
AUCµ: A Performance Metric for Multi-Class Machine Learning Models

Appendix
A. Proofs for AUCµ

A.1. PROPERTIES OF AUCµ

Here we show that AUCµ satisfies the properties we listed
in Section 1.

Theorem A1. AUCµ has the following properties:

Property 1. If a model gives the correct label the high-
est probability on every example, then AUCµ = 1

Property 2. Random guessing on examples yields
AUCµ = 0.5

Property 3. AUCµ is insensitive to class skew

Proof. Property 1. LetM be a multi-class classification
model for a task with K classes and let n be the number of
examples in the test set. Property 1 assumes that for all n
instancesM assigns the correct label the highest probabil-
ity. The formula for AUCµ is an average over separability
functions between pairs of classes. Consider the separabil-
ity function S(i, j) between classes i < j ≤ K. Let p̂(a)

and p̂(b) be predictions for instances from classes i and j
respectively. Further, let vi,j be the normal vector to the de-
cision hyperplane between classes i and j derived from the
argmax partition matrix Amax. As p̂(a) and p̂(b) are labeled
correctly we have Ĩ ◦O(y(a),y(b), p̂(a), p̂(b),vi,j) = 1 as
the instances are oriented correctly. We have ni and nj in-
stances from classes i and j respectively. Then S(i, j) = 1
for any pair of classes i and j.

S(i, j) =
1

ninj

∑
a∈Di,b∈Dj

Ĩ◦O(y(a),y(b), p̂(a), p̂(b),vi,j).

There are K(K − 1)/2 choices of unordered pairs of i and
j and thus K(K − 1)/2 choices of S(i, j), each of value 1.

AUCµ =
2

K(K − 1)

∑
i<j

S(i, j)

AUCµ =
2

K(K − 1)

∑
i<j

1 =
2

K(K − 1)

K(K − 1)

2
= 1

Therefore, if a model gives the correct label the highest
probability on every example, then AUCµ = 1.

Property 2: Random guessing yields AUCµ = 0.5. If a
model randomly guesses the prediction for all points, then
any two predictions are equally likely to be oriented cor-
rectly or incorrectly via Equation 3. Then, for any separa-
bility function S(i, j) = 0.5 from the modified indicator

function, Ĩ . As AUCµ is an unweighted average of sepa-
rabilities functions over all choices of i and j, the average
of all separability functions is 0.5. Therefore, if a model
randomly guesses for all points, then AUCµ = 0.5.

Property 3: AUCµ is insensitive to class skew. AUCµ is
an unweighted average over separability functions. Each
separability function, S(i, j), can be computed using the
standard two class AUC algorithm by first ranking all in-
stances in classes i and j by using the two-class decision
boundary derived from the partition matrix. As AUC is in-
sensitive to class skew, so too are the individual separability
functions. The calculation of AUCµ is an unweighted aver-
age of each S(i, j), and thus changes in class skew will not
change the value of AUCµ . Therefore, AUCµ is insensitive
to class skew.

A.2. PARTITION MATRIX

Theorem A2. Let M be a model trained to perform a
binary classification task. Let A be a 2× 2 partition matrix
with diagonal zeros and all other entries positive. Then A
has no effect on the ranking of predictions fromM

Proof. A typical binary classification model will output a
single value, e.g. ŷ(a) = u, corresponding to the proba-
bility of an instance belonging to one of the two classes
(typically the positive class). Here we will use an equiva-
lent model output in its categorical distribution form, e.g.
p̂(a) = [u, 1− u]. Let x(a) and x(b) be two instances with
the true labels of these two instances y(a) = [1, 0] and
y(b) = [0, 1]. Let p̂(a) = [u, 1 − u] and p̂(b) = [v, 1 − v]
be the predicted categorical distributions for x(a) and x(b)

respectively. Recall that in the standard calculation of AUC,
if u > v then x(a) and x(b) are ranked correctly. We define
our partition matrix, A, with α, β > 0, following the rules
presented in Section 3.3.

A =

[
0 α
β 0

]
Without loss of generality, let the first class be our positive
class and the second class be our negative class. We calcu-
late our orthogonal vector to our hyperplane vi,j = [−β, α].
We can now plug in our values into Equation 3 to inspect
how our orientation function is influenced by our choice of
A. We calculate (y(a)−y(b)) = [1,−1] and (p̂(a)−p̂(b)) =
[u− v, v−u]. Further, vi,j · (y(a)−y(b)) = −(β+α) and
vi,j · (p̂(a)− p̂(b)) = (β +α)(v− u). Our final expression
yields (β + α)2(u − v). This expression is only positive
when u > v. Thus, the orientation is solely determined by
u and v, and that if u > v our orientation is correct. This
is the same result as the standard AUC calculation and we
therefore conclude that binary classification is a special case



AUCµ: A Performance Metric for Multi-Class Machine Learning Models

for the calculation of AUC that does not require a partition
matrix.

Corollary A2.1. When K = 2, AUCµ simplifies to the
Mann-Whitney U-statistic formulation of AUC.

Proof. Let x(a) and x(b) be two instances with the true la-
bels of these two instances y(a) = [1, 0] and y(b) = [0, 1].
Let p̂(a) = [u, 1− u] and p̂(b) = [v, 1− v] be the predicted
categorical distributions for x(a) and x(b) respectively. As
shown in the proof of Theorem 5.1, p̂(a) and p̂(b) will be
ranked correctly only if u > v. This is exactly the test per-
formed in Equation 1, the Mann-Whitney U-statistic version
of AUC. Therefore, when K = 2, AUCµ is equivalent to
AUC.

Theorem A3. LetM be a model trained for a multi-class
classification task with K > 2 classes. Then the ranking
of predictions fromM is not independent of the choice of
K ×K partition matrix, hence calculating AUCµ requires
a partition matrix.

Proof. Assume that the AUCµ for M is independent of
the choice of partition matrix, A, for the task. Then for
any two points, p̂(a) and p̂(b) , the ranking of these points
is not changed by A. We show that there is at least one
counterexample to our assumption for any K > 2. We first
show this for K = 3 and then describe how this can be
easily generalized to choices of K > 3.

Let K = 3, p̂(a) = [.5, .45, .05], p̂(b) = [.35, .4, .25], and
y(a) = [1, 0, 0], y(b) = [0, 1, 0]. Let A and A′ be two parti-
tion matrices. Let A1,· = [0, 1, 1] and A2,· = [1, 0, 1]. We
find vi,j = [−1, 1, 0] and O(y(a),y(b), p̂(a), p̂(b),vi,j) =
0.2 showing that our points are oriented correctly. Now
let A′1,· = [0, 4, 1] and A′2,· = [1, 0, 1]. We find
v′i,j = [−1, 4, 0] and O(y(a),y(b), p̂(a), p̂(b),v′i,j) =
−0.25 showing that our points are oriented incorrectly.
Therefore, for K = 3 there exists at least one pair of points
whose ranking is dependent on the choice of partition ma-
trix. This can be readily generalized to K > 3 by padding
0s to the end of the vectors p̂(a), p̂(b), y(a), and y(b).

Theorem A4. The expectation over all partition matrices,
uniformly distributed over [0, 1]K×K , for a task with K
classes is equivalent to the argmax partition matrix, Amax,
where (Amax)i,i = 0 ∀i and (Amax)i,j = 1 ∀i 6= j.

Proof. LetA be the set of allK×K partition matrices with
diagonal elements zero and off-diagonal elements positive in
the space [0, 1]K×K . Now let A be a partition matrix drawn
randomly according to a uniform distribution, U , from A.
Consider two off diagonal elements inA,Ai,j andAk,l with
(i, j) 6= (k, l). We find that EU Ai,j = EU Ak,l as there is
exactly one other A′ ∈ A where A′i,j = Ak,l, A′k,l = Ai,j ,

and all other elements equal. Therefore, if the expectation of
any two random off-diagonal elements in A are equal, then
the expectations of all off-diagonal elements in A is equal.
Let EU Ai,j = σ; then A is equal to σAmax, where Amax is
the argmax partition matrix with uniform misclassification
costs. As noted in (O’Brien et al., 2008), Amax, induces the
same partitioning asA. Because we choseA at random from
A, we find that EU A is equivalent to the argmax partition
matrix with uniform misclassification costs.

A.3. TIME COMPLEXITY

Time Complexity of AUCµ Using Argmax Partition Ma-
trix Amax

AUCµ =
2

K(K − 1)

∑
i<j

S(i, j)

Here we compute the time complexity of AUCµ when the
argmax partition matrix, Amax is used. Let K be the num-
ber of classes and n = n1 + . . . nK be the total number of
instances, and the number of instances for each class respec-
tively. Computing AUCµ requires K(K − 1)/2 repetitions
of computing a separability function between an unordered
pair of classes. We breakup the time complexity calculation
into two parts; we first calculate the time complexity of a
single separability function S(i, j), and then we use this to
calculate the time complexity of AUCµ.

We calculate the time complexity of S(i, j) by first not-
ing its relationship with AUC. S(i, j) shares an equiva-
lence to AUC as it is the probability that two instances
are ranked correctly by first using the two class decision
boundary, vi,j · p̂ = 0, to map the categorical predictions
to scalar values that can be ranked. As such, the time to
compute S(i, j) is the time to perform the mapping and
then the time to calculate the AUC. There are ni + nj pre-
dictions for each S(i, j) computation, and mapping these
categorical distributions to scalar values involves a dot prod-
uct between two vectors of dimension K. This procedure
would normally be of complexity O(K(ni + nj)), how-
ever we next show that when using the argmax matrix this
can be performed in time O(ni + nj). All elements in
Amax are 1 except the diagonal entries which are 0. Thus
all elements of vi,j = (Amax)i,· − (Amax)j,· are 0 except
(vi,j)i = −1 and (vi,j)j = 1. Thus we may calculate
vi,j · p̂ = p̂j − p̂i, which is a constant time calculation for
each of the ni + nj instances. We next compute S(i, j) by
calculating the AUC of these ranked instances, and using
the AUC time complexity result from (Fawcett, 2006). The
time complexity of computing AUC with ni + nj instances
is O((ni + nj) log(ni + nj)). Thus, time complexity to
calculate S(i, j) is O((ni + nj) log(ni + nj)) as the time
complexity of the ranking is dominated by the complexity
of calculating the AUC of the ranked points.



AUCµ: A Performance Metric for Multi-Class Machine Learning Models

The time complexity for AUCµ can be determined by sum-
ming the time complexities for each of the K(K − 1)/2
choices of i and j.

O(
∑
i<j

(ni + nj) log(ni + nj))

We note here that log(ni +nj) < log n as ni +nj < n and
we use this relationship so that we may pull this term out of
the sum.

< O(log n
∑
i<j

ni + nj)

Next we note that for a given ni it appears in the sum K − 1
times as it shows up each time it class i is paired with one
of the other K − 1 classes. We therefore exchange the two
sums

= O(log n

K∑
i=1

(K − 1)ni)

= O(log n(K − 1)n)

Therefore, the time complexity of AUCµ is O(Kn log n).

Time Complexity of AUCµ With Any Partition Matrix

For the general case of computing AUCµ with any partition
matrix,A, the time complexity isO(Kn(K+log n)). When
computing the time complexity of AUCµ using Amax, we
noted that Amax had the special property that dot products
could be performed in constant time. This characteristic is
not true for all choices of A and thus in general the ranking
of points has complexity O(K(ni + nj)). Therefore, com-
puting S(i, j) has complexity O((ni + nj)(K + log(ni +
nj))). Finding the total time complexity of AUCµ can be
done in the same manner as the computation above, how-
ever this time we substitute K+ log n for K+ log(ni+nj)
and pull the former term out of the sum. Therefore, the
time complexity of AUCµ for a general choice of A is
O(Kn(K + log n)).

Time Complexity of M

The measure, M , proposed by Hand & Till (2001) is
claimed to have a time complexity of O(K2n log n) by
Fawcett (2006). An additional contribution of our work is
to show that the time complexity of this measure is in fact
O(Kn log n). The calculation follows almost identically
our approach for computing the complexity of AUCµ using
the argmax partition matrix. Let K be the number of classes
and n = n1 + . . . nK be the total number of instances, and
the number of instances for each class respectively.

M =
∑
i<j

Â(i, j)

Here, Â(i, j) is computed by averaging two AUC calcula-
tions each with ni + nj instances. Therefore, the time com-
plexity of computing Â(i, j) is O((ni + nj) log(ni + nj)).
The expressions of M and AUCµ differ only in their separa-
bility functions Â(i, j) and S(i, j). As these functions have
the same time complexity, the overall algorithms do as well.
Therefore, the time complexity of M is O(Kn log n).

B. Additional Details

Figure 3 uses the following partition matrix for the dashed-
line partitioning.

 0 4.6 0.4
0.3 0 8.26
2 4.13 0




