5

R Ep(f2 5]
P | |pn, (0) — ph, (T0)| > gs/2 + >1—0.

(=%

n—oo
IO h

lim P <| EP ﬁh,n (x0) = ph, (z0))

And hence there exists N < oo that for alln > N,

Then applying (56) implies that with probability at least 1 — 4,

2 i
. q6/2CP7K 1
hn (Z0) = Dh (20)| 2\ —55=— = CPr K51\ —57—7>
|p ( 0) D ( 0)| ’I’Lh%did"‘ﬂ nh%did""l

where Cp k.5 = g5 /2 0537 i depends only on P, K, and 6. Then from

sup |Pn,, (€) = P, (@)| = |Pn,, (x0) = pr, (z0)],
S

we get the same lower bound for supcx |pn, () — pn, ()| with probability at least 1 — ¢ as

2 i

45 2Cp i 1
sup |pn,, (2) = pn, (@) 2\ —5=a— = CP k64| —5a=a—-
reX | ( ( )| nh%d dvol nh%d dyol
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G. Proof for Section 6

For showing Lemma 19, we proceed similarly to proof of Lemma 11, where we plug in D*® K in the place of K.

Lemma 19. Let (R?, P) be a probability space and let X ~ P. For any kernel K satisfying Assumption 6, the expectation
of the square of the derivative of the kernel is upper bounded as

s z—X 2 dyol—e€
EP D°K A < CS,P,K,Eh vol )

forany € € (0, dyo1), where Cs p i ¢ is a constant depending only on s, P, K, €. Further, if dyo1 = 0 or under Assumption 1,
€ can be 0 in (18).

Proof of Lemma 19. We first consider the case when d,, = 0. Then Ep {(DSK (QCEX ))2] is simply bounded as

2
(DSK (x;X» 1 < |D*K| RO

Now, we consider the case when dy, > 0. Fix € € (0, dyo1). Under Assumption 1, € can be chosen to be 0.

Ep

Let Cy g dy,e 1= Jy tRer—<! sup| ., <¢(D* K (x))?dt, then it is finite from (17) and || D* K|, < oo in Assumption 7 as

vol,€

o0 1 >
/ tdv017671 sup (DSK(x))th < / tdvolfefl ||DSK||OOdt+/ tdvolfl sup (DSK(I))2dt
0 el <t 0 ! =]l <e
DK e
< % _|_/ dvor—1 sup (DSK(m‘))th < 0.
0

dvol — € lell<t

Fix n > 0, and let f(n : [0,00) — R be a continuous and strictly decreasing function satisfying IN(,](t) >
sup|,>¢(D*K(x))? for all t > 0 and [ t%1 =71 (K,(t) — sup|,>¢(D*K(x))?)dt = 7. Such existence is pos-
sible since ¢ > sup| > (D°K (x))? is nonincreasing function, so have at most countable discontinuous points, and
Jo© ttvearmet SUP | < (D*K (2))?dt < co. Then it is immediate to check that

(DK (z))? < K, (||z]]) forall z € R. (57)

Then [ t4v1=<~LK (t)dt can be expanded as

/0 tdml*e*lf{n(t)dt:/o thvor=e=1 gup (DSK(x))thJr/O ther=<=1(K, (t) — sup (D*K(z))?)dt

=)<t )=t
= U5, K dyor,e 1 < 00. (58)
Now since f{n is continuous and strictly decreasing, change of variables ¢t = f(n(u) is applicable, and then

Ep {(DSK (“;X))z} can be expanded as

e (o (55))]

/OOOP ((DSK (x;LX) i >t> it
/:P ((DSK (a:;LX>)2 S f(n(u)> AR, (u).
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Now, from (57) and K, being a strictly decreasing, we can upper bound E p [(DSK (=X ))2} as

(DSK (”3 2){))21 < /:p (f(n (””J;LX> > fc,,(u)> dE,(u)

— /OP (”x;‘m < u> dK,(u)

[e.°]

0
= / P (Bga(z, hu)) dK, (u).

Ep

Now, from Lemma 4 (and (6) for Assumption 1 case), there exists Cy,_,—e,p < 00 With P (Bga(z,7)) < Cq,,—c préve—¢
forallz € Xandr > 0. Then Ep [(DSK (%))2} is further upper bounded as

z—X\\’ 0 =
Ep <DSK< ; )) < / Coyor—e.p(hu) T =“dK (u)
0 ~
= Oy, —c.phdo—e / u®or = dK (u). (59)

Now, fi u®™~¢dK (u) can be computed using integration by part. Note first that fooo tdver=¢=1 [ (£)dt < oo implies

lim t®e =K (t) = 0.

t—o0

To see this, note that %~ K (£) is expanded as
theo "€ K () = / ubo = dK (u) +/ (dyor — €)u® ="K (u)du,
0 0

then [°(dvor — €)u™ " 'K(u)du < oo and [ju®~*dK(u) being monotone function of ¢ imply that
limy_, o0 t41 €K (t) exists. Now, suppose limy_ ot €K (t) = a > 0, then we can choose t, > 0 such that

ther =K (t) > & forall t > to, and then
o0 - o0 - a o0
0 > / o=~ () dt > / ther =<1 (t)dt > f/ t~dt = oo,
0 to 2 to
which is a contradiction. Hence lim;_, ., t%'~¢K (t) = 0. Now, applying integration by part to [ OOO u™o~¢dK (u) with

dyol — € > 0 gives

0 ~ . 0 0 .
[tk = [t k@] = [ (= gut = R

oo oo o

= /Oo(dvol — ub " K (u)du. (60)
0

Then applying (58) and (60) to (59) gives an upper bound for Ep {(DSK (w;x ))2} as

B KDSK(th))?

And then note that RHS of (61) holds for any n > 0, and hence Ep [(DSK ("E_hX ) ) 2] is further upper bounded as

< Cgyor—e.P(dvor — R™ " (Cy Kodoy.c + 1) (61)

Ep

s r—X 2 . e
(D K ( A >> ] < %2% {Cdvol—e,P(dvol - E)hdvol (Cvavdvol,e + 77)}

dyor —
= Cyp—e,P(dvol = €)Cs K dyoy, €

dyol—
:CS,P,K,eh ol Ea
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where Ck, p i, = Cyy—e,P(dvol = €)Cs K dyor -

O

For proving Theorem 20, we proceed similarly to the proof of Theorem 12. Analogous to bounding E p[K 2 ] by Lemma
11, we bound Ep[(D* K, ,)?] by Lemma 19.

Theorem 20. Let P be a distribution and K be a kernel function satisfying Assumption 5, 6, and 7. Then, with probability
at least 1 — 6,

sup |Dsﬁh($)_Dsph(1’)<C<(10g(1/1n))++\/ (log(l/ln))+ +\/ 10g(2/(5) +10g(2/5)>
> ; ,

d 2d42[5|—dug 2d+2]s|—dvg d
h>1,,z€X nldtlsl 24218l —dvorte ni2d+2ls|—dvarte it

fOT any € € (Ovdvol);
under Assumption 1, € can be 0 in (19).

K| o, d. v, dvol, Cs, P c,e, € Further, if dyo1 = 0 or

Proof of Theorem 20. For z € X and h > I, let DK, , : R? = Rbe D*K, ;,(-) = D*K (%), and let F3 Too)
{74 D* Ko+ © € X,h > I,,} be a class of normalized kernel functions centered on X and bandwidth in [1,,, o). Note
that D*py,(z) — D*pp,(x) can be expanded as
1 s Tr — X’L
el (5]

. s I & (2 X
Dph(ﬂf)—Dph(x)ZTWZDK< 3 Z)—
=1
1 1, 1
= o 2w D e (X0) ~ Ep [WD Kw»h} ~

n
i=1

Hence supj,~;, ex |[D°pr(x) — D*pr(x)| can be expanded as

. . 1 ¢
sup |D*pp(x) — Dpp(2)| = sup  |= Zf(Xi) —Ep [f(X)}‘ (62)
h2ln,z€X FE€F K im0y | =1
Now, it is immediate to check that

For bounding the VC dimension of fK ln00)? consider F7, K| ={D°K, : z € X, h > [, } be aclass of unnormalized

loo)

kernel functions centered on X and bandwidth in [,,, 00). Fix n < I, d=lsl |D*K|| ., and a probability measure Q on R%.

" —1/(d+[s])] . patlsl+1, sl .
Suppose |y, (m) is covered by balls {(hl — W h; + W) 11 <1< Nl}
Is —d—
and (F7, [n,00)" , L2(Q)) is covered by balls {]B%LQ(Q) (fj, ja+1sl 11<j< NQ}, andlet f; j :== h; d—|s ‘fj for1 <i<
—1/(d+|s])
Njand 1 < 5 < N,. Also, choose hy > (W) ,xo € X, and let fy = ﬁDsto,ho- We will show that
el 0

{IBLZ(Q) (fijom:1<i<N;,1<j< Ng} U {IB%LZ(Q) (fo,n)} covers ff([ (64)

l’ﬂ/7oo) )

—1/(d+]s|)
IID KH )

For the first case when h < ( ,find h; and f; with h € (hl
dtls

pdtlsiti, pdtlsl+1
Jhi + 1
2<d+\ DID=KT 2+ DD KT )

and K, , € Bp, (@) (fj, 5 ) Then the distance between hd+\s| D?K, j, and dﬂé‘ f; is upper bounded as

s 1
hd+| \D Ka, hd+\s| fi

[ [

s 1
hdH |D Kan hd+|s\fﬂ'

)

DKy — hd“ DK

+
L2(Q)

hdH s|

Lz(Q) L2(Q)

(65)
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Now, the first term of (65) is upper bounded as

s s _ 1 1 s
D hd+| s D Renl| = | 1P Kl
v L2(Q) v
d+|s|—1
= [hi =kl Y BT R ID Kl )
k=0
< |hi = bl (d+ |sDiz*F1=1 (DK < 2 (66)
Also, the second term of (65) is upper bounded as
L DK )1
e D K = iy / = sl 10" Ko = flli, @)
v v L2(Q) v
—d—|s| || s _ n
<L ND Ko =l < 5 (67)

Hence applying (66) and (67) to (65) gives

1. 1
WD Kyn— ij <n.
i L2(Q)
n —1/(d s I) SK 1 s n
For the second case when h > (W) —1_D w’hHLQ(Q) < HWD Kgc’hHOo < # holds, and hence
D*Kyn — fo ‘ P Kan + ol 1,0 <n-
th” | Lag) BT 12(Q) (@)

Therefore, (64) is shown. Hence combined with Assumption 7 gives that for every probability measure @ on R? and for
every 7 € (0,h=%||D*K|| ), the covering number N (F 1, o0)> L2(Q), n) is upper bounded as

SgpN(fK,[ln,oo)v LQ(Q)a 77)

77 71/(d+|5‘) ld+|8‘+ln ld-Hsln
< [ [ — , Fri oo, L 1
=N (2||D5Koo> -1 2(d+ |s|) [D°K]| SupN Kol L2(Q), 5 | +
2d + |s|) | DK (2| DK| .\ """ (24| DK
e 00 27N " lleo +1
Iy 77 [T

2A(d i\
S( (@d+1s) | oo> (68)

d+|s
ol

Also, Lemma 19 implies that under Assumption 6, for any € € (0, dy,1) (and € can be 0 if dy; = 0 or under Assumption 1),

1 2
Ep l<hd+ 5D Kwh)

Hence from (63), (68), and (69), applying Theorem 30 to (62) gives that sup,~; .cx |[D*pr(x) — D*pr(x)| is upper

S Cs,P,K,el;2d_2|s‘+dV01_E~ (69)
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bounded with probability at least 1 — J as

sup |D’pp(z) — D°pp(x)]
h>ly,,xeX

Coprc,cli v "2

2(v +2) | D*K]|  log ( 2A(d+[sDIID K ||, )
d+|s| +

2A(d+ DsK
2(v +2)C;s, pi.c log (\/%llwvolls)“}z)

2d+2|5‘—d\,01+€
n

<C

nl nl

Cy.pr.e log(L) ||DSK||mlog<;>>

2d+2(5|—dyo1 - T
I Isl=dvor+e nld sl
! ( ; ))+ (1 ( ; ))+ : 2
<C I I dyvdyor,C ( b - 10g(5) log(é)
= YA |D*K|| ,d,v,dvo1,Cs, P K e ; 2d+2|s|—dye 24425 —du . ’
nl'(rij_b‘ lnd+ |s]—dvol+e lnd+ |s]|—dvor+e l;il+\s|

where OA,HDSKHOC,d,u,dvoth,p,K,e,e depends only on A, ||D*K|| . d, v, dvo1, Cs p,K e, €

For showing Corollary 21, we proceed similarly to the proof of Corollary 13, where we plug in D* K in the place of K.

Corollary 21. Let P be a distribution and K be a kernel function satisfying Assumption 5, 6, and 7. Suppose

lim sup (log (1/1,)), +log (2/6)

n nlﬁ”"l —€

<0

)

for fixed € € (0, dyo1). Then, with probability at least 1 — 6,

(log (1/1n)), +log (2/6)
PN s 4 +
hg?il,lw)ex |D*pn(z) — Dpu(z)| < C \/ 22 ot '

where C' is a constant depending only on A,
€ can be 0.

D*K|| ., d, v, dvol, Cs,p. i, €. Further, if dyo1 = 0 or under Assumption I,

Proof of Corollary 21. From (19) in Theorem 20, sup,>; ,ex |D°Pr(z) — D*pp ()] is upper bounded with probability at
least 1 — 0 as N

sup |D?pp(x) — D°pp(x)|
h>l,,zeX

(e (1)),

d
nl”+|5‘

log<i)> 2 2
o (s ()., () 1os(3)
= VYA, D K| ,d,v,dvo1,Cs, P,k e 2d+2[s|—dyor € 2d+2[s|—dyorte d+]s|
n n Nin

o ~Rhat]

+

nl nl

+1

= CA,|D*K|| _ d,v,dyor,Ca.p.xc.c (log (%>)+ (10g (%))Jr +1|+ \/ l log (3) \/105-’; (3)
.

nlid+2|‘9\—dvo1+e nlglvol*e ?Ld+2|3\—dvol+6 ,,,Ll;iLvol*6

(los(7;)) , +1o8(3)

Then from lim sup,, Toor=? < 00, there exists some constant C’ with (log (li)) + log (%) < C'nldverte,
ni? n))y
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And hence supy,>; ex |[D*pr(x) — D*pr(x)| is upper bounded with probability 1 — & as

sup |D®pp(x) — D°pp(2)|
h>l,,2€X

< CA DKl ,dvdvor, Cs, b 1c.c

—(bg <%)>+ (VEr+1) + _los() (Ver+1)

2d+2[s|—dvo 2d+2|s|—dyo
P s [s] 1+ ni24t [s] +e

<log (i))Jr + log (%)

2d+2|s|—dyo1te€ ’
n

!
< Ca D K| dovdyen Co p 1. l
n.

! M S
where CA,HDSKHx,d,u,dvol,cs,p,x,g depending only on A, |[D*K]|| _, d, v, dyo1, Cs,p,K e €.

For proving Lemma 22, we proceed similarly to the proof of Lemma 14, where we plug in D* K in the place of K.

Lemma 22. Suppose there exists R > 0 with X C Bra (0, R). Also, suppose that D*K is M -Lipschitz, i.e.
|D°K(x) = D*K(y)ll, < Mk [lz =yl -

Then for all n € (0, | D*K|| ), the supremum of the n-covering number N (Fi; ,, La(Q), n) over all measure Q is upper
bounded as

2RMich™! + ||DSK||OO)”I.

Sup N (Fie s La(Q), ) < (
Q n

Proof of Lemma 22. For fixed n > 0, let x1,...,25 be the maximal 7-covering of Bga(0,R), with M =
M (Bga(0, R), |||y ,n) being the packing number of Bga(0, R). Then Bga(z;,7n) and Bga(x;,7) do not intersect for
any 4, j and U?il Bra(zi,n) C Bga(z;, R+ n), and hence

M
> Ad (Bra(xi,m)) < A (Bga(zi, R+ 1)) (70)
i=1

Then g (Bga(z,7)) = 79\ (Bra(0, 1)) gives the upper bound on M (Bga (0, R), ||||, , n) as

d
M(Bra0. Ry < (142

Then X C Bra(0, R) and the relationship between covering number and packing number gives the upper bound on the
covering number N (X, ||-||, , ) as

2R\ “
NG 1) < A (B (0. ) ) < M (B0, R 15 2) < (1457 an

Now, note that for all z,y € X and for all z € R%, |D*K,, ;,(2) — D*K,, »(2)| is upper bounded as

s s s T —z s y—z Mg Mg
D) = DK = DK (1) = 00 (U5 )| < B e =2 = (- 9l = e - ol

Hence for any measure Q on R, |D* Ky 1, — DSKy,h||L2(Q) is upper bounded as

|D°Kyp — DKy p

M
|L2(Q) - \//(DSKLFL(Z) — DK, 5(2))%dQ(z) < TK lz =y, -
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Hence applying this to (71) implies that for all > 0, the supremum of the covering number N (Fx p, L2(Q), ) over all
measure () is upper bounded as

h 2RM \*
sup A (P La(@n) < N (%1 g ) < (14 2500
Q K

Hence for all n € (0, | D*K]|| ),

2RMyh~' + ||DSK||OO>d.

Sup N (Fie s La(Q), ) < (
Q n

For Corollary 23, we proceed similarly to the proof of Corollary 15, where we plug in D® K in the place of K.

Corollary 23. Suppose there exists R > 0 with supp(P) = X C Bra (0, R). Let K be a kernel function with M i -Lipschitz
continuous derivative satisfying Assumption 6. If

lim sup (log (1/hn)), +log(2/6)

" nth\rol_s

< 00,

Sor fixed € € (0,dyo1). Then, with probability at least 1 — 0,

sug |D*py(z) — Dpp(z)] < C”
€

)

% (log(7-))+ + log(2)

2d+2|s|—d,,
nhn [s] ol+e

where C" is a constant depending only on A, |D*K ||, d, My, dyol, Cs.p,K e, €. Further, if dyoi = 0 or under Assumption 1,

€ can be 0.

Proof of Corollary 23. For z € X, let D°K, ) : RY — R be D°K,;(-) = D°K (w}—:), and let ff(h =
{ﬁDst,h T T € X} be a class of normalized kernel functions centered on X and bandwidth h. Note that

D?#pp(x) — D*py () can be expanded as

S s 1 " s .I‘—XZ‘ 1 s LE—Xi
Dph(x)_DpW):WZDK( D )_EP[WSIDK( D )]
i=1

I 10 1.

Hence sup,cx |D*pr(x) — D*pp(z)| can be expanded as

R . 1O
sup [ D*pn(x) — D°p(z)| = sup |= Y f(Xi) —Ep[f(X )]‘ : (72)
zeX fE€EFK,n n i=1
Now, it is immediate to check that
£l <P DK, - (73)

Also, since F Kh = h—d=lsl F k.n» VC dimension is uniformly bounded as Lemma 22 gives that for every probability
measure @ on R and for every 1 € (0, =4~ I*I || D3 K]||__), the covering number ./\/(.7:"15(&7 L2(Q), n) is upper bounded as

SgpN(ﬁf(,haLZ(Q)7n) = SgpN(fK,h,LQ(Q),hd+‘sl77)

<

2RMyh~! + | D K| \*
hd—&—|s|77

_ (2RMx | DK \*
= hd+lsl+ip ’

(74)



Uniform Convergence Rate of the KDE Adaptive to Intrinsic Volume Dimension

Also, Lemma 19 implies that under Assumption 3, for any € € (0, dy,1) (and € can be 0 if dy,; = 0 or under Assumption 1),

2
1 o
Er [(WDSKIJL) ‘| < CS,P,K’Eh 2d—2|s|+dvor i 5)

Hence from (73), (74), and (75), applying Theorem 30 to (72) gives that sup,cx |D*py(x) — D®pp ()| is upper bounded
with probability at least 1 — ¢§ as

sup [pr () — pn(2)]

zeX
2RMk||D°K|| 2RMg||DK]||
D Lo <\/CS’P’Kih1+(dv°le)/2> 2Cs,p xcelog <\/C5,P,Kih1+(dvolf)/2>
= nhd+ll ’ Rl e
L | Cerrelos(z) | 1DK]ly log(5)
nh2d+2]s|—dvorte nhd
1 1
< Ot DKl dvde © (IOg(ﬁ))Jr n (log (z))+ n log (2) N log (2)
S Mk, || [l oo +dsv5dvol,Cs, P, i e € nhd nh2d+2|s|—dyor+e 242l —dvorte A ,

where Cg vy | D5 K|l duvydyor,Cs.p.xc.c.c depends only on R, My, [|D*K|| _, d, v, dyol, Cs P K, €





