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Abstract

Given the widespread popularity of spectral clus-
tering (SC) for partitioning graph data, we study
a version of constrained SC in which we try
to incorporate the fairness notion proposed by
Chierichetti et al. (2017). According to this no-
tion, a clustering is fair if every demographic
group is approximately proportionally represented
in each cluster. To this end, we develop variants
of both normalized and unnormalized constrained
SC and show that they help find fairer clusterings
on both synthetic and real data. We also provide
arigorous theoretical analysis of our algorithms
on a natural variant of the stochastic block model,
where h groups have strong inter-group connectiv-
ity, but also exhibit a “natural” clustering structure
which is fair. We prove that our algorithms can
recover this fair clustering with high probability.

1. Introduction

Machine learning (ML) has recently seen an explosion of
applications in settings to guide or make choices directly
affecting people. Examples include applications in lending,
marketing, education, and many more. Close on the heels
of the adoption of ML methods in these everyday domains
have been any number of examples of ML methods display-
ing unsavory behavior towards certain demographic groups.
These have spurred the study of fairness of ML algorithms.
Numerous mathematical formulations of fairness have been
proposed for supervised learning settings, each with their
strengths and shortcomings in terms of what they disallow
and how difficult they may be to satisfy (e.g., Dwork et al.,
2012; Hardt et al., 2016; Kleinberg et al., 2017; Zafar et al.,
2017). Somewhat more recently, the community has begun
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to study appropriate notions of fairness for unsupervised
learning settings (e.g., Chierichetti et al., 2017; Celis et al.,
2018a;b; Samadi et al., 2018; Kleindessner et al., 2019).

In particular, the work of Chierichetti et al. (2017) proposes
a notion of fairness for clustering: namely, that each cluster
has proportional representation from different demographic
groups. Their paper provides approximation algorithms that
incorporate this fairness notion for k-center and k-median
clustering. The follow-up work of Schmidt et al. (2018)
extends this to k-means clustering. These papers open up an
important line of work that aims at studying the following
questions for clustering: a) How to incorporate fairness con-
straints into popular clustering objectives and algorithms?
and b) What is the price of fairness? For example, the exper-
imental results of Chierichetti et al. (2017) indicate that fair
clusterings come with a significant increase in the k-center
or k-median objective value. While the above works focus
on clustering data sets in Euclidean / metric spaces, many
clustering problems involve graph data. On such data, spec-
tral clustering (SC; von Luxburg, 2007) is the method of
choice in practice. In this paper, we extend the above line
of work by studying the implications of incorporating the
fairness notion of Chierichetti et al. (2017) into SC.

The contributions of this paper are as follows:

e We show how to incorporate the constraints that in each
cluster, every group should be represented with the same
proportion as in the original data set into the SC framework.
For continuity with prior work (as discussed above; also
see Section 5), we refer to these constraints as fairness
constraints and speak of fair clusterings. However, the
terms proportionality and proportional would be a more
formal description of our goal. Our approach to incorporate
the fairness constraints is analogous to existing versions of
constrained SC that try to incorporate must-link constraints
(see Section 5). In contrast to the work of Chierichetti et al.
(2017), which always yields a fair clustering no matter how
much the objective value increases compared to an unfair
clustering, our approach does not guarantee that we end up
with a fair clustering. Rather, our approach guides SC to
find a good and fair clustering if such a one exists.

e Indeed, we prove that our algorithms find a good and
fair clustering in a natural variant of the famous stochastic
block model that we propose. In our variant, i demographic
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groups have strong inter-group connectivity, but also exhibit
a “natural” clustering structure that is fair. We provide a
rigorous analysis of our algorithms showing that they can
recover this fair clustering with high probability. To the best
of our knowledge, such an analysis has not been done before
for constrained versions of SC.

e We conclude by giving experimental results on real-world
data sets where proportional clustering can be a desirable
goal, comparing the proportionality and objective value
of standard SC to our methods. Our experiments confirm
that our algorithms tend to find fairer clusterings compared
to standard SC. A surprising finding is that in many real
data sets achieving higher proportionality often comes at
minimal cost, namely, that our methods produce clusterings
that are fairer, but have objective values very close to those
of clusterings produced by standard SC. This complements
the results of Chierichetti et al. (2017), where achieving
fairness constraints exactly comes at a significant cost in the
objective value, and indicates that in some scenarios fairness
and objective value need not be at odds with one other.

Notation Forn € N, weuse [n] = {1,...,n}. I, denotes
the n x n-identity matrix and 0,, » ., is the n X m-zero matrix.
1,, denotes a vector of length n with all entries equaling 1.
For a matrix A € R"*"™, we denote the transpose of A by
AT € R™ ", For A € R™*™, Tr(A) denotes the trace of A,
thatis Tr(A) = >°" | Aj;. If we say that a matrix is positive
(semi-)definite, this implies that the matrix is symmetric.

2. Spectral Clustering

To set the ground and introduce terminology, we review
spectral clustering (SC). There are several versions of SC
(von Luxburg, 2007). For ease of presentation, here we
focus on unnormalized SC (Hagen & Kahng, 1992). In
Appendix A, we adapt all findings of this section and the
following Section 3 to normalized SC (Shi & Malik, 2000).

Let G = (V, E) be an undirected graph on V' = [n]. We
assume that each edge between two vertices ¢ and j carries a
positive weight W;; > 0 encoding the strength of similarity
between the verices. If there is no edge between ¢ and j,
we set W;; = 0. We assume that W;; = 0 forall i € [n].
Given k£ € N, unnormalized SC aims to partition V' into
k clusters with minimum value of the RatioCut objective
function as follows (see von Luxburg, 2007, for details): for
aclustering V = C1U. .. UC} we have

k

. Cut Cl, 1% \ Cl)
RatioCut(Cy,...,C, —, (D
| ; &
where
Cut(Cl,V\Cl) = Z Wij.
i€C,jeV\C,

Algorithm 1 Unnormalized SC
Input: weighted adjacency matrix W € R"*"; k € N

Output: a clustering of [n] into k clusters

e compute the Laplacian matrix L = D — W

e compute the k smallest (respecting multiplicities)
eigenvalues of L and the corresponding orthonormal
eigenvectors (written as columns of H € R"*%)

e apply k-means clustering to the rows of H

Let W = (Wi;); jemn be the weighted adjacency matrix
of G and D be the degree matrix, that is a diagonal ma-
trix with the vertex degrees d; = ..,y Wij, @ € [n],
on the diagonal. Let L = D — W denote the unnormal-
ized graph Laplacian matrix. Note that L is positive semi-
definite. A key insight is that if we encode a clustering

V = C1U...UC), by amatrix H € R"** with
Hy = 1/\/|Cl|, 1€ Cy, ?)
' 0, i¢ O’
then RatioCut(C1,...,Cy) = Tr(HTLH). Hence, in

order to minimize the RatioCut function over all possible
clusterings, we could instead solve
Hgimk Tr(HT LH) subject to H is of form (2).  (3)
Spectral clustering relaxes this minimization problem by
replacing the requirement that H has to be of form (2) with
the weaker requirement that TH = I, that is it solves
min Tr(HTLH) subjectto H'H = I),.  (4)
HeRnxk
Since L is symmetric, it is well known that a solution to
(4) is given by a matrix H that contains some orthonormal
eigenvectors corresponding to the & smallest eigenvalues
(respecting multiplicities) of L as columns (Liitkepohl, 1996,
Section 5.2.2). Consequently, the first step of SC is to
compute such an optimal H by computing the k£ smallest
eigenvalues and corresponding eigenvectors. The second
step is to infer a clustering from H. While there is a one-
to-one correspondence between a clustering and a matrix
of the form (2), this is not the case for a solution H to the
relaxed problem (4). Usually, a clustering of V' is inferred
from H by applying k-means clustering to the rows of H.
We summarize unnormalized SC as Algorithm 1. Note
that, in general, there is no guarantee on how close the
RatioCut value of the clustering obtained by Algorithm 1 to
the RatioCut value of an optimal clustering (solving (3)) is.

3. Adding Fairness Constraints

We now extend the above setting to incorporate fairness con-
straints. Suppose that the data set V' contains h groups V
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such that V' = Use[h] V. Chierichetti et al. (2017) proposed
a notion of fairness for clustering asking that every cluster
contains approximately the same number of elements from
each group V. For a clustering V = C1U...UC}, define
the balance of cluster C) as

|‘/s N C’l|

bal C) = in ——
alance(CY) s;énsl’len[h] AT

€ [0,1]. 5)
The higher the balance of each cluster, the fairer is the clus-
tering according to the notion of Chierichetti et al. (2017).
For any clustering, we have min;c balance(C;) <
ming. epn) |Vsl/|Ve|, so that this fairness notion is actu-
ally asking for a clustering in which in every cluster, each
group is (approximately) represented with the same fraction
as in the whole data set V. The following lemma shows
how to incorporate this goal into the RatioCut minimization
problem (3) using a linear constraint on H.

Lemma 1 (Fairness constraints as linear constraint on H).
For s € [h], let f*) € {0,1}" be the group-membership
vector of Vs, that is fi(s) =1if1 € Vi and fi(s) =0
otherwise. Let V = C1U...UCy be a clustering that is
encoded as in (2). We have, for every | € [k],

n

Vsé[h—l]:Z(fi(s)—VS'>Hu:O &

: n
=1

VinC Vs
vs e s gt T

Proof. This simply follows from

Xn: <f(s) _ |V9> Hy = VsNCi|  |Vsl- |Cl|.
i=1 ' n l \/|Cl‘ n+/|Cil

and |Cy] =" (Ve nay. O

Hence, if we want to find a clustering that minimizes the
RatioCut objective function and is as fair as possible, we
have to solve

min Tr(HTLH) subject to H is of form (2)
HERnXE (6)

and FTH = 0(,—1)xx,

where ' € R™*("—1) g the matrix that has the vectors
@ — (|Vi|/n) - 1,, s € [h — 1], as columns. In the
same way as we have relaxed (3) to (4), we may relax the
minimization problem (6) to

min Tr(HTLH) subjectto H' H = I,
HeRnXk T (7)
and I Hzo(hfl)xk-

Our proposed approach to incorporate the fairness notion by
Chierichetti et al. (2017) into the SC framework consists of
solving (7) instead of (4) (and, as before, applying k-means

Algorithm 2 Unnormalized SC with fairness constraints

Input: weighted adjacency matrix W € R™"*"; k € N;
group-membership vectors f(*) € {0,1}", s € [h]

Output: a clustering of [n] into k clusters

compute the Laplacian matrix L = D — W

e Let F be a matrix with columns f(s) — ”:1—‘ -1,,s€
[h —1]

e compute a matrix Z whose columns form an orthonor-

mal basis of the nullspace of F'

e compute the k smallest (respecting multiplicities)
eigenvalues of Z7 L Z and the corresponding orthonor-
mal eigenvectors (written as columns of ")

e apply k-means clustering to the rows of H = ZY

clustering to the rows of an optimal H in order to infer a
clustering). Our approach is analogous to the numerous
versions of constrained SC that try to incorporate must-link
constraints (“vertices A and B should end up in the same
cluster”) by putting a linear constraint on H (e.g., Yu & Shi,
2004; Kawale & Boley, 2013; see Section 5).

Next, we describe a straightforward way to solve (7), which
is also discussed by Yu & Shi (2004). It is easy to see
that rank(F') = rank(FT) = h — 1. We need to assume
that k < n — h + 1 since otherwise (7) does not have any
solution. Let Z € R™*("="+1) be a matrix whose columns
form an orthonormal basis of the nullspace of 7. We can
substitute H = ZY forY € R(”’h“)Xk, and then, using
that ZTZ = I(,—n+1), problem (7) becomes

min ~ Tr(YTZTLZY) subj. o Y'Y = I;.. (8)
Y EeR(n—h+1)xk
Similarly to problem (4), a solution to (8) is given by a
matrix Y that contains some orthonormal eigenvectors cor-
responding to the & smallest eigenvalues (respecting multi-
plicities) of Z” LZ as columns. We then set H = ZY.

This way of solving (7) gives rise to our “fair” version of
unnormalized SC as stated in Algorithm 2. Note that just
as there is no guarantee on the RatioCut value of the output
of Algorithm 1 or Algorithm 2 compared to the RatioCut
value of an optimal clustering, in general, there is also no
guarantee on how fair the output of Algorithm 2 is. We still
refer to Algorithm 2 as our fair version of unnormalized SC.
Similarly to how we proceeded here, in Appendix A, we
incorporate the fairness constraints into normalized SC and
state our fair version of normalized SC as Algorithm 3.

One might wonder why we do not simply run standard SC
on each group V; separately in order to derive a fair version.
In Appendix D we show why such an idea does not work.

Computational complexity We provide a complete dis-
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cussion of the complexity of our algorithms in Appendix B.

With the implementations as stated, the complexity of both
Algorithm 2 and Algorithm 3 is O(n?) regarding time and
O(n?) regarding space, which is the same as the worst-case
complexity of standard SC when the number of clusters
can be arbitrary. One could apply one of the techniques
suggested in the existing literature on constrained spectral
clustering to speed up computation (e.g., Yu & Shi, 2004, or
Xu et al., 2009; see Section 5), but most of these techniques
only work for k = 2 clusters.

4. Analysis on Variant of the Stochastic Block
Model

In this section, our goal is to model data sets that have two
or more meaningful ground-truth clusterings, of which only
one is fair, and show that our algorithms recover the fair
ground-truth clustering. If there was only one meaningful
ground-truth clustering and this clustering was fair, then any
clustering algorithm that is able to recover the ground-truth
clustering (e.g.,
To this end, we define a variant of the famous stochastic
block model (SBM; Holland et al., 1983). The SBM is a
random graph model that has been widely used to study the
performance of clustering algorithms, including standard
SC (see Section 5 for related work). In the traditional SBM
there is a ground-truth clustering of the vertex set V' = [n]
into k clusters, and in a random graph generated from the
model, two vertices ¢ and j are connected with a probability
that only depends on which clusters ¢ and j belong to.

In our variant of the SBM we assume that V' = [n]
comprises h groups V = V1U... UV}, and is partitioned
into k ground-truth clusters V = C1U...UC} such that
[VsNCi|/|Ci| = ns, s € [h],1 € [k], for some 11, ...,np €
(0,1) with ZZ’:I ns = 1. Hence, in every cluster each
group is represented with the same fraction as in the whole
data set V' and this ground-truth clustering is fair. Now we
define a random graph on V' by connecting two vertices ¢
and j with a certain probability Pr(7, j) that only depends
on whether 7 and j are in the same cluster (or not) and
on whether ¢ and j are in the same group (or not). More
specifically, we have

Pr(i, j) =

a, 4 and j in same cluster and in same group,
b, 4 and j notin same cluster, but in same group,
¢, ¢ and j in same cluster, but not in same group,

d, i and j notin same cluster and not in same group,

©))

and assume that a > b > ¢ > d. As in the ordinary SBM,

connecting 4 and 5 is independent of connecting ¢’ and ;'

for {i,j} # {¢’,j'}. Every edge is assigned a weight of +1,

standard SC) would be a fair algorithm.

Cl C(2

Figure 1. Example of a graph generated from our variant of the
SBM. There are two meaningful ground-truth clusterings into two
clusters: V = C1UCs and V' = V,UVa. Only the first one is fair.

that is no two connected vertices are considered more similar
to each other than any two other connected vertices.

An example of a graph generated from our model (with
h =k = 2andn; = ny = 1/2) can be seen in Figure 1.
We can see that there are two meaningful ground-truth clus-
terings into two clusters: V = C1UCs and V = V;UV5.
Among these two clusterings, only V' = C;UC} is fair since
balance(C;) = 1 while balance(V;) = 0 for i € {1,2}.
Note that the clustering V' = V;UV; has a smaller RatioCut
value than V' = C;UC, because there are more edges be-
tween V; N Cy and VN Cs (s = 1 or s = 2) than between
VinCiand VonNCy (I =1orl = 2). As we will see in
the experiments in Section 6 (and can also be seen from
the proof of the following Theorem 1), for such a graph,
standard SC is very likely to return the unfair clustering
V = V;UV; as output. In contrast, our fair versions of SC
return the fair clustering V' = C;UC3 with high probability:

Theorem 1 (SC with fairness constraints succeeds on vari-
ant of stochastic block model). Let V' = [n] comprise
h = h(n) groups V. = V1U...UV}, and be partitioned

into k = k(n) ground-truth clusters V.= C1U...UCk
such that for all s € [h] and | € [k]
n no |[V,nG| 1
V=" o =2, BT (g
Vil h (@] % Cl 5o 10

Let G be a random graph constructed according to our
variant of the stochastic block model (9) with probabilities
a = a(n), b = b(n), ¢ = c¢(n), d = d(n) satisfying a >
b>c>danda > Clun/n for some C > 0.

Assume that we run Algorithm 2 or Algorithm 3 (stated in
Appendix A) on G, where we apply a (1+M)-approximation
algorithm to the k-means problem encountered in the last
step of Algorithm 2 or Algorithm 3, for some M > 0. Then,
for every r > 0, there exist constants C; = C;(C,r) and
Ci = Ci(C,r), i € {1,2}, such that the following is true:
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o Unnormalized SC with fairness constraints
If

a-k%-lnn < 6'1
(c—d)?2-n 1+M’

(1D
then with probability at least 1 — n™", the clustering
returned by Algorithm 2 misclassifies at most

~ a-k% lnn

many vertices.

e Normalized SC with fairness constraints
Let \y = 2 (a+ (h—1)e) + "1 (b 4 (h — 1)d). If

Vk-a-nlnn 6’2 an a-k* lnn < 52
A —a 1+M (c—d)2-n 1+M’
(13)

then with probability at least 1 — n™", the clustering
returned by Algorithm 3 misclassifies at most

a-n?-lnn

(A1 —a)?

~ a-k3-lnn
02'(1+M)' (Cfd)2

(14)
many vertices.
‘We make several remarks on Theorem 1:

1. By “misclassifies at most = many vertices” we mean that,
considering the index [ of the cluster C; that a vertex belongs
to as the vertex’s class label, there exists a permutation of
cluster indices 1, . . ., k such that up to this permutation the
clustering returned by our algorithm predicts the correct
class label for all but  many vertices.

2. The condition (11) is satisfied, for n sufficiently large
and assuming that M € O(ln k) (see the next remark), in
various regimes: assuming that k € O(n®) for some s €
[0,1/3), it is satisfied in the dense regime a, b, ¢, d ~ const,
but also in the sparse regime a, b, ¢,d ~ const -(Inn/n)?
for some ¢ € [0,1 — 3s).

The same is true for condition (13), but here we require
s €1[0,1/4) and g € [0,1 — 4s). We suspect that condition
(13), with respect to k, is stronger than necessary. We also
suspect that the error bound in (14) is not tight with respect
to k. Note that in (14), both in the dense and in the sparse
regime, the term a - k3 - Inn/(c — d)? is dominating over
the term a - n? - Inn/(\; — a)? by the factor k3.

Both in the dense and in the sparse regime, under these
assumptions on s, ¢ and M, the error bounds (12) and (14)
divided by n, that is the fraction of misclassified vertices,
tends to zero as n goes to infinity. Using the terminology
prevalent in the literature on community detection in SBMs
(see Section 5), we may say that our algorithms are weakly
consistent or solve the almost exact recovery problem.

3. There are efficient approximation algorithms for the k-
means problem in R!. An algorithm by Ahmadian et al.
(2017) achieves a constant approximation factor and has run-
ning time polynomial in n, k and [, where n is the number of
data points. There is also the famous (1 + €)-approximation
algorithm by Kumar et al. (2004) with running time linear
in n and I, but exponential in k£ and 1/¢. The algorithm
most widely used in practice (e.g., as default method in
MATLAB) is k-means++, which is a randomized O(In k)-
approximation algorithm (Arthur & Vassilvitskii, 2007).

4. We show empirically in Section 6 that our algorithms are
also able to find the fair ground-truth clustering in a graph
constructed according to our variant of the SBM when (10)
is not satisfied, that is when the clusters are of different size
or the balance of the fair ground-truth clustering is smaller
than 1 (i.e., ns # 1/h for some s € [h]). For Algorithm 3,
the violation of (10) can be more severe than for Algo-
rithm 2. In general, we observe Algorithm 3 to outperform
Algorithm 2. This is in accordance with standard SC, for
which normalized SC has been observed to outperform un-
normalized SC (von Luxburg, 2007; Sarkar & Bickel, 2015).

The proof of Theorem 1 can be found in Appendix C. It
consists of two technical challenges (described here only
for the unnormalized case). The first one is to compute the
eigenvalues and eigenvectors of the matrix Z7 L7, where £
is the expected Laplacian matrix of the random graph G and
Z is the matrix computed in Algorithm 2. Let ) be a matrix
containing some orthonormal eigenvectors corresponding
to the k smallest eigenvalues of Z7 £Z as columns and
Y be a matrix containing orthonormal eigenvectors corre-
sponding to the k smallest eigenvalues of Z7 LZ, where L
is the observed Laplacian matrix of G. The second chal-
lenge is to prove that with high probability, ZY is close to
ZY. For doing so we make use of the famous Davis-Kahan
sin® Theorem (Davis & Kahan, 1970). After that, we can
use existing results about k-means clustering of perturbed
eigenvectors (Lei & Rinaldo, 2015) to derive the theorem.

5. Related Work

Spectral clustering and stochastic block model SC is
one of the most prominent clustering techniques, with a
long history and an abundance of related papers. See von
Luxburg (2007) or Nascimento & de Carvalho (2011) for
general introductions and an overview of the literature.
There are numerous papers on constrained SC, where the
goal is to incorporate prior knowledge about the target clus-
tering (usually in the form of must-link and / or cannot-link
constraints) into the SC framework (e.g., Yu & Shi, 2001;
2004; Joachims, 2003; Lu & Carreira-Perpinan, 2008; Xu
et al., 2009; Wang & Davidson, 2010; Eriksson et al., 2011;
Maji et al., 2011; Kawale & Boley, 2013; Khoreva et al.,
2014; Wang et al., 2014; Cucuringu et al., 2016). Most of
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these papers are motivated by the use of SC in image or
video segmentation. Closely related to our work are the
papers by Yu & Shi (2004); Xu et al. (2009); Eriksson et al.
(2011); Kawale & Boley (2013), which incorporate the prior
knowledge by imposing a linear constraint in the RatioCut
or NCut optimization problem analogously to how we de-
rived our fair versions of SC. These papers provide efficient
algorithms to solve the resulting optimization problems.
Howeyver, the iterative algorithms by Xu et al. (2009); Eriks-
son et al. (2011); Kawale & Boley (2013) only work for
k = 2 clusters. The method by Yu & Shi (2004) works for
arbitrary k£ and could be used to speed up the computation
of a solution of (7) or (18) compared to our straightforward
way as implemented by Algorithm 2 and Algorithm 3, re-
spectively, but requires to modify the eigensolver in use.

The stochastic block model (SBM; Holland et al., 1983)
is the canonical model to study the performance of cluster-
ing algorithms. There exist several variants of the original
model such as the degree-corrected SBM or the labeled
SBM. For a recent survey see Abbe (2018). In the labeled
SBM, vertices can carry a label that is correlated with the
ground-truth clustering. This is quite the opposite of our
model, in which the group-membership information is “or-
thogonal” to the ground-truth clustering. Several papers
show the consistency (i.e., the capability to recover the
ground-truth clustering) of different versions of SC on the
SBM or the degree-corrected SBM under different assump-
tions (Rohe et al., 2011; Fishkind et al., 2013; Qin & Rohe,
2013; Lei & Rinaldo, 2015; Joseph & Yu, 2016; Su et al.,
2017). For example, Rohe et al. (2011) show consistency of
normalized SC assuming that the minimum expected vertex
degree is in 2(n/+/log n), while Lei & Rinaldo (2015) show
that SC based on the adjacency matrix is consistent requir-
ing only that the maximum expected degree is in 2(y/logn).
Note that these papers also make assumptions on the eigen-
values of the expected Laplacian or adjacency matrix while
all assumptions and guarantees stated in our Theorem 1 di-
rectly depend on the connection probabilities a, b, ¢, d of our
model. We are not aware of any work providing consistency
results for constrained SC methods as we do in this paper.

Fairness By now, there is a huge body of work on fair-
ness in machine learning. For a recent paper providing an
overview of the literature on fair classification see Donini
etal. (2018). Our paper adds to the literature on fair methods
for unsupervised learning tasks (Chierichetti et al., 2017;
Celis et al., 2018a;b; Samadi et al., 2018; Schmidt et al.,
2018). Note that all these papers assume to know which de-
mographic group a data point belongs to just as we do. We
discuss the pieces of work most closely related to our paper.

Chierichetti et al. (2017) proposed the notion of fairness
for clustering underlying our paper. It is based on the fair-
ness notion of disparate impact (Feldman et al., 2015) and

the p%-rule (Zafar et al., 2017), respectively, which essen-
tially say that the output of a machine learning algorithm
should be independent of a sensitive attribute. In their paper,
Chierichetti et al. focus on k-median and k-center cluster-
ing. For the case of a binary sensitive attribute, that is there
are only two demographic groups, they provide approxi-
mation algorithms for the problems of finding a clustering
with minimum k-median / k-center cost under the constraint
that all clusters have some prespecified level of balance.
Subsequently, Rosner & Schmidt (2018) provide an approx-
imation algorithm for such a fair k-center problem with
multiple groups. Schmidt et al. (2018) build upon the fair-
ness notion and techniques of Chierichetti et al. and devise
an approximation algorithm for the fair £-means problem,
assuming that there are only two groups of the same size.

6. Experiments

In this section, we present a number of experiments. We first
study our fair versions of spectral clustering, Algorithm 2
and Algorithm 3, on synthetic data generated according
to our variant of the SBM and compare our algorithms to
standard SC. We also study how robust our algorithms are
with respect to a certain perturbation of our model. We then
compare our algorithms to standard SC on real network data.
We implemented all algorithms in MATLAB'. We used the
built-in function for k-means clustering with all parameters
set to their default values except for the number of replicates,
which we set to 10. In the following, all plots show average
results obtained from running an experiment for 100 times.

6.1. Synthetic Data

We run experiments on our variant of the SBM introduced in
Section 4. To asses the quality of a clustering we measure
the fraction of misclassified vertices w.r.t. the fair ground-
truth clustering (see Section 4), which we refer to as error.

In the experiments of Figure 2, we study the performance of
standard unnormalized and normalized SC and of our fair
versions, Algorithm 2 and Algorithm 3, as a function of n.
Due to the high running time of Algorithm 3 (see Section 3),
we only run it up to n = 4000. All plots show the error
of the methods, except for the fourth plot in the first row,
which shows their running time. We study several parameter
settings. For the plots in the first row, Assumption (10) in
Theorem 1 is satisfied, that is [V, N Cj| = ¢, for all s € [h]
and [ € [k]. In this case, in accordance with Theorem 1,
both Algorithm 2 and Algorithm 3 are able to recover the
fair ground-truth clustering if n is just large enough while
standard SC always fails to do so. Algorithm 3 yields sig-
nificantly better results than Algorithm 2 and requires much

'"The code is available on https://github.com/
matthklein/fair_spectral_clustering.
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Figure 2. Performance of standard spectral clustering and our fair versions on our variant of the stochstic block model as a function of n
for various parameter settings. Error is the fraction of misclassified Vertices w.r.t. the fair ground-truth clustering (see Section 4). First

row: Assumption (10) in Theorem 1 is satisfied, that is |V N C| =

s € [h],1 € [k]. Second row: Assumption (10) is not satlsﬁed
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Figure 3. Error of our algorithms as a function of k. We consider
a=F- 1Oo,b— ~%,c:F~ 1Oo,cl— ~1—10f0rvarious
values of F'. Left: Alg. 2, n = 5000. Right: Alg. 3, n ~ 2000.

smaller values of n for achieving zero error. This comes at
the cost of a higher running time of Algorithm 3 (still it is
in O(n?) as claimed in Section 3). The run-time of Algo-
rithm 2 is the same as the run-time of standard normalized
SC. For the plots in the second row, Assumption (10) in
Theorem 1 is not satisfied. We consider various scenarios of
cluster sizes |C;| and group sizes |V;| (however, we always
have |V; N C1|/|Cy| = |Vs|/n, s € [h], I € [K], so that
C1U. .. UC} is as fair as possible). When the cluster sizes
are different, but the group sizes are all equal to each other
(1st plot in the 2nd row) or Assumption (10) is only slightly
violated (2nd plot), both Algorithm 2 and Algorithm 3 are
still able to recover the fair ground-truth clustering. Com-
pared to the plots in the first row, Algorithm 2 requires a
larger value of n though, even though k is smaller. Algo-
rithm 3 achieves (almost) zero error already for n = 1000
in these scenarios. When Assumption (10) is strongly vio-
lated (3rd and 4th plot), Algorithm 2 fails to recover the fair

Figure 4. Error of standard spectral clustering and our fair versions
as a function of the perturbation parameter p.

ground-truth clustering, but Algorithm 3 still succeeds.

In the experiments shown in Figure 3, we study the error
of Algorithm 2 (left plot) and Algorithm 3 (right plot) as a
function of k£ when n is roughly fixed. More precisely, for
k€ {2,...,8} and h = 4, we have n = kh[220] (Alg. 2;
left) orn = kh[QOOO] (Alg. 3; right), which allows for fair
ground-truth clusterings satisfying (lO) We consider con-
nection probabilities a = F - 22 b=F - 2, c=F - 12,
d=F -5 for F € {1,15,2,2.5,3}. Unsurprisingly, for
both Algorithm 2 and Algorithm 3 the error is monotonically
increasing with k. The rate of increase critically depends
on F' (or the probabilities a, b, ¢, d). For Algorithm 2, this
is even more severe. There is only a small range in which
the various curves exhibit polynomial growth, which makes
it impossible to empirically evaluate whether our error guar-
antees (12) and (14) are tight with respect to k.

In the experiments of Figure 4, we consider a perturbation
of our model as follows: first, for n = 4000 (left plot) or



Guarantees for Spectral Clustering with Fairness Constraints

- Unnormalized %C OFsriendshipNel (gender) --- Normalized Sg
: -
0.7
10 0.6
3 &
S 05
© ©
5 © Pog
0.3
0 0.2
5
o DrugNet (gender) --- Unnormalized S% o 5DrugNet (gender) --- Normalized SC3
|-+ Balance of data set ™ |[----Balance of data set
0.45| — SC(Ag.1) s 0.45 ||—— Normalized SC A25
- Ag.2 - —- Alg.3 “ .
» 04 4o 4 04 ENAWNEE:
2 Q 2 Y X =1
F0.35 32 F035 f \ 153
& s = K /, - z
03 2 03 L 1
0.25 vt 0.25 7 0.5
0.2 0 0.2 0
5 10 15 0 5 10 15
k k

FacebookNet (gender) --- Unnormalized GSOC FacebookNet (gender) --- Normalized Sw%

RatioCut
Balance
NCut

0I%rugNet (ethnicity) --- Unnormalized S%‘
" |-+++ Balance of data set
— — SC (Alg. 1)
0157~~~ Alg.2

0.2

--++ Balance of data set
— — Normalized SC
0.15f~— -~ Alg.3

o

~

(5,
NCut

DrugNet (ethnicity) --- Normalized S%
2.

2

0.1 1.
1

w
RatioCut
Balance

)

0.05

Figure 5. Balance (left axis) and RatioCut / NCut value (right axis) of standard SC and our fair versions as a function of k on real networks.

n = 2000 (right plot), k = 4 and h = 2 we generate a graph
from our model just as before (Assumption (10) is satisfied;
in particular, the two groups have the same size), but then
we assign some of the vertices in the first group to the other
group. Concretely, for a perturbation parameter p € [0, 1],
each vertex in the first group is assigned to the second one
with probability p independently of each other. The case
p = 0 is our model without any perturbation. If p = 1, there
is only one group and our algorithms technically coincide
with standard unnormalized or normalized SC. The two
plots show the error of our algorithms and standard SC as a
function of p. Both our algorithms show the same behavior.
They are robust against the perturbation up to p = 0.15.
They yield the same error as standard SC for p > 0.7.

6.2. Real Data

In the experiments of Figure 5, we evaluate the performance
of standard unnormalized and normalized SC versus our fair
versions on real network data. The quality of a clustering
is measured through its “Balance” (defined as the average
of the balance (5) over all clusters; shown on left axis of
the plots) and its RatioCut (1) or NCut (15) value (right
axis). All networks that we are working with are the largest
connected component of an originally unconnected network.

The first row of Figure 5 shows the results as a function
of the number of clusters k for two high school friendship
networks (Mastrandrea et al., 2015). Vertices correspond to
students and are split into two groups of males and females.
FRIENDSHIPNET has 127 vertices and an edge between
two students indicates that one of them reported friendship
with the other one. FACEBOOKNET consists of 155 vertices
and an edge between two students indicates friendship on
Facebook. As we can see from the plots, compared to stan-
dard SC, our fair versions improve the output clustering’s
balance (by 10% / 15% / 34% / 10% on average over k)

while almost not changing its RatioCut or NCut value.

The second row shows the results for DRUGNET, a network
encoding acquaintanceship between drug users in Hartford,
CT (Weeks et al., 2002). In the left two plots, the network
consists of 185 vertices split into two groups of males and
females (we had to remove some vertices for which the
gender was not known). In the right two plots, the network
has 193 vertices split into three ethnic groups of African
Americans, Latinos and others. Again, our fair versions
of SC quite significantly improve the balance of the output
clustering over standard SC (by 5% / 18% / 86% / 167% on
average over k). However, in the right two plots we also
observe a moderate increase of the RatioCut or NCut value.

7. Discussion

In this work, we presented an algorithmic approach towards
incorporating fairness constraints into the SC framework.
We provided a rigorous analysis of our algorithms and
proved that they can recover fair ground-truth clusterings in
a natural variant of the stochastic block model. Furthermore,
we provided strong empirical evidence that often in real data
sets, it is possible to achieve higher demographic proportion-
ality at minimal additional cost in the clustering objective.

An important direction for future work is to understand the
price of fairness in the SC framework if one needs to satisfy
the fairness constraints exactly. One way to achieve this
would be to run the fair k-means algorithm of Schmidt et al.
(2018) in the last step of our Algorithms 2 or 3. We want to
point out that the algorithm of Schmidt et al. currently does
not extend beyond two groups of the same size. Second, our
experimental results on the stochastic block model provide
evidence that our algorithms are robust to moderate levels
of perturbations in the group assignments. Characterizing
this robustness rigorously is an intriguing open problem.
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