Supplementary material for
ComplILE: Compositional Imitation Learning and Execution

A. CompILE model details

A.1. Encoder architecture

Grid world Both the recognition model and the genera-
tive model (i.e., the sub-task policies) use a two-layer CNN
with 3 x 3 filters and 64 feature maps in each layer, followed
by a ReLU activation each. We flatten the output representa-
tion into a vector and pass it through another trainable linear
layer, without activation function. Only for the recognition
model, we further concatenate a linear (trainable) embed-
ding of the action ID to this representation. In all cases, we
pass the output through a LayerNorm (Ba et al., 2016) layer
before it is passed on to other parts of the model, e.g. the
RNN in the recognition model or the sub-task policy MLP
in the generative model.

The LSTM state of the recognition model is reset to O be-
tween trajectories (and after each pass over the trajectory,
i.e., for each segment).

Continuous control environment The model architec-
ture for the continuous control environment is the same as
the grid world, except that the input encoder uses MLPs of
2 hidden layers of 256 units each with ReLU activations,
instead of CNNss.

A.2. Sub-task policies

The sub-task policies my(als, z) are composed of a CNN
module to embed the environment state s; and a subsequent
MLP head to predict the probability of taking a particu-
lar action. This CNN shares the same architecture as the
recognition model CNN. In initial experiments, we found
that training separate policies 7y_(a|s) for each sub-task
z € {1,..., K} with shared CNN parameters led to bet-
ter generalization performance than embedding the sub-
task latent variable and providing it as input to just a sin-
gle policy for all sub-tasks. For continuously relaxed la-
tent variables z, i.e. during training, we use a soft mixture
mo(als,z) = Y 1.5 q(z = kla, s,b)mg, (als) to obtain
gradients, where we have omitted time step and segment
indices to simplify notation.

A.3. Termination policy

To allow for our model to be used in an online setting where
the end of an event segment has to be identified before

“seeing the future”, we jointly train a termination policy
that shares the same model architecture (but without shared
parameters) as the boundary prediction network gg, (b;|x),
but with a sigmoid(z) = 1/(1 + e~*) activation function
on the logits instead of a (Gumbel) softmax. It similarly
passes over the input sequence M times (with softly masked
out RNN hidden states) and is trained to predict an output
of 1 (i.e., terminate) for the location of the i-th boundary
b, = argmax,_;.rqqs,(b; = t|z) and zero otherwise. At
test time, we use a threshold of 0.5 to determine termination.

A.4. ELBO objective for learning

We jointly optimize for both the parameters of the sub-task
policy my(als, z) and the recognition model g, (b, z|a, s) by
using the ELBO as an objective for learning:

ELBO = Ey, (5,2]a,s) [log po(als,b, z)
+log p(b, z) — log g4 (b, z|a, 5)], (1)

where we have dropped time step and sub-task indices for
ease of notation. The first term can be understood as the
(negative) reconstruction error of the action sequence, given
a sequence of states and inferred latent variables, whereas
the last two terms, in expectation, form the Kullback-Leibler
(KL) divergence between the prior p(b, z) and the posterior
¢4(b, z|a, s). The ELBO can be obtained from the original
BC objective as follows, using Jensen’s inequality:

log po(als) =log > pe(als, b, 2)p(b, z)
b,z

pg(als, b, z)p(b, z
= log Eq¢(b,z|a,s)|: olal))}

q¢(b7 Z|a7 S)
po(als, b, 2)p(b, 2)
>E 1
= Lq4(b,z]a,s) |:Og q¢(b,z|a,5)
— ELBO)

An overview of the dependencies between observed and
latent variables in our model is provided in Figure 1.

A.5. KL term

We use a scale hyperparameter /3 € [0, 1] to scale the con-
tribution of the KL term in Eq. (1) similar to the 5-VAE
framework (Higgins et al., 2017), which gives us control
over the strength of the prior p(b, z). As is common in ap-
plications of relaxed categorical posteriors in a VAE (Jang

CompILE: Compositional Imitation Learning and Execution

Figure 1: Dependencies between observed and latent variables in our generative model py(x1.7|b1.ar, 21.27)- The state-
action pair (a;, s;) is summarized into a single observed variable z;. The latent variables b; determine the location of the
boundaries between segments, whereas z; summarize the content of each segment.

et al., 2017), we choose a simple (non-relaxed) categorical
KL term for both the posterior distributions g4, (b;|x) and

9p. (2]).

Further, as we do not know the precise location of the bound-
ary latent variables b; at training time, we cannot evaluate
p(b;|bi—1) for ¢ > 1 in the relaxed/continuous case. Under
the assumption of independence between segments, behav-
ior within each segment originating from the same distri-
bution, and with a shared recognition model for all latents,
we can equivalently evaluate the KL term related to b for
the first boundary only, i.e. for p(b;), and multiply this term
by M, where M is the number of segments (we use this
setting in our experiments). Alternatively, one could place
aprioron ., , . P(t € C;), which can be understood as
a continuous relaxation of the length of a segment. This
would allow for an individual KL contribution for every
segment, which could be useful for other applications or
environments, where our assumptions are too restrictive.

A.6. Gaussian latent variables

We experimented with continuous, Gaussian latent variables
z in the grid world domain and found that our model can
support this setting with only minor modifications. We use a
single policy mg(a|s, z) for decoding, where the MLP head
takes the latent variable z (passed through a single, trainable
linear layer) as input in addition to the state embedding (both
are concatenated). We further place a unit-variance, zero-
mean Gaussian prior on z and use the appropriate KL term.
We trained and tested this model variant under the same
setting as the experiments with discrete latent variables,
with the exception of using 32-dimensional Gaussian latent
variables. Results for this setting are summarized in Figure 2
for the grid world domain and in Table 1 for the continuous
control domain.

A.7. Attentive readout

Instead of (softly) reading the logits for the latent variables
z; from the last time step within a segment, we experimented
with using a learned attention mechanism, masked by the
respective soft segment mask. In this setting, we add another

Model Accuracy F1 (tol=0) F1 (tol=1)
3 tasks

LSTM surprisal 24.8 + 0.6 39.0+0.3 471404
CompILE 45.2+13.8 59.3+12.1 68.8+8.1
z-CompILE 99.6 £ 0.2 99.6 +0.1 99.94+0.1
b-CompILE 99.8 + 0.1 99.9+0.1 99.940.0

5 tasks — generalization
LSTM surprisal 21.6 £ 0.5 449405 54.4+0.5
CompILE 28.7+ 7.0 56.4+9.1 63.8+6.5
z-CompILE 98.3 £ 0.5 99.24+0.3 99.7+0.1
b-CompILE 98.5+0.3 99.34+0.2 99.7+0.1

Table 1: Segmentation results in continuous control domain
for CompILE model variant with Gaussian latent variables.
Values are in % and we report mean and standard deviation
for runs with 5 different random seeds.

output head (a single, learnable linear layer) on top of the
recognition model RNN which we denote by a!, where ¢
stands for the time step and ¢ denotes the segment index.
Before passing the attention scores a! through a softmax
layer, we re-normalize using the segment probability P(t €

Cl)
at = al +log P(t € Cy), (3)

i.e. we softly mask the attention scores so that the read-out
is only performed within the respective segment. The final
attention score is obtained as s; = softmax(a;), where the
softmax is applied over the time dimension. We read out
the logits of z; from the output heads as follows:

4. (z;|x) = concrete, (Z sihL). 4)
t=1:T

We found that results were similar in both settings and that
the model typically learned to attend to the last time step
within the segment. For different environments where the
cue for a specific sub-goal in a segment of behavior appears
at different locations within the segment, the attention mech-
anism will potentially be a better fit than a soft read-out at
the end of the segment.

CompILE: Compositional Imitation Learning and Execution

100 - 3x visit 100-

80 - 80 -

L 60- L 60-
3 S

» 40- & 40-

20- I I 20-

0- 0-

Boundaries Reconstruction Exact match Online eval

100 - 5x visit -- generalization 100 -

80 - 80 -

60 - 60 -
40 - 40 -
20 - I 20 -
0- — — 0-

Boundaries Reconstruction Exact match Online eval

Score
Score

Boundaries Reconstruction Exact match

3x pickup

mmm BC baseline

mmm ComplLE

mmm z-ComplLE
b-ComplLE

Online eval

5x pickup -- generalization

Boundaries Reconstruction Exact match

Online eval

Figure 2: Imitation learning results in grid world domain for CompILE model variant with Gaussian latent variables.

Hyperparam. Accuracy F1 (tol=0) F1 (tol=1)
Segments M

M=3 620+£45 743+33 789+25

M=4 534£6.3 66.6+55 753+3.1

M=5 298+6.1 473+55 65.6+29
Softmax temperature 7

T=1 620£45 743£33 789+25

7=01 409+53 553+57 67.0+24

7=001 36.3+6.0 503+52 664+3.6

Table 2: Segmentation results in continuous control domain
with 3 tasks for CompILE model trained with (a) different
number of segments ranging from M = 3 (correct setting)
to M = 5 (too many boundaries provided to the model), and
(b) softmax temperature ranging from 7 = 1 to 7 = 0.01.
Values are in % and we report mean and standard deviation
for runs with 5 different random seeds.

A.8. Other hyperparameters

Number of hidden units and MLP layers We use 256
hidden units in all MLP layers and in the LSTM throughout
all experiments, unless otherwise mentioned. A smaller
number of hidden units mostly did not affect the bound-
ary prediction accuracy, but slightly reduced performance
in terms of reconstruction accuracy. For the output heads
for h,,, we use a single, trainable linear layer (we experi-
mented with deeper MLPs but didn’t find a difference in
performance) and we use a single hidden layer MLP with
ReLU activation function for the output head h, (the output
is a scalar for every time step). Similarly, the policy MLP
is using a single hidden layer with ReLU activation in the
maze task, while for the control task we used a 2 layer MLP.
The termination policy uses an MLP with two hidden layers
with ReL.U activation functions on top of the RNN outputs.

Number of segments The hyperparameter M, i.e., the
number of segments that the model is allowed to use to
explain a particular input sequence, can have an impact on
reconstruction and segmentation quality. We generally find

that we obtain best results by providing the model with
the true number of underlying segments (if this number is
known). When providing the model with more than neces-
sary segments, it often learns to place unneeded segmenta-
tion boundary indicators at the end of the sequence, while
in some cases the model over-segments the trajectory (i.e.,
it breaks a single segment into parts). We provide results
for this setting on the continuous control task in Table 2,
and we find that the accuracy (and F1 score) for segmenta-
tion boundary placement slightly degrades if the model is
provided with more than necessary segments.

Softmax temperature We experimented with annealing
the Gumbel softmax temperature over the course of training,
starting from a temperature of 1 and found that it could
slightly improve results, depending on the precise choice of
annealing schedule and final temperature. To simplify the
exposition and to allow for easier reproduction, however, we
report results with fixed temperature of 1 throughout train-
ing unless otherwise mentioned. In Table 2, we provide re-
sults for experiments with lower softmax temperature (fixed
throughout training) on the continuous control task. We
found that the boundary prediction accuracy degrades when
training with lower temperatures without annealing. When
training with partial supervision on either the boundary po-
sitions (b-CompILE) or segment encodings (z-CompILE),
we found that results are unaffected by lower softmax tem-
peratures.

Poisson prior rate We fix the Poisson rate to A = 3 in
all experiments. We found that our model was not very
sensitive to the precise value of A.

B. Reinforcement learning agent details
B.1. Architecture and hyperparameters

The agent uses a smaller model than our CompILE imitation
learning model, but otherwise similarly has a 2-layer CNN
encoder followed by an MLP policy. The CNN has 3 x 3

CompILE: Compositional Imitation Learning and Execution

filters with 32 feature maps, followed by an MLP with two
hidden layers of size 128. Both the CNN and the MLP use
ReLU activations. All agents use the same architecture, and
the hierarchical agent based on the pre-trained CompILE
model uses 128 instead of 256 hidden units (otherwise same
training and same architecture as in the imitation learning
experiments). The hierarchical agent has access to both
low-level actions (8 in total) and 10 meta-actions which
correspond to executing one sub-policy of the CompILE
model.

The baseline VAE-based BC agent corresponds to an abla-
tion of the hierachical CompILE-based agent, where we use
only a single segment (i.e. M = 1, no segmentation) during
training and a 128-dimensional categorical latent variable z
(instead of 10 categories). The agent therefore can choose
between 128 meta-actions and 10 low-level actions.

We embed the current task type (visit or pick up) and object
type each in a 16-dim vector, via a trainable linear layer.
These are concatenated and provided to the policy model in
the following two ways: 1) we concatenate this embedding
vector with the current observation along the channel (object
type) dimension before we feed it into the CNN, and 2)
we concatenate the embedding vector with the last hidden
layer of the policy MLP. The former allows the CNN to be
conditioned on the task type, while we found the second
concatenation in the policy MLP to help convergence. For
the VAE-based BC baseline (which tries to solve multiple
tasks at once), we do not just provide the current task, but
the full list of remaining tasks by embedding each task and
concatenating them into a single vector (with zero-padding
for already fulfilled tasks).

For IMPALA (Espeholt et al., 2018), we use an entropy
cost factor of 0.0005, a baseline cost factor of 0.5, and a
discounting factor of 0.99. The agents are trained with the
Adam optimizer (Kingma & Ba, 2015) using a learning rate
of 0.001 and a batch size of 256.

B.2. Distributed training

We distribute the training of this agent into one learner and
multiple actors following the IMPALA framework (Espeholt
et al., 2018), where the actors generate trajectories using
the current agent parameters for training, and the learner
updates the agent parameters based on the trajectories re-
ceived from the actors. The learner runs on a GPU, while
the actors run on CPUs. The number of actors is tuned to
maximize the throughput of the learner.

This framework uses the actor-critic training algorithm, with
off-policy correction (Espeholt et al., 2018) to handle the
staleness of the actor generated trajectories. This correction
is necessary as the actors and the learner are not always in
sync in a distributed setting, and the parameter weights used

for generating trajectories are usually not the latest learner
weights when the learner receives the trajectories.

C. Environment implementation details
C.1. Grid world

The environment is implemented in pycolab (https://
github.com/deepmind/pycolab) with 8 different
primitive actions: move north, move east, move south, move
west, pick up north, pick up east, pick up south, pick up
west. Each executed action corresponds to one time step
in the environment. Observations s; are tensors of shape
10X 10X Nihings, where Nipings is the total number of things
available in the environment, in our case these are 10 object
types that can be interacted with, impassable walls and the
player, i.e. Nihings = 12. We ensure that the task is solvable
and no walls make objects unreachable. Walls are placed
using a recursive backtracking algorithm for unbiased maze
generation. We further subsample walls using a sampling
rate of 0.2 to simplify the task. The 2D grid is enclosed by
a single row/column of walls that are not subsampled.

Demonstration sequences are generated using a breadth-
first search on the graph defined by all allowed movement
transitions to find the shortest path to the goal object (ties are
broken in a consistent manner). For pick up instructions, we
replace the last move action in the demonstration sequence
with a directional pick up action. We cut demonstration
sequences to a maximum length of 42 at training time, and
200 at test time (as some of our tests involve more tasks).

C.2. Continuous control

This environment is adapted from the single target reacher
task in DeepMind control suite (Tassa et al., 2018). The
reacher arm is composed of two segments, each with length
{ = 0.12, and the controller controls the two motors on the
two joints of the arm, one at the shoulder and the other at
the elbow. The control actions are the angular velocities to
be applied at the two joints. Target objects (spheres) have a
diameter of d = 0.05, and they are placed in a belt around
the center, with the distance to the center sampled uniformly
from range [0.05,0.2], and direction (angle) sampled uni-
formly around the circle. The environment is set up to take
control actions in time intervals of 0.06, with each episode
taking a maximum time of 6, i.e. 100 time steps at most.

In this customized environment, we have a total of X = 10
distinct target types, each designated with a different color
in the rendered scenes. Each target is represented using 3
numbers («, x, y), where « is the visibility of the object,
and a = 1 if the object is visible, and @ = 0 otherwise,
(x,y) is the Cartesian coordinate of the target.

In each episode, we first set the number of tasks to M = 3

https://github.com/deepmind/pycolab
https://github.com/deepmind/pycolab

CompILE: Compositional Imitation Learning and Execution

or M = 5, and then sample the number of objects N in
range [M, 6] uniformly, and then pick M out of N objects
uniformly without replacement as the targets to create a task
list.

The agent receives an observation that is composed
of 2 parts, the first part is the concatenation of
all object tuples, arranged in a vector like this:
(a1, 21,1, 02, T2, Y2, ..., Ok, TK, YK), Where (g, i, y;)
describes the ¢th object type. If the ith object type is not
selected (not among the N objects being selected) in this
episode, then all of «;, x; and y; are set to 0. The second
part is the position of the reacher arm represented as two
angles (61, 02), where 6, is the angle at the shoulder joint,
and 05 is the angle at the elbow joint.

The coordinate of the finger tip of the arm is computed as
(lcosO1+1cos(0y +05),1sin 0y +Isin(fy +62)). A target
is considered reached if this coordinate is within the sphere
for the given target.

Once a target is reached, the « value for that target is set to
0 (but the x and y values remain in the observation), and
in the next time step the environment advances to the next
task, with a new target being selected as the goal.

The demonstration trajectories are generated by a hand-
designed controller. The controller has access to the coor-
dinates of the next target. It first computes the coordinates
of the finger tip, and then computes (1) the distance of the
finger tip to the center (where the shoulder joint is); and (2)
the angle of the finger tip. If the distance is smaller than the
distance of the target to the center, the elbow motor applies
an angular velocity to open the arm (so that the finger tip can
reach further), and if the distance is larger then the elbow
closes. On the other hand if the direction of the arm does
not align with the target, the shoulder motor then applies an
angular velocity to rotate the arm toward the target.

D. Evaluation details
D.1. Metrics

In the imitation learning experiments we report the follow-
ing four evaluation metrics:

e Boundaries: We measure the accuracy of predicted
boundary position. For each boundary latent variable
b;, we check if it exactly matches the ground truth task
boundary, i.e., the point where a task ends and a new
task begins. Let b; denote the ground truth position for
the i-th boundary, then the accuracy is defined as

M—-1

1
M—1 ; [arg Ijlaxqm(bikﬂ) = bil,

where I[x = y] denotes the Iverson bracket that returns

1if z = y and 0 otherwise.

Reconstruction: This measures the average recon-
struction accuracy of the original action sequence,
given the ground truth state sequence, i.e., in a set-
ting similar to teacher forcing:

1
T Z Z]I[argmaxm(aj|sj,zi) =a,] |,

i=1:M \ j=bybi—1 Y
where i’ =i — 1 and b; = argmax;, qg, (b;|z).

Exact match: Here we measure the percentage of
exact matches of full reconstructed action sequence
(i.e., this score is 1 if all actions match for a single
demonstration sequence and 0 otherwise), given the
ground truth state sequence (provided one step at a
time) as input.

Online eval: Here, we first run our recognition model
on a demonstration trajectory to obtain a sequence of
latent codes. Then, we run the sub-task policy corre-
sponding to the first latent code in the environment,
until the termination policy predicts termination, in
which case we move on to the next latent code, run the
respective sub-task policy, and so on. We terminate if
the episode ends (more than 200 steps, wrong object
picked up or all tasks completed) and measure the ob-
tained reward (either O or 1). For the baseline model,
we infer a single latent code and run the respective
policy until the end of the episode (without termina-
tion policy). We report the average reward obtained
(multiplied by a factor of 100).

F1 Score: To evaluate the pointer prediction perfor-
mance for the continuous control task, we use the extra
metric F'1 score and optionally with a tolerance. In
the continuous control setting, it is not easy to get the
boundaries exactly correct as the transitions of the ac-
tions and observations across time steps are mostly
smooth. The F'1 score treats the predicted pointer lo-
cations and the ground truth pointer locations as 2 sets,
and compute the precision as

#predictions that matches the ground truth

)

total #predictions
irrespective of ordering, and recall as

#ground truth that has matches in predictions
total #ground truth '

The F'1 score is computed as

Fl— 2 - precision - recall

precision + recall

CompILE: Compositional Imitation Learning and Execution

A ‘match’ is considered to be successful if a predicted
pointer location exactly equals a ground truth pointer
location. With tolerance 1, a match is considered suc-
cessful if the two are off by at most 1 time steps.

D.2. Segmentation baseline (LSTM surprisal)

To compare segmentation performance, we implemented
a baseline algorithm based on auto-regressive behavioral
cloning, termed LSTM surprisal. Given the state-action se-
quence ((s1,a1), (s2,a2),...,(sr,ar)), this model maxi-
mizes the likelihood in the following form:

T
max Py(ar.r|s1.m) = Hp(ai|a1:i—1, 51:4) (5)

i=1

Then, a natural approach to decide the segment boundary is
based on the probability of each action. An action which is
surprising (i.e., having low conditional probability) to the
model should be an action that marks the beginning or end
of a task segment.

Given the number of chunks M, we find the top M — 1
boundary indicator variables by, bo, ..., by;—1 with mini-
mum conditional likelihood, i.e.,

M—1
arg min E P(ay,

[b1,b2,. b —1],bi<biy1 7

a1:p,—1,51:,) (6)

In the experiments, we use the same CNN (MLP for con-
tinuous control) architecture for encoding the state as in
CompILE. An LSTM with same embedding size as our
ComplLE model is used here to model the dependency on
the history of states and actions. We use the same training
procedure as in the other models, i.e., we only train on 3x
tasks, but report performance both on 5x. Interestingly, this
model finds boundaries more consistently in the generaliza-
tion setting (5 tasks) for the pick up task than in the setting
it was trained on (3 tasks) in the grid world domain. We
hypothesize that this is due to the fact that it has never seen
a 4-th and 5-th object being picked up during training, and
therefore assigns low probability to these events, which cor-
responds to a large “surprise” when these are observed in
the generalization setting.

E. Qualitative results

Here, we provide qualitative analysis of the discovered sub-
task policies in the grid world environment. We run each
sub-task policy for the pick up task on a random environ-
ment instance until termination, see Figures 3—4. The red
cross marks the picked up object. We mark the policy in
bold that the inference model of CompILE has inferred from
a demonstration sequence for the task pick up heart.

In Figure 5, we investigate termination locations for the
policies in the same trained CompILE model. We find that
the model learns location-specific latent codes, which are
effective at describing agent behavior from demonstrations.
Nonetheless, the model can disambiguate close-by objects
as can be seen in Figure 3.

References

Ba,J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In Interna-
tional Conference on Machine Learning, 2018.

Higgins, 1., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. Beta-
VAE: Learning basic visual concepts with a constrained
variational framework. In International Conference on
Learning Representations, 2017.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with Gumbel-softmax. In International Conference
on Learning Representations, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

CompILE: Compositional Imitation Learning and Execution

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5

Figure 3: Example of sub-task policies discovered by the agent.

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5

Figure 4: Example of sub-task policies discovered by the agent.

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5
Policy 6 Policy 7 Policy 8 Policy 9 Policy 10

Figure 5: Heatmap of termination locations for each policy (for 1000 random environment instances).

