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Abstract
We derive concentration inequalities for the supre-
mum norm of the difference between a kernel
density estimator (KDE) and its point-wise expec-
tation that hold uniformly over the selection of the
bandwidth and under weaker conditions on the
kernel and the data generating distribution than
previously used in the literature. We first propose
a novel concept, called the volume dimension, to
measure the intrinsic dimension of the support of
a probability distribution based on the rates of de-
cay of the probability of vanishing Euclidean balls.
Our bounds depend on the volume dimension and
generalize the existing bounds derived in the lit-
erature. In particular, when the data-generating
distribution has a bounded Lebesgue density or
is supported on a sufficiently well-behaved lower-
dimensional manifold, our bound recovers the
same convergence rate depending on the intrinsic
dimension of the support as ones known in the
literature. At the same time, our results apply to
more general cases, such as the ones of distribu-
tion with unbounded densities or supported on a
mixture of manifolds with different dimensions.
Analogous bounds are derived for the derivative
of the KDE, of any order. Our results are generally
applicable but are especially useful for problems
in geometric inference and topological data anal-
ysis, including level set estimation, density-based
clustering, modal clustering and mode hunting,
ridge estimation and persistent homology.

1. Introduction
Density estimation (see, e.g. Rao, 1983) is a classic and
fundamental problem in non-parametric statistics that, espe-
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cially in recent years, has also become a key step in many
geometric inferential tasks. Among the numerous existing
methods for density estimation, kernel density estimators
(KDEs) are especially popular because of their conceptual
simplicity and nice theoretical properties. A KDE is simply
the Lebesgue density of the probability distribution obtained
by convolving the empirical measure induced by the sample
with an appropriate function, called kernel, (Parzen, 1962;
Wand & Jones, 1994). Formally, let X1, . . . , Xn be an inde-
pendent and identically distributed sample from an unknown
Borel probability distribution P in Rd. For a given kernel
K, where K is an appropriate function on Rd (often a den-
sity), and bandwidth h > 0, the corresponding KDE is the
random Lebesgue density function defined as

x ∈ Rd 7→ p̂h(x) :=
1

nhd

n∑
i=1

K

(
x−Xi

h

)
. (1)

The point-wise expectation of the KDE is the function

x ∈ Rd 7→ ph(x) := E[p̂h(x)],

and can be regarded as a smoothed version of the density
of P , if such a density exists. In fact, interestingly, both p̂h
and ph are Lebesgue probability densities for any choice of
h > 0, regardless of whether P admits a Lebesgue density.
What is more, ph is often times able to capture important
topological properties of the underlying distribution P or of
its support (see, e.g. Fasy et al., 2014, Section 4.4). For in-
stance, if a data-generating distribution consists of two point
masses, it has no Lebesgue density but the pointwise mean
of the KDE with Gaussian kernel is a density of mixtures of
two Gaussian distributions whose mean parameters are the
two point masses. Although P is quite different from the
distribution corresponding to ph, for practical purposes, one
may in fact rely on ph.

Though seemingly contrived, the previous example illus-
trates a general phenomenon encountered in many geomet-
rical inference problems, namely that using ph as a target
for inference leads to not only well-defined statistical tasks
but also to faster or even dimension independent rates. Re-
sults of this form, which require a uniform control over
‖p̂h − ph‖∞ := supx∈Rd ‖p̂h(x)− ph(x)‖ are plentiful in
the literature on density-based clustering (Rinaldo & Wasser-
man, 2010; Wang et al., 2017), modal clustering and mode
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hunting (Chacón et al., 2015; Azizyan et al., 2015), mean-
shift clustering (Arias-Castro et al., 2016), ridge estimation
(Chen et al., 2015a;b) and inference for density level sets
(Chen et al., 2017), cluster density trees (Balakrishnan et al.,
2013; Kim et al., 2016) and persistent diagrams (Fasy et al.,
2014; Chazal et al., 2014).

Asymptotic and finite-sample bounds on ‖p̂h− ph‖∞ under
the existence of Lebesgue density have been well-studied for
fixed bandwidth cases (Rao, 1983; Giné & Guillou, 2002;
Sriperumbudur & Steinwart, 2012; Steinwart et al., 2017).

Bounds for KDEs not only uniform in x ∈ Rd but also with
respect the choice of the bandwidth h have received rela-
tively less attentions, although such bounds are important to
analyze the consistency of KDEs with adaptive bandwidth,
which may depend on the location x. Einmahl et al. (2005)
showed that,

lim sup
n→∞

sup
(c logn)/n≤h≤1

√
nhd‖p̂h − ph‖∞√

log(1/h) ∨ log log n
<∞,

for regular kernels and bounded Lebesgue densities. Jiang
(2017) provided a finite-sample bound on ‖p̂h − ph‖∞ that
holds uniformly on h and under appropriate assumptions on
K, and extended it to case of densities over well-behaved
manifolds.

The main goal of this paper is to extend existing uniform
bounds on KDEs by weakening the conditions on the kernel
and making it adaptive to the intrinsic dimension of the
underlying distribution. We first propose a novel concept,
called the volume dimension, to characterize the intrinsic
dimension of the underlying distribution. In detail, the
volume dimension dvol is the rate of decay of the probability
of vanishing Euclidean balls, i.e. fix a subset X ⊂ Rd, then

dvol = sup

{
ν ∈ R : lim sup

r→0
sup
x∈X

P (BRd(x, r))

rν
<∞

}
.

We show that, if K satisfies mild regularity conditions, with
probability at least 1− δ,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|

≤ C

√
(log (1/ln))+ + log (2/δ)

nl2d−dvol+εn

, (2)

for any ε ∈ (0, dvol), {ln} a positive sequence approach-
ing 0 and C is a constant that does not depend on n nor
ln. Under additional, weak regularity conditions on P , the
quantity ε can be taken to be 0 in (2). If the distribution has
a bounded Lebesgue density, dvol = d so our result recovers
existing results in literature in terms of rates of convergence.
For a bounded density on a dM -dimensional manifold we
obtain, under appropriate conditions, that dvol = dM . Thus,

if KDEs are defined with a correct normalizing factor hdM
instead of hd, our rate also recovers the ones in the literature
on density estimation over manifolds. At the same time, our
bounds apply to more general cases, such as a distribution
with an unbounded density or supported on a mixture of
manifolds with different dimensions. We have also shown
the optimality of (2) up to log terms by showing that under
the mild regularity conditions on K and P ,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| ≥ C ′
√

1

nl2d−dvoln

. (3)

We make the following contributions:

1. We propose a novel concept, called the volume dimen-
sion, to characterize the convergence rate of the KDE
on arbitrary distributions.

2. We derive high probability finite sample bounds for
‖p̂− ph‖∞, uniformly over the choice of h ≥ ln, for a
given ln depending on n.

3. We derive rates of consistency in the Ł∞ norm that are
adaptive to the volume dimension of the distribution
under conditions on the kernel that, to the best of our
knowledge, are weaker than the ones existing in the
literature, and without assumptions on the distribution.
Hence, our bounds recover known previous results,
and apply to more general cases such as a distribution
with unbounded density or supported on a mixture of
manifolds with different dimensions.

4. We show that our bound is optimal up to log terms un-
der weak conditions on the kernel and the distribution.

5. We also obtain analogous bounds for all higher order
derivatives of p̂h and ph.

The closest results to the ones we present are by Jiang
(2017), who relies on relative VC bounds to derive finite
sample bounds on ‖p̂h − ph‖∞ for a special class of ker-
nels and assuming P to have a well-behaved support. Our
analysis relies instead on more sophisticated techniques
rooted in the theory of empirical process theory as outlined
in (Sriperumbudur & Steinwart, 2012) and are applicable to
a broader class of kernels. In addition, we do not assume
any condition on the underlying distribution.

2. Notation
Below, we recap basic concepts and establish some nota-
tion that are used throughout the paper. For more detailed
definitions, see Appendix A.

We let ‖ · ‖ be the Euclidean 2-norm. For x ∈ Rd and r > 0,
we use the notation BRd(x, r) for the open Euclidean ball
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centered at x and radius r, i.e. BRd(x, r) = {y ∈ Rd :
‖y − x‖ < r}. We fix a subset X ⊂ Rd on which we are
considering the uniform convergence of the KDE.

The Hausdorff measure is a generalization of the Lebesgue
measure to lower dimensional subsets of Rd. The Hausdorff
dimension is a generalization of the intrinsic dimension
of a manifold to general sets. For ν ∈ {1, . . . , d}, let λν
be a normalized ν-dimensional Hausdorff measure on Rd
satisfying that its measure on any ν-dimensional unit cube
is 1. We use the notation ων := λν(BRν (0, 1)) = π

ν
2

Γ( ν2 +1)
for the volume of the unit ball in Rν for ν = 1, . . . , d.

First introduced by (Federer, 1959), the reach has been
the minimal regularity assumption in the geometric mea-
sure theory. A manifold with positive reach means that
the projection to the manifold is well defined in a small
neighborhood of the manifold.

3. Volume Dimension
We first characterize the intrinsic dimension of a probability
distribution in terms of the rate of decay of the probability of
Euclidean balls of vanishing volumes. When a probability
distribution P has a bounded density p with respect to a
well-behaved manifold M of dimension dM , it is known
that, for any point x ∈M , the measure on the ball BRd(x, r)
centered at x and radius r decays as

P (BRd(x, r)) ∼ rdM ,

when r is small enough. From this, we define the volume
dimension to be the maximum possible exponent rate that
can dominate the probability volume decay on balls.
Definition 1 (Volume Dimension). Let P be a probability
distribution on Rd. The volume dimension of P is a non-
negative real number defined as

dvol(P )

:= sup

{
ν ≥ 0 : lim sup

r→0
sup
x∈X

P (BRd(x, r))

rν
<∞

}
.

(4)

We will use the notation dvol when P is clearly specified by
the context.

The volume dimension has a connection with the Hausdorff
dimension. If a probability distribution has a positive mea-
sure on a set, then the volume dimension is between 0 and
the Hausdorff dimension of the set. So, if that set is a mani-
fold, then the volume dimension is always between 0 and
the dimension of the manifold. In particular, the volume
dimension of any probability distribution is between 0 and
the ambient dimension d.
Proposition 1. Let P be a probability distribution on Rd,
and dvol be its volume dimension. Suppose there exists a set

A satisfying P (A ∩ X) > 0 and with Hausdorff dimension
dH . Then 0 ≤ dvol ≤ dH . Hence if A is a dM -dimensional
manifold, then 0 ≤ dvol ≤ dM . In particular, for any
probability distribution P on Rd, 0 ≤ dvol ≤ d. Also, if P
has a point mass, i.e. there exists x ∈ X with P ({x}) > 0,
then dvol = 0.

The volume dimension is well defined with mixtures of
distributions. Specifically, the volume dimension of the
mixture is the minimum of the volume dimensions of the
component distributions.

Proposition 2. Let P1, . . . , Pm be probability distributions
on Rd, and λ1, . . . , λm ∈ (0, 1) with

∑m
i=1 λi = 1. Then

dvol

(
m∑
i=1

λiPi

)
= min {dvol(Pi) : 1 ≤ i ≤ m} .

In particular, when dvol is understood as a real-valued func-
tion on the space of probability distributions, both its sub-
level sets and superlevel sets are convex.

The name “volume dimension” suggests that the volume
dimension of a probability distribution has a connection
with the dimension of the support. The two dimensions are
indeed equal when the support is a manifold with positive
reach and the probability distribution has a bounded density
with respect to the uniform measure on the manifold (e.g.
the Hausdorff measure). In particular when the probabil-
ity distribution has a bounded density with respect to the
d-dimensional Lebesgue measure, the volume dimension
equals the ambient dimension d.

Proposition 3. Let P be a probability distribution on Rd,
and dvol be its volume dimension. Suppose there exists a
dM -dimensional manifold M with positive reach satisfying
P (M ∩ X) > 0 and supp(P ) ⊂ M . If P has a bounded
density p with respect to the normalized dM -dimensional
Hausdorff measure λdM , then dvol = dM . In particular,
when P has a bounded density p with respect to the d-
dimensional Lebesgue measure λd, then dvol = d.

See Section C for a comparison of the volume dimension
with the Hausdorff dimension and other notions of the di-
mension.

Even though, as we will soon show, our bounds for KDEs
hold without any assumptions on the probability distribution
and lead to convergence rates arbitrary close to the optimal
minimax rates, in order to actually achieve such exact op-
timal rate, we require weak additional conditions on the
probability distributions. Note that, from the definition of
the volume dimension, the ratio P (BRd (x,r))

rν is uniformly
bounded for ν smaller than the volume dimension.

Lemma 4. Let P be a probability distribution on Rd, and
dvol be its volume dimension. Then for any ν ∈ [0, dvol),
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there exists a constant Cν,P depending only on P and ν
such that for all x ∈ X and r > 0,

P (BRd(x, r))

rν
≤ Cν,P . (5)

For the exact optimal rate, we impose conditions on how
the probability volume decay in (5) behaves with respect to
the volume dimension.
Assumption 1. Let P be a probability distribution P on
Rd, and dvol be its volume dimension. We assume that

lim sup
r→0

sup
x∈X

P (BRd(x, r))

rdvol
<∞. (6)

Assumption 2. Let P be a probability distribution on Rd,
and dvol be its volume dimension. We assume that

sup
x∈X

lim inf
r→0

P (BRd(x, r))

rdvol
> 0. (7)

These assumptions are in fact weak and hold for common
probability distributions. For example, if a probability distri-
bution is supported on a manifold, Assumption 1 and 2 hold
under the same condition as in Proposition 3. In particular,
Assumption 1 and 2 hold when the probability distribution
has a bounded density with respect to the d-dimensional
Lebesgue measure.
Proposition 5. Under the same condition as in Proposi-
tion 3, Assumption 1 and 2 hold.

Also, the Assumption 1 and 2 is closed under the convex
combination. In other words, a mixture of probability dis-
tributions satisfy Assumption 1 and 2 if all its component
satisfy those assumptions.
Proposition 6. The set of probability distributions satisfy-
ing Assumption 1 is convex. And so is the set of probability
distributions satisfying Assumption 2.

We end this section with an example of an unbounded den-
sity. In this case, the volume dimension is strictly smaller
than the dimension of the support which illustrates why the
dimension of the support is not enough to characterize the
dimensionality of a distribution.
Example 7. Let P be a distribution on Rd having a density
p with respect to the d-dimensional Lebesgue measure. Fix
β < d, and suppose p : Rd → R is defined as

p(x) =
(d− β)Γ

(
d
2

)
2π

d
2

‖x‖−β I(‖x‖ ≤ 1).

Then, for each fixed r ∈ [0, 1],

sup
x∈Rd

P (BRd(x, r)) = P (BRd(0, r)) = rd−β .

Hence from Definition 1, the volume dimension is

dvol(P ) = d− β,

and from (6) and (7), Assumption 1 and 2 are satisfied.

4. Uniform convergence of the Kernel Density
Estimator

To derive a bound on the performance of a kernel density
estimator that is valid uniformly in h and x ∈ X, we first
rewrite

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|

as a supremum over a function class. Formally, for x ∈ X
and h ≥ ln > 0, let Kx,h(·) := K

(
x−·
h

)
and consider

the following class of normalized kernel functions centered
around each point in X and with bandwidth greater than or
equal to ln > 0:

F̃K,[ln,∞) :=
{

(1/hd)Kx,h : x ∈ X, h ≥ ln
}
.

Then suph≥ln,x∈X |p̂h(x)− ph(x)| can be rewritten as a
supremum of an empirical process indexed by F̃ , that is,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|

= sup
f∈F̃K,[ln,∞)

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ . (8)

We combine Talagrand’s inequality and a VC type bound
to bound (8), following the approach of Sriperumbudur &
Steinwart (2012, Theorem 3.1). The following version of Ta-
lagrand’s inequality is from Bousquet (2002, Theorem 2.3)
and simplified in Steinwart & Christmann (2008, Theorem
7.5).
Proposition 8. (Bousquet, 2002, Theorem 2.3), (Steinwart
& Christmann, 2008, Theorem 7.5, Theorem A.9.1)

Let (Rd, P ) be a probability space and let X1, . . . , Xn be
i.i.d. from P . Let F be a class of functions from Rd to R
that is separable in L∞(Rd). Suppose all functions f ∈ F
are P -measurable, and there exists B, σ > 0 such that
EP f = 0, EP f2 ≤ σ2, and ‖f‖∞ ≤ B, for all f ∈ F . Let

Z := sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)

∣∣∣∣∣ ,
Then for any δ > 0,

P

(
Z ≥ EP [Z] +

√(
2

n
log

1

δ

)
(σ2 + 2BEP [Z])

+
2B log 1

δ

3n

)
≤ δ.

By applying Talagrand’s inequality to (8),
suph≥ln,x∈X |p̂h(x)− ph(x)| can be upper bounded
in terms of n, ‖Kx,h‖∞, EP [K2

x,h], and

EP

[
sup

f∈F̃K,[ln,∞)

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣
]
. (9)
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To bound the last term, we use the uniformly bounded VC
class assumption on the kernel. The following bound on the
expected suprema of empirical processes of VC classes of
functions is from Giné & Guillou (2001, Proposition 2.1).
Proposition 9. (Giné & Guillou (2001, Proposition 2.1),
(Sriperumbudur & Steinwart, 2012, Theorem A.2))

Let (Rd, P ) be a probability space and let X1, . . . , Xn be
i.i.d. from P . Let F be a class of functions from Rd to R
that is uniformly bounded VC-class with dimension ν, i.e.
there exists positive numbers A,B such that, for all f ∈
F , ‖f‖∞ ≤ B, and the covering number N (F , L2(Q), ε)
satisfies

N (F , L2(Q), ε) ≤
(
AB

ε

)ν
.

for every probability measure Q on Rd and for every ε ∈
(0, B). Let σ > 0 be a positive number such that EP f2 ≤
σ2 for all f ∈ F . Then there exists a universal constant C
not depending on any parameters such that

EP

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)

∣∣∣∣∣
]

≤ C

(
νB

n
log

(
AB

σ

)
+

√
νσ2

n
log

(
AB

σ

))
.

By applying Proposition 8 and Proposition 9 to F̃K,[ln,∞),
it can be shown that the upper bound of

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|

can be written as a function of ‖Kx,h‖∞ and EP [K2
x,h].

When the lower bound on the interval ln is not too small,
the terms relating to EP [K2

x,h] are more dominant. Hence,
to get a good upper bound with respect to both n and h, it is
important to get a tight upper bound for EP [K2

x,h]. Under
the existence of the Lebesgue density of P , it can be shown
that

EP [K2
x,h] ≤ ‖K‖2‖p‖∞hd,

by change of variables. (see, e.g. the proof of Proposition
A.5. in Sriperumbudur & Steinwart (2012).)

For general distributions (such as the ones supported on a
lower-dimensional manifold), the change of variables argu-
ment is no longer directly applicable. However, under an
integrability condition on the kernel, detailed below, we can
provide a bound based on the volume dimension.
Assumption 3. Let K : Rd → R be a kernel function with
‖K‖∞ < ∞, and fix k > 0. We impose an integrability
condition: either dvol = 0 or∫ ∞

0

tdvol−1 sup
‖x‖≥t

|K(x)|kdt <∞. (10)

We set k = 2 by default unless it is specified in otherwise.

Remark 10. It is important to emphasize that Assumption 3
is weak, as it is satisfied by commonly used kernels. For
instance, if the kernel functionK(x) decays at a polynomial
rate strictly faster than dvol/k (which is at most d/k) as
x→∞, that is, if

lim sup
x→∞

‖x‖dvol/k+ε
K(x) <∞,

for any ε > 0, the integrability condition (10) is sat-
isfied. Also, if the kernel function K(x) is spherically
symmetric, that is, if there exists K̃ : [0,∞) → R with
K(x) = K̃(‖x‖), then the integrability condition (10) is
satisfied provided ‖K‖k <∞. Kernels with bounded sup-
port also satisfy the condition (10). Thus, most of the com-
monly used kernels including Uniform, Epanechnikov, and
Gaussian kernels satisfy the above integrability condition.

By combining Assumption 3 and Lemma 4, we can bound
EP [K2

x,h] in terms of the volume dimension dvol.

Lemma 11. Let (Rd, P ) be a probability space and let
X ∼ P . For any kernel K satisfying Assumption 3 with
k > 0, the expectation of the k-moment of the kernel is
upper bounded as

EP

[∣∣∣∣K (x−Xh
)∣∣∣∣k
]
≤ Ck,P,K,εhdvol−ε, (11)

for any ε ∈ (0, dvol), where Ck,P,K,ε is a constant depend-
ing only on k, P , K, and ε. Further, if dvol = 0 or under
Assumption 1, ε can be 0 in (11).

4.1. Uniformity on a ray of bandwidths

In this subsection, we demonstrate an L∞ convergence rate
for kernel density estimators, that is valid is uniformly on a
ray of bandwidths [ln,∞).

To apply the VC type bound from Proposition 9, the function
class,

FK,[ln,∞) := {Kx,h : x ∈ X, h ≥ ln} ,

should be not too complex. One common approach is to
assume that FK,[ln,∞) is a uniformly bounded VC-class,
which is defined imposing appropriate bounds on the met-
ric entropy of the function class (Giné & Guillou, 1999;
Sriperumbudur & Steinwart, 2012).

Assumption 4. Let K : Rd → R be a kernel function with
‖K‖∞ , ‖K‖2 <∞. We assume that,

FK,[ln,∞) := {Kx,h : x ∈ X, h ≥ ln}

is a uniformly bounded VC-class with dimension ν, i.e.,
there exists positive numbers A and ν such that, for every
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probability measure Q on Rd and for every ε ∈ (0, ‖K‖∞),
the covering numbers N (FK,[ln,∞), L2(Q), ε) satisfies

N (FK,[ln,∞), L2(Q), ε) ≤
(
A ‖K‖∞

ε

)ν
,

where the covering number is defined as the minimal number
of open balls of radius ε with respect to L2(Q) distance
whose centers are in FK,[ln,∞) to cover FK,[ln,∞).

Since [ln,∞) ⊂ (0,∞), one sufficient condition for As-
sumption 4 is to impose uniformly bounded VC class condi-
tion on a larger function class,

FK,(0,∞) = {Kx,h : x ∈ X, h > 0} .

This is implied by condition (K) in Giné et al. (2004) or con-
dition (K1) in Giné & Guillou (2001), which are standard
conditions to assume for the uniform bound on the KDE. In
particular, the condition is satisfied when K(x) = φ(p(x)),
where p is a polynomial and φ is a bounded real function
of bounded variation as in Nolan & Pollard (1987), which
covers commonly used kernels, such as Gaussian, Epanech-
nikov, Uniform, etc.

Under Assumption 3 and 4, we derive our main concentra-
tion inequality for suph≥ln,x∈X |p̂h(x)− ph(x)|.
Theorem 12. Let P be a probability distribution and let K
be a kernel function satisfying Assumption 3 and 4. Then,
with probability at least 1− δ,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|

≤ C

 (log (1/ln))+

nldn
+

√
(log (1/ln))+

nl2d−dvol+εn

+

√
log (2/δ)

nl2d−dvol+εn

+
log (2/δ)

nldn

)
, (12)

for any ε ∈ (0, dvol), where C is a constant depending only
on A, ‖K‖∞, d, ν, dvol, Ck=2,P,K,ε, ε. Further, if dvol = 0
or under Assumption 1, ε can be 0 in (12).

When δ is fixed and ln < 1, the dominating terms in (12) are
log(1/ln)
nldn

and
√

log(1/ln)

nl
2d−dvol
n

. If ln does not vanish too rapidly,
then the second term dominates the upper bound in (12) as
in the following corollary.

Corollary 13. Let P be a probability distribution and let
K be a kernel function satisfying Assumption 3 and 4. Fix
ε ∈ (0, dvol). Further, if dvol = 0 or under Assumption 1, ε
can be 0. Suppose

lim sup
n

(log (1/`n))+ + log (2/δ)

n`dvol−εn

<∞.

Then, with probability at least 1− δ,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| ≤ C ′
√

(log( 1
ln

))+ + log( 2
δ )

nl2d−dvol+εn

,

(13)
where C ′ depending only on A, ‖K‖∞, d, ν, dvol,
Ck=2,P,K,ε, ε.

4.2. Fixed bandwidth

In this subsection, we prove a finite-sample uniform con-
vergence bound on kernel density estimators for one fixed
choice hn > 0 of the bandwidth (we leave the dependence
on n explicit in our notation to emphasize that the choice of
the bandwidth may still depend on n). We are interested in
a high probability bound on

sup
x∈X
|p̂hn(x)− phn(x)| .

Of course, the above quantity can be bounded by the results
in the previous subsection because

sup
x∈X
|p̂hn(x)− phn(x)| ≤ sup

h≥hn,x∈X
|p̂h(x)− ph(x)| ,

(14)
Therefore, the convergence bound uniform on a ray of band-
widths in Theorem 12 and Corollary 13 is applicable to fixed
bandwidth cases.

However, if the set X is bounded, that is, if there exists
R > 0 such that X ⊂ BRd(0, R), then, for the kernel density
estimator with a MK -Lipschitz continuous kernel and fixed
bandwidth, we can derive a uniform convergence bound
without the finite VC condition of (Giné & Guillou, 2001;
Giné et al., 2004) based on the following lemma.
Lemma 14. Suppose there exists R > 0 with X ⊂
BRd(0, R). Let the kernel K is MK-Lipschitz continu-
ous. Then for all η ∈ (0, ‖K‖∞), the supremum of the
η-covering numberN (FK,h, L2(Q), η) over all measure Q
is upper bounded as

sup
Q
N (FK,h, L2(Q), η) ≤

(
2RMKh

−1 + ‖K‖∞
η

)d
.

Corollary 15. Suppose there exists R > 0 with X ⊂
BRd(0, R). Let K be a MK-Lipschitz continuous kernel
function satisfying Assumption 3. Fix ε ∈ (0, dvol). Further,
if dvol = 0 or under Assumption 1, ε can be 0. Suppose

lim sup
n

(log (1/hn))+ + log (2/δ)

nhdvol−εn

<∞.

Then with probability at least 1− δ,

sup
x∈X
|p̂hn(x)− phn(x)| ≤ C ′′

√
(log( 1

hn
))+ + log( 2

δ )

nh2d−dvol+ε
n

,

(15)
where C ′′ is a constant depending only on R, MK , ‖K‖∞,
d, ν, dvol, Ck=2,P,K,ε, ε.
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5. Lower bound for the convergence of the
Kernel Density Estimator

Consider the fixed bandwidth case. In Corollary 15, it was
shown that, with probability 1− δ,

sup
x∈X
|p̂hn(x)− phn(x)| ≤ C ′′δ

√
(log (1/hn))+

nh2d−dvol
n

,

where C ′′δ might depend on δ but not on n or hn. In this
Section, we show that this upper bound is not improvable
and is therefore optimal up to a log(1/hn) term, by showing
that there exists a high probability lower bound of order
1/
√
nh2d−dvol

n .
Proposition 16. Suppose P is a distribution satisfying As-
sumption 2 and with positive volume dimension dvol >
0. Let K be a kernel function satisfying Assumption 3
with k = 1 and limt→0 inf‖x‖≤tK(x) > 0. Suppose
limn nh

dvol
n = ∞. Then, with probability 1 − δ, the fol-

lowing holds for all large enough n and small enough hn:

sup
x∈X
|p̂hn(x)− phn(x)| ≥ CP,K,δ

√
1

nh2d−dvol
n

.

where CP,K,δ is a constant depending only on P , K,and δ.

This gives an immediate corollary for a ray of bandwidths.
Corollary 17. Assume the same condition as in Proposition
16, and suppose ln → 0 with nldvoln → ∞. Then, with
probability 1− δ, the following holds for all large n:

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| ≥ CP,K,δ

√
1

nl2d−dvoln

.

By combining the lower and upper bounds together, we
conclude that, with high probability,√

1

nh2d−dvol
n

. sup
x∈X
|p̂hn(x)− phn(x)| .

√
(log( 1

hn
))+

nh2d−dvol
n

,

for all large enough n. Similar holds for a ray of bandwidths
as well. They imply that the uniform convergence KDE
bounds in our paper are optimal up to log(1/hn) terms for
both the fixed bandwidth and the ray on bandwidths cases.
Example 18 (Example 7, revisited). Let P be as in Exam-
ple 7 and let K be any Lipschitz continuous kernel func-
tion with K(0) > 0 and compact support. It can be easily
checked that the conditions in Corollary 15 are satisfied with
R = 2, dvol = d− β and the kernel satisfies the integrabil-
ity Assumption 3 with k = 1, 2. It can be also shown that
limt→0 inf‖x‖≤tK(x) > 0. Therefore, for small enough
hn, Corollary 15 and Proposition 16 imply

C ′

√
1

nhd+β
n

≤ sup
x∈X
|p̂hn(x)− phn(x)| ≤ C ′′

√
log( 1

hn
)

nhd+β
n

,

with high probability for all large enough n. That is, the
L∞ convergence rate of the KDE is of order

√
1

nhd+βn
(up

to a log(1/hn) term). Hence, although it has a Lebesgue
density, its convergence rate is different from

√
1
nhdn

, which

is the usual rate for probability distributions with bounded
Lebesgue density.

6. Uniform convergence of the Derivatives of
the Kernel Density Estimator

In this final section, we provide analogous finite-sample
uniform convergence bound on the derivatives of the kernel
density estimator. For a nonnegative integer vector s =
(s1, . . . , sd) ∈ ({0} ∪ N)d, define |s| = s1 + · · ·+ sd and

Ds :=
∂|s|

∂xs11 · · · ∂x
sd
d

.

For Ds operator to be well defined and interchange with
integration, we need the following smoothness condition on
the kernel K.
Assumption 5. For given s ∈ ({0} ∪ N)

d, letK : Rd → R
be a kernel function satisfying such that the partial deriva-
tive DsK : Rd → R exists and ‖DsK‖∞ <∞.

Under Assumption 5, Leibniz’s rule is applicable and, for
each x ∈ X, Dsp̂h(x)−Dsph(x) can be written as

Dsp̂h(x)−Dsph(x)

=
1

n

n∑
i=1

1

hd+|s|D
sKx,h(Xi)− EP

[
1

hd+|s|D
sKx,h

]
,

where Kx,h(·) = K
(
x−·
h

)
, as defined it in Section 4. Fol-

lowing the arguments from Section 4, let

FsK,[ln,∞) := {DsKx,h : x ∈ X, h ≥ ln}

be a class of unnormalized kernel functions centered on X
and bandwidth greater than or equal to ln, and let

F̃sK,[ln,∞) :=

{
1

hd+|s|D
sKx,h : x ∈ X, h ≥ ln

}
be a class of normalized kernel functions. Then
suph≥ln,x∈X |D

sp̂h(x)−Dsph(x)| can be rewritten as

sup
h≥ln,x∈X

|Dsp̂h(x)−Dsph(x)|

= sup
f∈F̃s

K,[ln,∞)

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ . (16)

To derive a good upper bound on
suph≥ln,x∈X |D

sp̂h(x)−Dsph(x)|, it is important to
first show a tight upper bound for EP [(DsKx,h)2]. Towards
that end, we impose the following integrability condition.
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Assumption 6. The derivative of kernel is such that∫ ∞
0

tdvol−1 sup
‖x‖≥t

(DsK)2(x)dt <∞. (17)

Under Assumption 6, we can bound EP [DsK2
x,h] in terms

of the volume dimension dvol as follows.
Lemma 19. Let (Rd, P ) be a probability space and let
X ∼ P . For any kernel K satisfying Assumption 6, the
expectation of the square of the derivative of the kernel is
upper bounded as

EP

[(
DsK

(
x−X
h

))2
]
≤ Cs,P,K,εhdvol−ε, (18)

for any ε ∈ (0, dvol), where Cs,P,K,ε is a constant depend-
ing only on s, P , K, ε. Further, if dvol = 0 or under
Assumption 1, ε can be 0 in (18).

To apply the VC type bound on (16), the function class
FsK,[ln,∞) should be not too complex. Like in Section 4, we
assume that FsK,[ln,∞) is a uniformly bounded VC-class.

Assumption 7. Let K : Rd → R be a kernel function with
‖DsK‖∞ , ‖DsK‖2 <∞. We assume that

FsK,[ln,∞) := {DsKx,h : x ∈ X, h ≥ ln}

is a uniformly bounded VC-class with dimension ν, i.e. there
exists positive numbers A and ν such that, for every prob-
ability measure Q on Rd and for every ε ∈ (0, ‖DsK‖∞),
the covering numbers N (FsK,[ln,∞), L2(Q), ε) satisfies

N (FsK,[ln,∞), L2(Q), ε) ≤
(
A ‖DsK‖∞

ε

)ν
.

Finally, to bound suph≥ln,x∈X |D
sp̂h(x)−Dsph(x)| with

high probability, we combine the Talagrand inequality and
VC type bound with Lemma 19. The following theorem
provides a high probability upper bound for (16), and is
analogous to Theorem 12.
Theorem 20. Let P be a distribution and K be a kernel
function satisfying Assumption 5, 6, and 7. Then, with
probability at least 1− δ,

sup
h≥ln,x∈X

|Dsp̂h(x)−Dsph(x)|

≤ C

(
(log (1/ln))+

nl
d+|s|
n

+

√
(log (1/ln))+

nl
2d+2|s|−dvol+ε
n

+

√
log (2/δ)

nl
2d+2|s|−dvol+ε
n

+
log (2/δ)

nl
d+|s|
n

)
, (19)

for any ε ∈ (0, dvol), where C is a constant depending only
on A, ‖DsK‖∞, d, ν, dvol, Cs,P,K,ε, ε. Further, if dvol = 0
or under Assumption 1, ε can be 0 in (19).

When ln is not going to 0 too fast, then
√

log(1/ln)

nl
2d+2|s|−dvol
n

term

dominates the upper bound in (19) as follows.
Corollary 21. Let P be a distribution and K be a kernel
function satisfying Assumption 5, 6, and 7. Suppose

lim sup
n

(log (1/ln))+ + log (2/δ)

nldvol−εn

<∞,

for fixed ε ∈ (0, dvol). Then, with probability at least 1− δ,

sup
h≥ln,x∈X

|Dsp̂h(x)−Dsph(x)|

≤ C ′
√

(log (1/ln))+ + log (2/δ)

nl
2d+2|s|−dvol+ε
n

, (20)

whereC ′ is a constant depending only onA, ‖DsK‖∞, d, ν,
dvol,Cs,P,K,ε, ε. Further, if dvol = 0 or under Assumption 1,
ε can be 0.

We now turn to the case of a fixed bandwidth hn > 0. We
are interested in a high probability bound on

sup
x∈X
|Dsp̂hn(x)−Dsphn(x)| .

Of course, Theorem 20 and Corollary 21 are applicable to
the fixed bandwidth case.

But if the support of P is bounded, then, for aMK -Lipschitz
continuous derivative of kernel density estimator and fixed
bandwidth, we can again derive a uniform convergence
bound without the finite VC condition of (Giné & Guillou,
2001; Giné et al., 2004).
Lemma 22. Suppose there exists R > 0 with X ⊂
BRd(0, R). Also, suppose that DsK is MK-Lipschitz, i.e.

‖DsK(x)−DsK(y)‖2 ≤MK ‖x− y‖2 .

Then for all η ∈ (0, ‖DsK‖∞), the supremum of the η-
covering number N (FsK,h, L2(Q), η) over all measure Q
is upper bounded as

sup
Q
N (FsK,h, L2(Q), η) ≤

(
2RMKh

−1 + ‖DsK‖∞
η

)d
.

Corollary 23. Suppose there existsR > 0 with supp(P ) =
X ⊂ BRd(0, R). Let K be a kernel function with MK-
Lipschitz continuous derivative satisfying Assumption 6. If

lim sup
n

(log (1/hn))+ + log (2/δ)

nhdvol−εn

<∞,

for fixed ε ∈ (0, dvol). Then, with probability at least 1− δ,

sup
x∈X
|Dsp̂h(x)−Dsph(x)| ≤ C ′′

√
(log( 1

hn
))+ + log( 2

δ )

nh
2d+2|s|−dvol+ε
n

,

(21)
where C ′′ is a constant depending only on A, ‖DsK‖∞,
d, Mk, dvol, Cs,P,K,ε, ε. Further, if dvol = 0 or under
Assumption 1, ε can be 0.
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