Appendix to Fair k-Center Clustering for Data Summarization

Appendix
A. Proofs

Proof of Lemma 1:

It is straightforward to see that Algorithm 1 can be implemented in time O((k + |C{|)|S|). We only need to show that it is a
2-approximation algorithm for (3).

If kK = 0, there is nothing to show, so assume that & > 1. Let C = {cy,...,c;} be the output of Algorithm 1 and
C* = {c}, ..., c}} be an optimal solution to (3) with objective value r*. Let s € S be arbitrary. We need to show that
d(s,é) < 2r* for some ¢ € C UCY. If s € C'U Oy, there is nothing to show. So assume s ¢ C' U Cj. If

Cy N argmin d(s,c) # 0,
ceC*UCy

there exists ¢ € CJ with d(s, ¢) < r* and we are done. Otherwise, let ¢f € argmin e c-ycy d(s, ¢) and hence d(s, cf) < r*.

We distinguish two cases:

e d¢; € Cwith¢f € argmin - yey d(cj, 0):

We have d(c;, cf) < r* and hence d(s, ¢;) < d(s,cf) +d(c},c;) < 2r*.

o f¢; € Cwith ¢} € argmingec-yey d(cj, ¢):

There must be ¢ # ¢’ € C' U C{), where not both ¢’ and ¢’ can be in C, and ¢ € C* U C{, such that

¢ € argmin d(c’,c) N argmin d(c¢”, c).
ceC*UC) ceC*UC

Since d(¢/, ¢) < r* and (¢, ¢*) < r*, it follows that d(¢/, ¢") < d(c/,é) + d(é, ") < 2r*.

Without loss of generality, assume that in the execution of Algorithm 1, ¢’ has been added to the set of centers after
¢’ has been added. In particular, we have ¢/ € C and ¢’ = ¢; for some [ € {1, ..., k}. Due to the greedy choice in
Line 5 of the algorithm and since s has not been chosen by the algorithm, we have

2r* > d(d, ") > min d(c’,c) > min d(s,c).

ce{c1,eci—1 JUC) ce{ci,ci—1 JUC)

Proof of Theorem 1:

Again it is easy to see that Algorithm 2 can be implemented in time O((k + |Cy|)|.S|). We need to prove that it is a
5-approximation algorithm, but not a (5 — £)-approximation algorithm for any ¢ > 0:

1. Algorithm 2 is a 5-approximation algorithm:

Let rg,;, be the optimal value of the fair problem (2) and r* be the optimal value of the unfair problem (3). Clearly,

r* < rf.. Let Cf, = {cgl)*, ey c,(cls)*7 c§2)*, . ,c,(fs)*} with cgl)*, . ,cgs)* € 51 and 052)*, cees c,(fs)* € S
be an optimal solution to the fair problem (2) with cost rf; and C4 = {c{!,...,c{!} be the centers returned by
Algorithm 2. It is clear that Algorithm 2 returns kg, many elements from S; and kg, many elements from S and
hence C4 = {cgl)A7 ... ,c,gls)lA,cgg)A, R c,fs)f} with cgl)A, e c,(cls)lA € S and 052)‘4, ... ,c,ii)zA € S>. We need to
show that

min d(s,c) < 5rf; seS.
ceCALC, ( ) )— fair»
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Let C4 = {eh, ... ,6;?} be the output of Algorithm 1 when called in Line 3 of Algorithm 2. Since Algorithm 1 is a
2-approximation algorithm for the unfair problem (3) according to Lemma 1, we have

min d(s,c) <2r* <2rg,., s€S. (6)
ceC4AUCy

IfN Algorithm 2 returns C# in Line 6, that is C4 = 5‘4, we are done. Otherwise assume, as in the algorithm, that
|C’AﬂS’ 1| > ks, . Let éf‘ € 51 be a center of cluster L; that we replace with y € L;N.S5 and let ¢ be an arbitrary element
in L;. Because of (6), we have d(¢2,y) < 2rf, and d(&, ) < 2r%,., and hence d(y, §) < d(y,é?)+d(E1,9) < 4r,
due to the triangle inequality. Consequently, after the while-loop in Line 9, every s € S is in distance of 4rg;, or
smaller to the center of its cluster. In particular, we have

min d(s,c) <4drgy, SES,
ceCAUC)

and if Algorithm 2 returns C* in Line 13, we are done. Otherwise, we still have |5A N Si| > kg, after exchanging
centers in the while-loop in Line 9. Let S = Uie[k]:a4€s, Li» that is the union of clusters with a center ét € Sy. Since
there is no more center in S; that we can exchange for an element in Sy, we have S” C S;. Let S” = Usel: FAes, L;
be the union of clusters with a center E{‘ € Spand S, =L U... U LlC | be the union of clusters with a center in Cy.

Then we have S = 5" U S” U S¢,. We have CAN Sy CCAand

min  d(s,c) < _min d(s,c) < 4riy, s€S8"USq,. (7
ceCAUCy c€(CANS2)UCy

Hence we only need to show that min.ccayg, d(s,¢) < 5, for every s € S’. We split S’ into two subsets
S" = S/ US;, where

S = {s € S': argmin d(s,c) N (CoU Sy) # 0}
ceCr UCyh

fair

and S; = 5"\ S). Forevery s € S/, there is ¢ € (Cy U S3) C (5" U S¢,) with d(s, ¢) < rf,,. and it follows from (7)
and the triangle inequality that

min  d(s,¢) <  min d(s,c) < briy, SE€S,. 8)
ceCAUCy ce(CANS2)UCy

It remains to show that min.ccayc, d(s,c) < 5rf;, for every s € S;. For every s € S, there exists

c € {c(ll)*,.. (1)*} with d(s,c) < rf;,. We can write S; = U “t{s € S) : d(s, ;1)*) < rf.} (some of the
sets in this union mlght be empty, but that does not matter). Note that forevery j € {1,..., kg, } we have
d(s,s') <2rf,, s8¢ {5 €S, d(s, (1)*) < rfm}7 9)

due to the triangle inequality. It is

ks,
S'=5uS, =S5 U U {S €Sy d(s,cﬁl)*) < T;;,-r}
j=1
and when, in Line 15 of Algorithm 2, we run Algorithm 1 on S’ U C{ with k¥ = kg, and initial centers C{, =

CoU (5‘4 N S3), one of the following three cases has to happen (we denote the centers returned by Algorithm 1 by
AA_ {0(1)A 1)A})
17 G,

e Forevery j € {1,...,ks, } there exists j' € {1,..., ks, } such that C;})A e{se S, d(s, c&l)*) < g} In this
case it immediately follows from (9) that

min  d(s,c) < min d(s,c) < 2rfy,, S€ES;.
c€CAUC ceCA
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Figure 7. An example showing that Algorithm 2 is not a (5 — £)-approximation algorithm for any € > 0.

e There exists j' € {1,...,ks, } such that c(, € S/. When Algorithm 1 picks c( )4 , any other element in S’
cannot be at a larger minimum distance from a center in (CA NS3)UCyora prev1ously chosen center in C4
than ¢\, It follows from (8) that

min d(s,c) < 5rf ses’.
ceCALC, ( ) fair»

e Thereexistj € {1,..., ks, }and 5/ # j” € {1,..., ks, } such that c(,l) c(,, e{se S d(s A < Thict

5y
Assume that Algorithm 1 picks c(,) before c( )4 When Algorithm 1 picks c(,,) , any other element in S’ cannot

be at a larger minimum distance from a center in (C' CAN S2) U Cy or a previously chosen center in C' C4 than c( )4,

Because of d(c; ()4 c(,l,)A) < 2rg,. according to (9), it follows that

min d(s,c) < 2rf ses’.
ceCALC, ( ) fair»

In all cases we have
min d s, c) < 5T*~ s € S/
ceCAUC, ( ’ ) = fair» b»

which completes the proof of the claim that Algorithm 2 is a 5-approximation algorithm.
. Algorithm 2 is not a (5 — ¢)-approximation algorithm for any £ > 0:

Consider the example given by the weighted graph shown in Figure 7, where 0 < § < :=. We have S = S;USs
with S1 = {f1, fa, 3, fa, 5} and Sa = {m1, ma, m3, my, ms, me}. All distances are shortest path-distances. Let
ks, = 1, ks, = 3, and Cy = (). We assume that Algorithm 1 in Line 3 of Algorithm 2 picks f5 as first center.
It then chooses f> as second center, f3 as third center and f; as fourth center. Hence, CA = {f5, f2, f3, f1} and
|CA N S| > kg,. The clusters corresponding to C* are {f5}, {f2, f1}, {f3. ms, ma, ms, mg} and {f1, m1, ma}.
Assume we replace f3 with my4 and f; with mo in Line 10 of Algorithm 2. Then it is still |5'A NSi| > kg,, and
in Line 15 of Algorithm 2 we run Algorithm 1 on {f2, f4, f5} U {ma, m4} with & = 1 and initially given centers
Cl) = {my, my}. Algorithm 1 returns C4 = { f5}. Finally, assume that m; is chosen as arbitrary third center from S,
in Line 16 of Algorithm 2. So the centers returned by Algorithm 2 are C4 = {f5,m2,m4, ms5} with a cost of 5 — g
(incurred for f4). However, the optimal solution C{;. = { f5, m1, m3, me} has cost only 1 + ¢. Choosing ¢ sufficiently
small shows that Algorithm 2 is not a (5 — ¢)-approximation algorithm for any € > 0.
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Proof of Lemma 2:

We want to show three things:

1. Algorithm 3 is well-defined:

If the condition of the while-loop in Line 7 is true, there exists a shortest path P = S,,,S,, - - - Sy, With Sy, = S,
Sy, = S5 that connects S, to S, in G. Since P is a shortest path, all S, are distinct. By the definition of G, for
every | =0,...,w — 1 there exists L; with center 5;4 €S, andy € Ly NS, Hence, the for-loop in Line 8 is well
defined.

I+1°

2. Algorithm 3 terminates:

Let, at the beginning of the execution of Algorithm 3 in Line 3, H; = {S; € {S1,...,Sm} : I::Sj = ks, },
Hy ={S; € {S1,...,5m}: l;;sj > ks, }and H3 = {S; € {S1,..., 5.} : l%sj < kg, }. For S; € Hj, l%sj never
changes during the execution of the algorithm. For S; € Ho, 1235]. never increases during the execution of the algorithm
and decreases at most until it equals kg;. For S; € Hs, INij never decreases during the execution of the algorithm and

increases at most until it equals ks, . In every iteration of the while-loop, there is S; € H3 for which I;:Sj increases by
one. It follows that the number of iterations of the while-loop is upper-bounded by k.

3. Algorithm 3 exchanges centers in such a way that the set G that it returns satisfies G C {S1, ..., Sy, } and properties (4)
and (5):
Note that throughout the execution of Algorithm 3 we have ks, = > 1 {¢* € S;} for the current centers &', . . ., ¢t

If the condition of the if-statement in Line 13 is true, then G = () and (4) and (5) are satisfied.

Assume that the condition of the if-statement in Line 13 is not true. Clearly, the set G returned by Algorithm 3
satisfies (5). Since the condition of the if-statement in Line 13 is not true, there exist S; with l?:sj > kg, and S; with
I;Si < kg,. We have S; € G, but since the condition of the while-loop in Line 7 is not true, we cannot have S; € G.
This shows that G C {51, ..., S, }. We need to show that (4) holds. Let Ly, be a cluster with center é;;‘ € Sy for some
Sy € G and assume it contained an element o € Sy with Sy ¢ G. But then we had a path from Sy to Sy in G. If
Sy € G, this is an immediate contradiction to Sy ¢ G. If Sy ¢ G’, since Sy € G, there exists S, € G’ such that there
is a path from .S, to Sy. But then there is also a path from .S, to Sy, which is a contradiction to Sy ¢ G.

Proof of Theorem 2:

For showing that Algorithm 4 is a (3 - 2 ~! — 1)-approximation algorithm let 7, be the optimal value of problem (2) and
Cf;, be an optimal solution with cost rf;.. Let C 4 be the centers returned by Algorithm 4. A simple proof by induction

fair
over m shows that C4 actually comprises ks, many elements from every group S;. We need to show that
in d < (3-2m71 — 1) €s. 10
ceICn’AHL}CD (570) = ( )rfam s ( )

Let T be the total number of calls of Algorithm 4, that is we have one initial call and T" — 1 recursive calls. Since with
each recursive call the number of groups is decreased by at least one, we have I’ < m. For1 < j < T, let S () be the data
set in the j-th call of Algorithm 4. We additionally set ST+t = (). We have S() = S and SU) D SU+D) 1 < j < T.
For 1 < j < T, let GY) be the set of groups in G returned by Algorithm 3 in Line 8 in the j-th call of Algorithm 4. If
in the T'-th call of Algorithm 4 the algorithm terminates from Line 10 (note that in this case we must have T' < m), we
also let GT) = () be the set of groups in G returned by Algorithm 3 in the T-th call. Otherwise we leave G(T) undefined.
Setting GO = {S1,...,5,,}, we have GU) D GU+D) for all j such that GUHY) is defined. For 1 < j < T, let C;j be
the set of centers returned by Algorithm 3 in Line 8 in the j-th call of Algorithm 4 that belong to a group not in G) (in
Algorithm 4, the set of these centers is denoted by C’). We analogously define Cr if in the T-th call of Algorithm 4 the
algorithm terminates from Line 10. Note that the centers in C; are comprised in the final output C* of Algorithm 4, that is
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C; C CAforl <j<Torl<j<T.Asalways, Cy denotes the set of centers that are given initially (for the initial call
of Algorithm 4). Note that in the j-th call of Algorithm 4 the set of initially given centers is Cy U U{:—ll Ci.

We first prove by induction that for all 7 > 1 such that G () is defined, thatis 1 < j<Torl<j<T,wehave

J
min  d(s,c) < (2 + 2 — 2k, se (s(j) \s<ﬂ'+1>) ulculyal). 11
ceCoUU]_, C =1

Base case j = 1: In the first call of Algorithm 4, Algorithm 1, when called in Line 3 of Algorithm 4, returns an approximate
solution to the unfair problem (3). Let r* < rf, be the optimal cost of (3). Since Algorithm 1 is a 2-approximation
algorithm for (3) according to Lemma 1, after Line 3 of Algorithm 4 we have

min d(s,c) <2r* <2rf;, se€S.
ceCAUCy

Let 6;4 € C* be a center and s1,82 € L; be two points in its cluster. It follows from the triangle inequality that
d(s1,s2) < d(s1,&1) + d(é, s2) < 4rf,,.. Hence, after running Algorithm 3 in Line 8 of Algorithm 4 and exchanging
some of the centers in C#, we have d(s, c(s)) < 4rf; for every s € S, where c(s) denotes the center of its cluster. In
particular,

. 141 1 _
Cealgcl d(s,c) < (2777 4+ 27 = 2)rg;, = 4ry,

for all s € S for which its center c(s) is in Cy or in a group not in G(Y), that is for s € (S \ S@)) U (Co U CY).

Inductive step j — j + 1: Recall property (4) of a set G returned by Algorithm 3. Consequently, S (7+1) only comprises
items in a group in G) and, additionally, the given centers Cj U U, C..

We split SU*1) into two subsets SUTD = S,(le)USlEjH), where

S((1j+1) ={secgUth. argmin d(s,c) N | CoU U W #0
ceCp;UCo We{S1,....8m \GW)

and 57T = §G+D\ SUTV Forevery s € SY 1Y there exists

ceCyU U WQ(S\S(j+1))U<COUL]JCl>

We{S1,....,8m }\G@) =1

with d(s,c) < rf;. It follows from the inductive hypothesis that there exists ¢ € Cp U U{Zl Cy with d(c, ') <
(271 427 — 2)rf, and consequently

d(s,c') <d(s,c) +d(c,c) < iy + (T + 27 = 2)rf = (27T + 27 — D)rgy,.
Hence,

min  d(s,c) < (27T 427 — )y, s € SUTD. (12)
ceCoUlJi_; O
For every s € S,EjH) there exists ¢ € Cf N Uyyegon W with d(s, ¢) < 1y Let Oy N U egin W ={¢1, ..., ¢} with
k= Zwegu) kw , where kyy is the number of requested centers from group W. We can write

k
SUT = U {s € SUY (s, &) < Tf*air}a
=1
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where some of the sets in this union might be empty, but that does not matter. Note that foreveryl =1, ..., k we have

d(s,s") <2rf,, s,8¢€ {s € Sl()jH) cd(s,é) < r}‘air} (13)

due to the triangle inequality. It is

k
SUD = sPu ST = sG U {s € ST d(s, ) < i}
=1

and when, in Line 3 of Algorithm 4, we run Algorithm 1 on S (+1) with k = k and initial centers Co U U{:1 (', one of the
following three cases has to happen (we denote the centers returned by Algorithm 1 in this (j + 1)-th call of Algorithm 4 by

FA = {ff‘,. ,f]f:‘} and assume that for 1 < [ <1’ < k Algorithm 1 has chosen flA before flA)
e Foreveryl € {1,...,k} there exists ' € {1,...,k} such that f; € {s € S,SjH) 2 d(s, ¢f) < rfy b In this case it

immediately follows that
min d(s,c) < 2rf;,, SE Séj+1),

ceFA

and using (12) we obtain
min _ d(s,¢) < (2420 — 1)y, se SUTDY,
ceCoUlJ/_, CIUFA

e There exists I’ € {1,...,k} such that f7! € SY*Y When Algorithm 1 picks fiA, any other element in SGU+1) cannot
FA
..., f{i—1} than

be at a larger minimum distance from a center in Cy U U{Zl C} or an already chosen center in { fl‘,“7

}f‘. It follows from (12) that
min d(s,c) < (2 + 27— Drfy,, s € SV,

c€CUUI_, CLUFA

e There exist/ € {1,...,k}and ', € {1,...,k} with I’ < I” such that f;}, fi} € {s € SéjH) 2d(s, &) < iyt

When Algorithm 1 picks f[,“,, any other element in SUT1) cannot be at a larger minimum distance from a center in
, f{4_,} than f{}. Because of d(f;', fi}) < 2rf,, according to

Co UUJ_, C; or an already chosen center in { f,

(13), it follows that
min _ d(s,¢) < 2rf < (20 4270 — g, s e SUTD.
cECoUUf=1 ClUFA

In any case, we have
s € SUth,

min ~ d(S,C) < (2j+1 + 2] - 1)T;kaira
ceCoUlU]_, CLUFA

Similarly to the base case, it follows from the triangle inequality that after running Algorithm 3 in Line 8 of Algorithm 4 and

exchanging some of the centers in F4, we have
d(s, c(s)) < 227+ +27 = Vi,

(2j+2 + 2j+1 - 2)T%kair

forevery s € S (U+1), where ¢(s) denotes the center of its cluster. In particular, we have

Jj+1
min  d(s,¢) < (P24 2T i se (S(j“) \S<J’+2>> U (00 ulJ ol> :
=1

CEC[)UU{I; (&f}

and this completes the proof of (11).
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Figure 8. An example showing that Algorithm 4 is not a (8 — ¢)-approximation algorithm for any £ > 0.

If in the T'-th call of Algorithm 4 the algorithm terminates from Line 10, it follows from (11) that

min  d(s,c) < (2T 2T —2)f, sES. (15)
CECOUU,LTZI C;

In this case, since T' < m, we have
2T+l L oT _ g <om ygm=1 9 <comom=1 _q,

and (15) implies (10). If in the 7'-th call of Algorithm 4 the algorithm does not terminate from Line 10, it must terminate
from Line 5. It follows from (11) that

T-1
min d(s,e) < (2T 42771 —2)rp,, s€ (S\S(T)> U (CO U U Cl> . (16)
1=1

ceCoUU L Gy
In the same way as we have shown (14) in the inductive step in the proof of (11), we can show that

min ~_ d(s,e) < QT +2T 7 — 1), < @™ 2 =)k, se ST, 17)
ceCoulJ Lt CLUHA

where H4 is the set of centers returned by Algorithm 1 in the T'-th call of Algorithm 4. Since UzT:_11 cu HA is contained
in the output C* of Algorithm 4, (17) together with (16) implies (10).

Since running Algorithm 4 involves at most m (recursive) calls of the algorithm and the running time of each of these
calls is dominated by the running times of Algorithm 1 and Algorithm 3, it follows that the running time of Algorithm 4 is
O((|Co|m + km?)|S| + km*). O

Proof of Lemma 3:

Consider the example given by the weighted graph shown in Figure 8, where 0 < § < %. We have S = S;US,US3 with
Sy = {m1, ma, m3, mq, ms,me}, S = {f1, fo, f3, f} and S5 = {z1, 22 }. All distances are shortest-path-distances. Let
ks, =4, ks, =1, ks, = 1 and Cy = (). We assume that Algorithm 1 in Line 3 of Algorithm 4 picks f; as first center. It
then chooses f4 as second center, z; as third center, f3 as fourth center, fo as fifth center and z5 as sixth center. Hence,
CA = {f1, f1, 21, f3, f2, 22} and the corresponding clusters are {f1,m1, ma, ms}, {f1,m3,ma, mg}, {21}, {f3}, {f2}
and {z5}. When running Algorithm 3 in Line 8 of Algorithm 4, it replaces f; with one of m;y, ms or ms and it replaces fy
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with one of m3, m4 or mg. Assume that it replaces f; with mo and f; with m4. Algorithm 3 then returns G = {S3, S5}
and when recursively calling Algorithm 4 in Line 12, we have S’ = {fa, f3, 21, 22} and C’ = {mq, m4}. In the recursive
call, the given centers are C’ and Algorithm 1 chooses f3 and fo. The corresponding clusters are { f5, z1, 22}, { fa}, {m2}
and {m,}. When running Algorithm 3 with clusters { f3, 21, 22} and { f2}, it replaces f3 with either z; or zo and returns
G = (0, that is afterwards we are done. Assume Algorithm 3 replaces f3 with 2. Then the centers returned by Algorithm 4
are zs, fa, Mg, my and two arbitrary elements from .S, which we assume to be m5 and mg. These centers have a cost of 8
(incurred for z;). However, an optimal solution such as C;, = {m1, ma, ms3, mu, f3, 21 } has cost only 1 + 3—2‘5. Choosing &
sufficiently small shows that Algorithm 4 is not a (8 — ¢)-approximation algorithm for any € > 0. O

B. Further Experiments

In Figure 9 we show the costs of the approximate solutions produced by our algorithm (Alg. 4) and the algorithm by Chen
et al. (2016) (M.C.) in the run-time experiment shown in the right part of Figure 3. In Figure 10, Figure 11 and Figure 12 we
provide similar experiments as shown in Figure 6, Figure 2 and Figure 5, respectively.

Simulated data, m=5, k=20
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Figure 9. Cost of the output of our algorithm (Alg. 4) in comparison to the algorithm by Chen et al. (M.C.) in the run-time experiment
shown in the right part of Figure 3.
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Figure 10. Similar experiments on the Adult data set as shown in Figure 6, but with different values of ks, . 1st plot: m = 2, ks, = 300,
ks, = 100 (S corresponds to male and S to female). 2nd plot: m = 2, ks, = ks, = 25. 3rd plot: m = 5, ks, = 214, ks, = 8§,
ksy =2, ks, =2, ks; = 24 (S1 ~ White, So ~ Asian-Pac-Islander, S3 ~ Amer-Indian-Eskimo, S; ~ Other, S5 ~ Black). 4th plot:
m=05,ks, =ks, =ks, =ks, =ks; = 10.
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Figure 11. Similar experiment as shown in Figure 2. A data set consisting of 16 images of faces (8 female, 8 male) and six summaries
computed by the unfair Algorithm 1, our algorithm and the algorithm of Celis et al. (2018b). The images are taken from the FEI face
database available on https://fei.edu.br/~cet/facedatabase.html. Note that in this experiment (and the one shown in
Figure 2) we are dealing with a very small number of images solely for the purpose of easy visual digestion.
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Figure 12. Similar experiments on the Adult data set as shown in Figure 5, but with different values of kg,. Top left: m = 2, ks, = 300,
ks, = 100 (S corresponds to male and S> to female). Top right: m = 2, ks, = ks, = 25. Bottom left: m = 5, ks, = 214,
ks, =8, ks, =2, ks, =2, ks; = 24 (S1 ~ White, S2 ~ Asian-Pac-Islander, S3 ~ Amer-Indian-Eskimo, S4 ~ Other, S5 ~ Black).
Bottom right: m =5, ks, = ks, = ks, = ks, = ks; = 10.



