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Abstract

The bits-back argument suggests that latent vari-
able models can be turned into lossless compres-
sion schemes. Translating the bits-back argument
into efficient and practical lossless compression
schemes for general latent variable models, how-
ever, is still an open problem. Bits-Back with
Asymmetric Numeral Systems (BB-ANS), re-
cently proposed by Townsend et al. (2019), makes
bits-back coding practically feasible for latent
variable models with one latent layer, but it is
inefficient for hierarchical latent variable models.
In this paper we propose Bit-Swap, a new com-
pression scheme that generalizes BB-ANS and
achieves strictly better compression rates for hier-
archical latent variable models with Markov chain
structure. Through experiments we verify that Bit-
Swap results in lossless compression rates that
are empirically superior to existing techniques.
Our implementation is available at https://
github.com/fhkingma/bitswap.

1. Introduction
Likelihood-based generative models—models of joint prob-
ability distributions trained by maximum likelihood—have
recently achieved large advances in density estimation per-
formance on complex, high-dimensional data. Variational
autoencoders (Kingma & Welling, 2013; Kingma et al.,
2016), PixelRNN and PixelCNN and their variants (Oord
et al., 2016; van den Oord et al., 2016b; Salimans et al.,
2017; Parmar et al., 2018; Chen et al., 2018), and flow-based
models like RealNVP (Dinh et al., 2015; 2017; Kingma &
Dhariwal, 2018) can successfully model high dimensional
image, video, speech, and text data (Karras et al., 2018;
Kalchbrenner et al., 2017; van den Oord et al., 2016a; Kalch-
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Figure 1: Schematic overview of lossless compression. The
sender encodes data x to a code with the least amount of bits
possible without losing information. The receiver decodes
the code and must be able to exactly reconstruct x.

brenner et al., 2016; 2018; Vaswani et al., 2017).

The excellent density estimation performance of modern
likelihood-based models suggests another application: loss-
less compression. Any probability distribution can in theory
be converted into a lossless code, in which each datapoint
is encoded into a number of bits equal to its negative log
probability assigned by the model. Since the best expected
codelength is achieved when the model matches the true
data distribution, designing a good lossless compression
algorithm is a matter of jointly solving two problems:

1. Approximating the true data distribution pdata(x) as
well as possible with a model pθ(x)

2. Developing a practical compression algorithm, called
an entropy coding scheme, that is compatible with this
model and results in codelengths equal to − log pθ(x).

Table 1: Lossless compression rates (in bits per dimension)
on unscaled and cropped ImageNet of Bit-Swap against
other compression schemes. See Section 5 for an explana-
tion of Bit-Swap and Section 6 for detailed results.

Compression Scheme Rate

Uncompressed 8.00

GNU Gzip 5.96
bzip2 5.07
LZMA 5.09
PNG 4.71
WebP 3.66
BB-ANS 3.62
Bit-Swap (ours) 3.51

https://github.com/fhkingma/bitswap
https://github.com/fhkingma/bitswap
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Unfortunately, it is generally difficult to jointly design a
likelihood-based model and an entropy coding scheme that
together achieve a good compression rate while remaining
computationally efficient enough for practical use. Any
model with tractable density evaluation can be converted
into a code using Huffman coding, but building a Huffman
tree requires resources that scale exponentially with the di-
mension of the data. The situation is more tractable, but
still practically too inefficient, when autoregressive models
are paired with arithmetic coding or asymmetric numeral
systems (explained in Section 2.1). The compression rate
will be excellent due to to the effectiveness of autoregressive
models in density estimation, but the resulting decompres-
sion process, which is essentially identical to the sample
generation process, will be extremely slow.

Fortunately, fast compression and decompression can be
achieved by pairing variational autoencoders with a re-
cently proposed practically efficient coding method called
Bits-Back with Asymmetric Numeral Systems (BB-ANS)
(Townsend et al., 2019). However, the practical efficiency
of BB-ANS rests on two requirements:

1. All involved inference and recognition networks are
fully factorized probability distributions

2. There are few latent layers in the variational autoen-
coder.

The first requirement ensures that encoding and decoding is
always fast and parallelizable. The second, as we will dis-
cuss later, ensures that BB-ANS achieves an efficient bitrate:
it turns out that BB-ANS incurs an overhead that grows
with the number of latent variables. But these requirements
restrict the capacity of the variational autoencoder and pose
difficulties for density estimation performance, and hence
the resulting compression rate suffers.

To work toward designing a computationally efficient com-
pression algorithm with a good compression rate, we pro-
pose Bit-Swap, which improves BB-ANS’s performance
on hierarchical latent variable models with Markov chain
structure. Compared to latent variables models with only
one latent layer, these hierarchical latent variable models
allow us to achieve better density estimation performance
on complex high-dimensional distributions. Meanwhile,
Bit-Swap, as we show theoretically and empirically, yields
a better compression rate compared to BB-ANS on these
models due to reduced overhead.

2. Background
First, we will set the stage by introducing the lossless com-
pression problem. Let pdata be a distribution over discrete
data x = (x1, . . . , xD). Each component x1, . . . , xD of
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Figure 2: Asymmetric Numeral Systems (ANS) operates on
a bitstream in a stack-like manner. Symbols are decoded in
opposite order as they were encoded.

x is called a symbol. Suppose that a sender would like to
communicate a sample x to a receiver through a code, or
equivalently a message. The goal of lossless compression
is to send this message using the minimum amount of bits
on average over pdata, while ensuring that x is always fully
recoverable by the receiver. See Figure 1 for an illustration.

Entropy coding schemes use a probabilistic model pθ(x) to
define a code with codelengths − log pθ(x). If − log pθ(x)
matches − log pdata(x) well, then resulting average code-
length E[− log pθ(x)] will be close to the entropy of the
data H(x), which is the average codelength of an optimal
compression scheme.

2.1. Asymmetric Numeral Systems

We will employ a particular entropy coding scheme called
Asymmetric Numeral Systems (ANS) (Duda et al., 2015).
Given a univariate probability distribution p(x), ANS en-
codes a symbol x into a sequence of bits, or bitstream, of
length approximately − log p(x) bits. ANS can also code
a vector of symbols x using a fully factorized probability
distribution p(x) =

∏
i p(xi), resulting in − log p(x) bits.

(It also works with autoregressive p(x), but throughout this
work we will only use fully factorized models for paralleliz-
ability purposes.)

ANS has an important property: if a sequence of symbols is
encoded, then they must be decoded in the opposite order.
In other words, the state of the ANS algorithm is a bitstream
with a stack structure. Every time a symbol is encoded, bits
are pushed on to the right of the stack; every time a symbol
is decoded, bits are popped from the right of the stack. See
Figure 2 for an illustration. This property will become
important when ANS is used in BB-ANS and Bit-Swap for
coding with latent variable models.

2.2. Latent Variable Models

The codelength of an entropy coding technique depends
on how well its underlying model pθ(x) approximates the
true data distribution pdata(x). In this paper, we focus on
latent variable models, which approximate pdata(x) with a
marginal distribution pθ(x) defined by

pθ(x) =

∫
pθ(x, z)dz =

∫
pθ(x|z)p(z)dz (1)
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where z is an unobserved latent variable. For continuous z,
pθ(x) can be seen as an infinite mixture, which makes such
an implicit distribution over x potentially highly flexible.

Since exactly evaluating and optimizing the marginal like-
lihood pθ(x) is intractable, variational autoencoders intro-
duce an inference model qθ(z|x), which approximates the
model posterior pθ(z|x). For any choice of qθ(z|x), we can
rewrite the marginal likelihood pθ(x) as follows:

log pθ(x) = Eqθ(z|x) log
pθ(x, z)

qθ(z|x)︸ ︷︷ ︸
=L(θ) (ELBO)

+ Eqθ(z|x) log
qθ(x, z)

pθ(z|x)︸ ︷︷ ︸
=DKL(qθ(z|x) ‖ pθ(z|x))

(2)

As DKL (qθ(z|x) ‖ pθ(z|x)) ≥ 0, the inference model and
generative model can be found by jointly optimizing the Ev-
idence Lower BOund (ELBO), a lower bound on log pθ(x):

L(θ) = Eqθ(z|x)[log pθ(x, z)− log qθ(z|x)] (3)

For continuous z and a differentiable inference model and
generative model, the ELBO can be optimized using the
reparameterization trick (Kingma & Welling, 2013).

2.3. Bits-Back Coding with ANS

It is not straightforward to use a latent variable model for
compression, but it is possible with the help of the inference
network qθ(z|x). Assume that both the sender and receiver
have access to pθ(x|z), p(z), qθ(z|x) and an entropy coding
scheme. Let x be the datapoint the sender wishes to com-
municate. The sender can send a latent sample z ∼ qθ(z|x)
by coding using the prior p(z), along with x, coded with
pθ(x|z). This scheme is clearly valid and allows the re-
ceiver to recover the x, but results in an inefficient total
codelength of E [− log pθ(x|z)− log p(z)]. Wallace (1990)
and Hinton & Van Camp (1993) show in a thought experi-
ment, called the bits-back argument, it is possible to instead
transmit − log qθ(z|x) fewer bits in a certain sense, thereby
yielding a better net codelength equal to the negative ELBO
−L(θ) of the latent variable model.

BB-ANS (Townsend et al., 2019), illustrated in Figure 3,
makes the bits-back argument concrete. BB-ANS operates
by starting with ANS initialized with a bitstream of Ninit

random bits. Then, to encode x, BB-ANS performs the
following steps:

1. Decode z from bitstream using qθ(z|x), subtracting
− log qθ(z|x) bits from the bitstream,

2. Encode x to bitstream using pθ(x|z), adding
− log pθ(x|z) bits to the bitstream,

3. Encode z to bitstream using p(z), adding − log p(z)
bits to the bistream.
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Figure 3: Bits-Back with Asymmetric Numeral Systems
(BB-ANS).

The resulting bitstream, which has a length of Ntotal :=
Ninit + log qθ(z|x) − log pθ(x|z) − log p(z) bits, is then
sent to the receiver.

The receiver decodes the data by initializing ANS to the
received bitstream, then proceeds in reverse order, with the
encode and decode operations swapped: the receiver de-
codes z using p(z), decodes x using pθ(x|z), then encodes
z using qθ(z|x). The final step of encoding z will recover
the Ninit bits that the encoder used to initialize ANS. Thus,
the sender will have successfully transmitted x to the re-
ceiver, along with the initial Ninit bits—and it will have
taken Ntotal bits to do so.

To summarize, it takes Ntotal bits to transmit x plus Ninit

bits. In this sense, the net number of bits sent regarding x
only, ignoring the initial Ninit bits, is

Ntotal −Ninit = log qθ(z|x)− log pθ(x|z)− log p(z)

which is on average equal to −L(θ), the negative ELBO.

3. Initial Bits in Bits-Back Coding
We now turn to the core issue that our work addresses: the
amount of initial bitsNinit required for BB-ANS to function
properly.

It is crucial for there to be enough initial bits in the ANS
state for the sender to decode z from the initial bitstream.
That is, we must have

Ninit ≥ − log qθ(z|x) (4)

in order to guarantee that the receiver can recover the initial
Ninit bits. If not, then to sample z, the sender must draw



Bit-Swap

Algorithm 1 BB-ANS for lossless compression with hier-
archical latent variables. The operations below show the
procedure for encoding a dataset D onto a bitstream.

Input: data D, depth L, pθ(x, z1:L), qθ(z1:L|x)
Require: ANS
Initialize: bitstream
repeat

Take x ∈ D
decode z1 with qθ(z1|x)
for i = 1 to L− 1 do

decode zi+1 with qθ(zi+1|zi)
end for
encode x with pθ(x|z1)
for i = 1 to L− 1 do

encode zi with pθ(zi|zi+1)
end for
encode zL with p(zL)

until D = ∅
Send: bitstream

bits from an auxiliary random source, and those bits will cer-
tainly not be recoverable by the receiver. And, if those bits
are not recoverable, then the sender will have spent Ntotal

bits to transmit x only, without Ninit bits in addition. So,
we must commit to sending at least Ninit ≥ − log qθ(z|x)
initial bits to guarantee a short net codelength for x.

Unfortunately, the initial number of bits required can be
significant. As an example, if the latent variables are
continuous, as is common with variational autoencoders,
one must discretize the density qθ(z|x) into bins of vol-
ume δz, yielding a probability mass function qθ(z|x)δz.
But this imposes a requirement on the initial bits: now
Ninit ≥ − log qθ(z|x)− log δz increases as the discretiza-
tion resolution 1/δz increases.

Townsend et al. (2019) remark that initial bits can be avoided
by transmitting multiple datapoints in sequence, where every
datapoint xi (except for the first one x1) uses the bitstream
built up thus far as initial bitstream. This amortizes the
initial cost when the number of datapoints transmitted is
large, but the cost can be significant for few or moderate
numbers of datapoints, as we will see in experiments in
Section 6.

4. Problem Scenario: Hierarchical Latent
Variables

Initial bits issues also arise when the model has many latent
variables. Models with multiple latent variables are more
expressive in practice can more closely model pdata, leading
to better compression performance. But since − log qθ(z|x)
generally grows with the dimension of z, adding more ex-

Algorithm 2 Bit-Swap (ours) for lossless compression
with hierarchical latent variables. The operations below
show the procedure for encoding a dataset D onto a bit-
stream.

Input: data D, depth L, pθ(x, z1:L), qθ(z1:L|x)
Require: ANS
Initialize: bitstream
repeat

Take x ∈ D
decode z1 with qθ(z1|x)
encode x with pθ(x|z1)
for i = 1 to L− 1 do

decode zi+1 with qθ(zi+1|zi)
encode zi with pθ(zi|zi+1)

end for
encode zL with p(zL)

until D = ∅
Send: bitstream

pressive power to the latent variable model via more latent
variables will incur a larger initial bitstream for BB-ANS.

We specialize our discussion to the case of hierarchical la-
tent variable models: variational autoencoders with multiple
latent variables whose sampling process obeys a Markov
chain of the form zL → zL−1 → · · · → z1 → x, shown
schematically in Figure 4. (It is well known that such models
are better density estimators than shallower models, and we
will verify in experiments in Section 6 that these models in-
deed can model pdata more closely than standard variational
autoencoders. A discussion regarding other topologies can
be found in Appendix G.) Specifically, we consider a model
whose marginal distributions are

pθ(x) =

∫
pθ(x|z1)pθ(z1)dz1

pθ(z1) =

∫
pθ(z1|z2)pθ(z2)dz2

...
pθ(zL−1) =

∫
pθ(zL−1|zL)p(zL)dzL,

(5)

and whose marginal distribution over x is

pθ(x) =

∫
pθ(x|z1)pθ(z1|z2) · · · p(zL)dz1:L. (6)

We define an inference model qθ(zi|zi−1) for every latent
layer zi, so that we can optimize a variational bound on
the marginal likelihood pθ(x). The resulting optimization
objective (ELBO) is

L(θ) = Eqθ(·|x)[log pθ(x, z1:L)− log qθ(z1:L|x)]. (7)
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Figure 4: The model class we are targeting: hierarchical la-
tent variable models. Specifically, variational autoencoders
whose sampling process obeys a Markov chain.

Now, consider what happens when this model is used with
BB-ANS for compression. Figure 5(b) illustrates BB-ANS
for such a model with three latent layers {z1, z2, z3}; the
algorithm for arbitrary latent depths L of a hierarchical
latent variable model is shown in Algorithm 1.

The first thing the sender must do is decode the latent vari-
ables z1:L from the initial bitstream of ANS. So, the number
of bits present in the initial bitstream must be at least

NBBANS
init := − log qθ(z1:L|x) =

L−1∑
i=0

− log qθ(zi+1|zi)

(8)

where z0 = x. Notice that NBBANS
init must grow with the

depth L of the latent variable model. With L sufficiently
large, the required initial bits could make BB-ANS imprac-
tical as a compression scheme with hierarchical latent vari-
ables.

5. Bit-Swap
To mitigate this issue, we propose Bit-Swap (Algorithm 2),
an improved compression scheme that makes bits-back cod-
ing efficiently compatible with the layered structure of hier-
archical latent variable models.

In our proposed model (Equations 5-6), the sampling pro-
cess of both the generative model and the inference model
obeys a Markov chain dependency between the stochastic
variables. The data x is generated conditioned on a latent
variable z1, as in a standard variational autoencoder. How-
ever, instead of using a fixed prior for z1, we assume that z1
is generated by a second latent variable z2. Subsequently,
instead of using a fixed prior for z2, we assume that z2 is
generated by third latent variable z3, and so on.

These nested dependencies enable us to recursively apply
the bits-back argument as follows. Suppose we aim to com-
press one datapoint x in a lossless manner. With standard
BB-ANS, the sender begins by decoding z1:L, which incurs
a large cost of initial bits. With Bit-Swap, we notice that
we can apply the first two steps of the bits-back argument
on the first latent variable: first decode z1 and directly af-
terwards encode x. This adds bits to the bitstream, which
means that further decoding operations for z2:L will need

fewer initial bits to proceed. Now, we recursively apply
the bits-back argument for the second latent variable z2 in
a similar fashion: first decode z2 and afterwards encode
z1. Similar operations of encoding and decoding can be
performed for the remaining latent variables z3:L: right be-
fore decoding zi+1, Bit-Swap always encodes zi−1, and
hence at least − log pθ(zi−1|zi) are available to decode
zi+1 ∼ qθ(zi+1|zi) without an extra cost of initial bits.
Therefore, the amount of initial bits that Bit-Swap needs
is bounded by

∑L−1
i=0 max

(
0, log pθ(zi−1|zi)

qθ(zi+1|zi)

)
, where we

used the convention z0 = x and pθ(z−1|z0) = 1. We can
guarantee that Bit-Swap requires no more initial bits than
BB-ANS:

NBitSwap
init ≤

L−1∑
i=0

max

(
0, log

pθ(zi−1|zi)
qθ(zi+1|zi)

)
(9)

≤
L−1∑
i=0

− log qθ(zi+1|zi) = NBBANS
init (10)

See Figure 5(a) for an illustration of Bit-Swap on a model
with three latent variables z1, z2, z3.

6. Experiments
To compare Bit-Swap against BB-ANS, we use the fol-
lowing image datasets: MNIST, CIFAR-10 and ImageNet
(32× 32). Note that the methods are not constrained to this
specific type of data. As long as it is feasible to learn a hier-
archical latent variable model with Markov chain structure
pθ(x) of the data under the given model assumptions, and
the data is discrete, it is possible to execute the compression
schemes Bit-Swap and BB-ANS on this data.

Referring back to the introduction, designing a good loss-
less compression algorithm is a matter of jointly solving
two problems: 1) approximating the true data distribution
pdata(x) as well as possible with a model pθ(x), and 2)
developing a practical compression scheme that is compat-
ible with this model and results in codelengths equal to
− log pθ(x). We address the first point in Section 6.1. As
for the second point, we achieve bitrates that are approxi-
mately equal to the −L(θ), the negative ELBO, which is
an upper bound on − log pθ(x). We will address this in
Section 6.2.

6.1. Performance of Hierarchical Latent Variable
Models

We begin our experiments by demonstrating how hierarchi-
cal latent variable models with Markov chain structure with
different latent layer depths compare to a latent variable
model with only one latent variable in terms of how well
the models are able to approximate a true data distribution
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Figure 5: Bit-Swap (ours, left) vs. BB-ANS (right) on a hierarchical latent variable model with three latent layers. Notice
that BB-ANS needs a longer initial bitstream compared to Bit-Swap.

Table 2: MNIST model optimization results (columns 2 and 3) and test data compression results (columns 4 to 8) for
various depths of the model (column 1). Column 2 shows the ELBO in bits/dim of the trained models evaluated on the test
data. Column 3 denotes the number of parameters used (in millions). Using the trained models, we executed Bit-Swap and
BB-ANS on the test data. We used 210 bins to discretize the latent space (see Appendix F). Column 5 denotes the scheme
used; BB-ANS or Bit-Swap. Column 4 denotes the average net bitrate in bits/dim (see Section 6.2), averaged over Bit-Swap
and BB-ANS. Columns 6-8 show the cumulative moving average in bits/dim (CMA) (see Section 6.2) at various timesteps
(1, 50 and 100 respectively). The reported bitrates are the result of compression of 100 datapoints (timesteps), averaged
over 100 experiments. We believe that the small discrepancy between the ELBO and the net bitrate comes from the noise
resulting from discretization. Also, Bit-Swap reduces to BB-ANS for L = 1.

Depth (L) ELBO−L(θ) # Parameters Avg. Net Bitrate Scheme Initial (n = 1) CMA (n = 50) CMA (n = 100)

1 1.35 2.84M - - - - -

2 1.28 2.75M 1.28± 0.34 BB-ANS 6.59± 0.30 1.38± 0.05 1.33± 0.03
Bit-Swap 3.45± 0.32 1.32± 0.05 1.30± 0.03

4 1.27 2.67M 1.27± 0.34 BB-ANS 11.63± 0.30 1.47± 0.05 1.37± 0.04
Bit-Swap 3.40± 0.31 1.31± 0.05 1.29± 0.04

8 1.27 2.60M 1.27± 0.33 BB-ANS 21.93± 0.34 1.68± 0.05 1.48± 0.03
Bit-Swap 3.34± 0.33 1.31± 0.05 1.29± 0.03
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Table 3: CIFAR-10 model optimization (columns 2 and 3) and test data compression results (columns 4 to 8) for various
depths of the model (column 1). Equal comments apply as Table 2.

Depth (L) ELBO−L(θ) # Parameters Avg. Net Bitrate Scheme Initial (n = 1) CMA (n = 50) CMA (n = 100)

1 4.57 45.3M - - - - -

2 3.83 45.0M 3.85± 0.77 BB-ANS 12.66± 0.61 4.03± 0.11 3.93± 0.08
Bit-Swap 6.76± 0.63 3.91± 0.11 3.87± 0.08

4 3.81 44.9M 3.82± 0.83 BB-ANS 22.30± 0.83 4.19± 0.12 4.00± 0.09
Bit-Swap 6.72± 0.67 3.89± 0.12 3.85± 0.09

8 3.78 44.7M 3.79± 0.80 BB-ANS 44.24± 0.87 4.60± 0.12 4.19± 0.09
Bit-Swap 6.53± 0.74 3.86± 0.12 3.82± 0.09

Table 4: ImageNet (32× 32) model optimization (columns 2 and 3) and test data compression results (columns 4 to 8) for
various depths of the model (column 1). Equal comments apply as Table 2.

Depth (L) ELBO−L(θ) # Parameters Avg. Net Bitrate Scheme Initial (n = 1) CMA (n = 50) CMA (n = 100)

1 4.94 45.3M - - - - -

2 4.53 45.0M 4.54± 0.84 BB-ANS 13.39± 0.60 4.71± 0.13 4.63± 0.08
Bit-Swap 7.45± 0.62 4.60± 0.13 4.57± 0.08

4 4.48 44.9M 4.48± 0.85 BB-ANS 22.72± 0.79 4.84± 0.13 4.66± 0.08
Bit-Swap 6.97± 0.70 4.53± 0.13 4.50± 0.08
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Figure 6: Cumulative moving average of compression rate over time for Bit-Swap (blue) and BB-ANS (orange) for sequences
of 100 datapoints, averaged over 100 experiments. The blue dotted line and region represent the average and standard
deviation of the net bitrate across the entire test set, without the initial bits (see Section 6.2).

pdata(x). A detailed discussion on the model architecture
design can be found in Appendix D.

The results of training of the hierarchical latent variable mod-
els are shown in the left three columns of Table 2 (MNIST),
3 (CIFAR-10) and 4 (ImageNet (32× 32)). One latent layer

corresponds to one latent variable zi. The metric we used is
bits per dimension (bits/dim) as evaluated by the negative
ELBO −L(θ). Note from the resulting ELBO that, as we
add more latent layers, the expressive power increases. A
discussion on the utility of more latent layers can be found
in Appendix E.
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6.2. Performance of Bit-Swap versus BB-ANS

We now show that Bit-Swap indeed reduces the initial bits
required (as discussed in Section 5) and outperforms BB-
ANS on hierarchical latent variable models in terms of ac-
tual compression rates. To compare the performance of
Bit-Swap versus BB-ANS for different depths of the latent
layers, we conducted 100 experiments for every model and
dataset. In every experiment we compressed 100 datapoints
in sequence and calculated the cumulative moving average
(CMA) of the resulting lengths of the bitstream after each
datapoint. Note that this includes the initial bits necessary
for decoding latent layers. In addition, we calculated the net
number of bits added to the bitstream after every datapoint,
as explained in Section 2.3, and averaged them over all data-
points and experiments for one dataset and model. This can
be interpreted as a lower bound of the CMA of a particular
model and dataset. We discretized the continuous latent
variables z1:L using 210 discretization bins for all datasets
and experiments, as explained in Appendix F.

The CMA (with the corresponding average net bitrate) over
100 experiments for every model and dataset is shown in
Figure 6. Bit-Swap is depicted in blue and BB-ANS in
orange. These graphs show two properties of Bit-Swap and
BB-ANS: the difference between Bit-Swap and BB-ANS
in the need for initial bits, and the fact that the CMA of
Bit-Swap and BB-ANS both amortize towards the average
net bitrate. The last five columns of Table 2 (MNIST), 3
(CIFAR-10) and 4 (ImageNet (32× 32)) show the CMA (in
bits/dim) after 1, 50 and 100 datapoints for the Bit-Swap
versus BB-ANS and the average net bitrate (in bits/dim).

The initial cost is amortized (see Section 3) as the amount
of datapoints compressed grows. Also, the CMA converges
to the average net bitrate. The relatively high initial cost of
both compression schemes comes from the fact that the ini-
tial cost increases with the number of discretization bins, dis-
cussed in Appendix F. Furthermore, discretizing the latent
space adds noise to the distributions. When using BB-ANS,
remember that this initial cost also grows linearly with the
amount of latent layers L. Bit-Swap does not have this prob-
lem. This results in a CMA performance gap that grows with
the amount of latent layers L. The efficiency of Bit-Swap
compared to BB-ANS results in much faster amortization,
which makes Bit-Swap a more practical algorithm.

Finally, we compared both Bit-Swap and BB-ANS against
a number of benchmark lossless compression schemes. For
MNIST, CIFAR-10 and Imagenet (32× 32) we report the
bitrates, shown in Table 5, as a result of compressing 100
datapoints in sequence (averaged over 100 experiments) and
used the best models reported in Table 2, 3 and 4 to do so.
We also compressed 100 single images independently taken
from the original unscaled ImageNet, cropped to multiples
of 32 pixels on each side, shown in Table 6. First, we trained

Table 5: Compression rates (in bits/dim) on MNIST, CIFAR-
10, Imagenet (32×32). The experimental set-up is explained
in Section 6.2.

MNIST CIFAR-10 ImageNet (32× 32)

Uncompressed 8.00 8.00 8.00

GNU Gzip 1.65 7.37 7.31
bzip2 1.59 6.98 7.00
LZMA 1.49 6.09 6.15
PNG 2.80 5.87 6.39
WebP 2.10 4.61 5.29
BB-ANS 1.48 4.19 4.66
Bit-Swap 1.29 3.82 4.50

Table 6: Compression rates (in bits/dim) on 100 images
taken independently from unscaled and cropped ImageNet.
The experimental set-up is explained in Section 6.2.

ImageNet
(unscaled & cropped)

Uncompressed 8.00

GNU Gzip (Gailly & Adler, 2018) 5.96
bzip2 (Seward, 2010) 5.07
LZMA (Pavlov, 1996) 5.09
PNG 4.71
WebP 3.66
BB-ANS 3.62
Bit-Swap 3.51

the same model as used for Imagenet (32× 32) on random
32× 32 patches of the corresponding train set. Then we ex-
ecuted Bit-Swap and BB-ANS by compressing one 32× 32
block at the time and averaging the bitrates of all the blocks
in one image. We used the same cropped images for the
benchmark schemes. We did not include deep autoregres-
sive models as benchmark, because they are too slow to be
practical (see introduction). Bit-Swap clearly outperforms
all other benchmark lossless compression schemes.

7. Conclusion
Bit-Swap advances the line of work on practical compres-
sion using latent variable models, starting from the theoreti-
cal bits-back argument (Wallace, 1990; Hinton & Van Camp,
1993), and continuing on to practical algorithms based on
arithmetic coding (Frey & Hinton, 1996; Frey, 1997) and
asymmetric numeral systems (Townsend et al., 2019).

Bit-Swap enables us to efficiently compress using hierarchi-
cal latent variable models with a Markov chain structure,
as it is able to avoid a significant number of initial bits that
BB-ANS requires to compress with the same models. The
hierarchical latent variable models function as powerful den-
sity estimators, so combined with Bit-Swap, we obtain an
efficient, low overhead lossless compression algorithm capa-
ble of effectively compressing complex, high-dimensional
datasets.
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