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Abstract
We consider decentralized stochastic optimiza-
tion with the objective function (e.g. data samples
for machine learning tasks) being distributed over
n machines that can only communicate to their
neighbors on a fixed communication graph. To
address the communication bottleneck, the nodes
compress (e.g. quantize or sparsify) their model
updates. We cover both unbiased and biased com-
pression operators with quality denoted by δ ≤ 1
(δ = 1 meaning no compression).
We (i) propose a novel gossip-based stochastic
gradient descent algorithm, CHOCO-SGD, that
converges at rate O

(
1/(nT ) + 1/(Tρ2δ)2

)
for

strongly convex objectives, where T denotes the
number of iterations and ρ the eigengap of the
connectivity matrix. We (ii) present a novel
gossip algorithm, CHOCO-GOSSIP, for the av-
erage consensus problem that converges in time
O(1/(ρ2δ) log(1/ε)) for accuracy ε > 0. This is
(up to our knowledge) the first gossip algorithm
that supports arbitrary compressed messages for
δ > 0 and still exhibits linear convergence. We
(iii) show in experiments that both of our algo-
rithms do outperform the respective state-of-the-
art baselines and CHOCO-SGD can reduce com-
munication by at least two orders of magnitudes.

1. Introduction
Decentralized machine learning methods are becoming core
aspects of many important applications, both in view of
scalability to larger datasets and systems, but also from the
perspective of data locality, ownership and privacy. We con-
sider decentralized optimization methods that do not rely
on a central coordinator (e.g. parameter server) but instead
only require on-device computation and local communica-
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tion with neighboring devices. This covers for instance the
classic setting of training machine learning models in large
data-centers, but also emerging applications were the com-
putations are executed directly on the consumer devices,
which keep their part of the data private at all times.1

Formally, we consider optimization problems distributed
across n devices or nodes of the form

f? := min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
, (1)

where fi : Rd → R for i ∈ [n] := {1, . . . , n} are the objec-
tives defined by the data available locally on each node. We
also allow each local objective fi to have stochastic opti-
mization (or sum) structure, covering the important case of
empirical risk minimization in distributed machine learning
and deep learning applications.

Decentralized Communication. We model the network
topology as a graph where edges represent the communica-
tion links along which messages (e.g. model updates) can
be exchanged. The decentralized setting is motivated by
centralized topologies (corresponding to a star graph) often
not being possible, and otherwise often posing a signifi-
cant bottleneck on the central node in terms of communica-
tion latency, bandwidth and fault tolerance. Decentralized
topologies avoid these bottlenecks and thereby offer hugely
improved potential in scalability. For example, while the
master node in the centralized setting receives (and sends)
in each round messages from all workers, Θ(n) in total2, in
decentralized topologies the maximal degree of the network
is often constant (e.g. ring or torus) or a slowly growing
function in n (e.g. scale-free networks).

Decentralized Optimization. For the case of determin-
istic (full-gradient) optimization, recent seminal theoreti-
cal advances show that the network topology only affects
higher-order terms of the convergence rate of decentralized
optimization algorithms on convex problems (Scaman et al.,

1Note the optimization process itself (as for instance the com-
puted result) might leak information about the data of other nodes.
We do not focus on quantifying notions of privacy in this work.

2For better connected topologies sometimes more efficient all-
reduce and broadcast implementations are available.
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2017; 2018). We prove the first analogue result for the im-
portant case of decentralized stochastic gradient descent
(SGD), proving convergence at rate O(1/(nT )) (ignoring
for now higher order terms) on strongly convex functions
where T denotes the number of iterations.

This result is significant since stochastic methods are highly
preferred for their efficiency over deterministic gradient
methods in machine learning applications. Our algorithm,
CHOCO-SGD, is as efficient in terms of iterations as cen-
tralized mini-batch SGD (and consequently also achieves
a speedup of factor n compared to the serial setting on a
single node) but avoids the communication bottleneck that
centralized algorithms suffer from.

Communication Compression. In distributed training,
model updates (or gradient vectors) have to be exchanged
between the worker nodes. To reduce the amount of data
that has to be sent, gradient compression has become a popu-
lar strategy. These ideas have recently been introduced also
to the decentralized setting by Tang et al. (2018a). How-
ever, their analysis only covers unbiased compression op-
erators with very (unreasonably) high accuracy constraints.
Here we propose the first method that supports arbitrary low
accuracy and even biased compression operators, such as
in (Alistarh et al., 2018; Lin et al., 2018; Stich et al., 2018).

Contributions. Our contributions can be summarized as:

• We show that the proposed CHOCO-SGD converges at
rateO(1/(nT )+1/(Tρ2δ)2), where T denotes the num-
ber of iterations, n the number of workers, ρ the eigengap
of the gossip (connectivity) matrix and δ ≤ 1 the com-
pression quality factor (δ = 1 meaning no compression).
Despite ρ and δ affecting the higher order terms, the
first term in the rate, O(1/(nT )), is the same as for the
centralized baseline with exact communication, achiev-
ing the same speedup as centralized mini-batch SGD
when the number n of workers grows. This is verified
experimentally on the ring topology and by reducing the
communication by a factor of 100 (δ = 1

100 ).
• We present the first linearly-converging gossip algorithm

with communication compression for the distributed aver-
age consensus problem. Our algorithm, CHOCO-GOSSIP,
converges at linear rate O(1/(ρ2δ) log(1/ε)) for accu-
racy ε > 0, and allows arbitrary communication com-
pression operators (including biased and unbiased ones).
In contrast, previous works either exhibited sublinear
convergence, or required very high-precision quantiza-
tion δ ≈ 1, or could only show convergence towards a
neighborhood of the optimal solution.
• CHOCO-SGD significantly outperforms state-of-the-art

methods for decentralized optimization with gradient
compression, such as ECD-SGD and DCD-SGD intro-
duced in (Tang et al., 2018a), in all our experiments.

2. Related Work
Stochastic gradient descent (SGD) (Robbins & Monro,
1951; Bottou, 2010) and variants thereof are the standard
algorithms for machine learning problems of the form (1),
though it is an inherently serial algorithm that does not take
the distributed setting into account. Mini-batch SGD (Dekel
et al., 2012) is the natural parallelization of SGD for (1) in
the centralized setting, i.e. when a master node collects the
updates from all worker nodes, and serves a baseline here.

Decentralized Optimization. The study of decentralized
optimization algorithms can be tracked back at least to the
1980s (Tsitsiklis, 1984). Decentralized algorithms are some-
times referred to as gossip algorithms (Kempe et al., 2003;
Xiao & Boyd, 2004; Boyd et al., 2006) as the information
is not broadcasted by a central entity, but spreads—similar
to gossip—along the edges specified by the communica-
tion graph. The most popular algorithms are based on
(sub)gradient descent (Nedić & Ozdaglar, 2009; Johans-
son et al., 2010), alternating direction method of multipliers
(ADMM) (Wei & Ozdaglar, 2012; Iutzeler et al., 2013) or
dual averaging (Duchi et al., 2012; Nedić et al., 2015). He
et al. (2018) address the more specific problem class of gen-
eralized linear models.
For the deterministic (non-stochastic) convex version of (1)
a recent line of work developed optimal algorithms based
on acceleration (Jakovetić et al., 2014; Scaman et al., 2017;
2018; Uribe et al., 2018). Reisizadeh et al. (2018) and Doan
et al. (2018) studied quantization in this setting. Reisizadeh
et al. (2018) could achieve only sublinear rate for smooth
and strongly convex objectives, while (Doan et al., 2018)
considered non-smooth objectives and provided sublinear
rates, matching optimal rates up to logarithmic factor (Sca-
man et al., 2018). Rates for the stochastic setting are derived
in (Shamir & Srebro, 2014; Rabbat, 2015), under the as-
sumption that the distributions on all nodes are equal. Such
an i.i.d. assumption is a strong restriction which prohibits
most distributed machine learning applications, for example
also federated learning setting (McMahan et al., 2017). Our
algorithm CHOCO-SGD overcomes this and is free of i.i.d.
assumptions. Also, (Rabbat, 2015) requires multiple com-
munication rounds per stochastic gradient computation and
so is not suited for sparse communication, as the required
number of communication rounds would increase propor-
tionally to the sparsity. Lan et al. (2018) applied gradient
sliding techniques allowing to skip some of the communica-
tion rounds. Assran et al. (2019) have studied time-varying
networks; (Yu et al., 2019) in the case of parameter servers.
Lian et al. (2017); Tang et al. (2018b;a); Assran et al. (2019)
consider the non-convex setting with Tang et al. (2018a)
also applying gradient quantization techniques to reduce
the communication cost. However, their algorithms require
very high precision quantization, a constraint we overcome.
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Gradient Compression. Instead of transmitting a full di-
mensional (gradient) vector g ∈ Rd, methods with gradient
compression transmit a compressed vector Q(g) instead,
where Q : Rd → Rd is a (random) operator chosen such
that Q(g) can be more efficiently represented, for instance
by using limited bit representation (quantization) or enforc-
ing sparsity. A class of very common quantization opera-
tors is based on random dithering (Goodall, 1951; Roberts,
1962) that is in addition also unbiased, Eξ Q(x) = x,
∀x ∈ Rd, see (Alistarh et al., 2017; Wen et al., 2017; Zhang
et al., 2017). Much sparser vectors can be obtained by
random sparsification techniques that randomly mask the
input vectors and only preserve a constant number of coor-
dinates (Wangni et al., 2018; Konecny & Richtárik, 2018;
Stich et al., 2018). Techniques that do not directly quantize
gradients, but instead maintain additional states are known
to perform better in theory and practice (Seide et al., 2014;
Lin et al., 2018; Stich et al., 2018), an approach that we pick
up here. Our analysis also covers deterministic and biased
compression operators, such as in (Alistarh et al., 2018;
Stich et al., 2018). We will not further distinguish between
sparsification and quantization approaches, and refer to both
of them as compression operators in the following.

Distributed Average Consensus. The average consensus
problem consists in finding the average vector of n local vec-
tors (see (2) below for a formal definition). The problem is
an important sub-routine of many decentralized algorithms.
Gossip-type algorithms converge linearly for average con-
sensus (Kempe et al., 2003; Xiao & Boyd, 2004; Olfati-
Saber & Murray, 2004; Boyd et al., 2006). However, for
consensus algorithms with compressed communication it
has been remarked that the standard gossip algorithm does
not converge to the correct solution (Xiao et al., 2005). The
proposed schemes in (Carli et al., 2007; Nedić et al., 2008;
Aysal et al., 2008; Carli et al., 2010b; Yuan et al., 2012) do
only converge to a neighborhood (whose size depends on
the compression accuracy) of the solution.
In order to converge, adaptive schemes (with varying com-
pression accuracy) have been proposed (Carli et al., 2010a;
Fang & Li, 2010; Li et al., 2011; Thanou et al., 2013). How-
ever, these approaches fall back to full (uncompressed) com-
munication to reach high accuracy. In contrast, our method
converges linearly, even for arbitrary compressed commu-
nication, without requiring adaptive accuracy. We are not
aware of a method in the literature with similar guarantees.

3. Average Consensus with Communication
Compression

In this section we present CHOCO-GOSSIP, a novel gos-
sip algorithm for distributed average consensus with com-
pressed communication. The average consensus problem is
an important special case of type (1), and formalized as

x :=
1

n

n∑
i=1

xi , (2)

for vectors xi ∈ Rd distributed on n nodes (consider
fi(x) = 1

2 ‖x− xi‖2 in (1)). Our proposed algorithm will
later serve as a crucial primitive in our optimization algo-
rithm for the general optimization problem (1), but is of
independent interest for any average consensus problem
with communication constraints.

In Sections 3.1–3.3 below we first review existing schemes
that we later consider as baselines for the numerical com-
parison. The novel algorithm follows in Section 3.4.

3.1. Gossip algorithms

The classic decentralized algorithms for the average consen-
sus problem are gossip type algorithms (see e.g. (Xiao &
Boyd, 2004)) that generate sequences

{
x
(t)
i

}
t≥0 on every

node i ∈ [n] by iterations of the form

x
(t+1)
i := x

(t)
i + γ

n∑
j=1

wij∆
(t)
ij . (3)

Here γ ∈ (0, 1] denotes a stepsize parameter, wij ∈ [0, 1]

averaging weights and ∆
(t)
ij ∈ Rd denotes a vector that is

sent from node j to node i in iteration t. No communica-
tion is required when wij = 0. If we assume symmetry,
wij = wji, the weights naturally define the communication
graph G = ([n], E) with edges {i, j} ∈ E if wij > 0 and
self-loops {i} ∈ E for i ∈ [n]. The convergence rate of
scheme (3) crucially depends on the connectivity matrix
W ∈ Rn×n of the network defined as (W )ij = wij , also
called the interaction or gossip matrix.
Definition 1 (Gossip matrix). We assume that W ∈
[0, 1]n×n is a symmetric (W = W>) doubly stochastic
(W1 = 1,1>W = 1>) matrix with eigenvalues 1 =
|λ1(W )| > |λ2(W )| ≥ · · · ≥ |λn(W )| and spectral gap

ρ := 1− |λ2(W )| ∈ (0, 1] . (4)

It will also be convenient to define

β := ‖I −W‖2 ∈ [0, 2] . (5)

Table 1 depicts values of the spectral gap for important
network topologies (with uniform averaging between the
nodes). For the special case of uniform averaging on con-
nected graphs it holds ρ > 0 (see e.g. (Xiao & Boyd, 2004)).

graph/topology ρ−1 node degree
ring O(n2) 2
2d-torus O(n) 4
fully connected O(1) n− 1

Table 1. Spectral gap ρ for some important network topologies on
n nodes (see e.g. (Aldous & Fill, 2002, p. 169)) for uniformly
averaging W , i.e. wij = 1

deg(i)
= 1

deg(j)
for {i, j} ∈ E.
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3.2. Gossip with Exact Communication

For a fixed gossip matrix W , the classical algorithm ana-
lyzed in (Xiao & Boyd, 2004) corresponds to the choice

γ := 1, ∆
(t)
ij := x

(t)
j − x

(t)
i , (E-G)

in (3), with (E-G) standing for exact gossip. This scheme
can also conveniently be written in matrix notation as

X(t+1) := X(t) + γX(t)(W − I) , (6)

for iterates X(t) := [x
(t)
1 , . . . ,x

(t)
n ] ∈ Rd×n.

Theorem 1. Let γ ∈ (0, 1] and ρ be the spectral gap of W .
Then the iterates of (E-G) converge linearly to the average
x = 1

n

∑n
i=1 x

(0)
i with the rate

n∑
i=1

∥∥x(t)
i − x

∥∥2 ≤ (1− γρ)2t
n∑
i=1

∥∥x(0)
i − x

∥∥2 .
For γ = 1 the result corresponds to (Xiao & Boyd, 2004),
here we slightly extend the analysis for arbitrary stepsizes.
The short proof shows the elegance of the matrix notation
(that we will later also adapt for the proofs that will follow).

Proof for γ = 1. Let X := [x, . . . ,x] ∈ Rd×n. Then for
γ = 1 the theorem follows from the observation∥∥X(t+1) −X

∥∥2
F

(6)
=
∥∥(X(t) −X)W

∥∥2
F

=
∥∥(X(t) −X)(W − 1

n11
>)
∥∥2
F

≤
∥∥W − 1

n11
>∥∥2

2

∥∥X(t) −X
∥∥2
F

= (1− ρ)2
∥∥X(t) −X

∥∥2
F
.

Here on the second line we used the crucial identity
X(t)( 1

n11
>) = X , i.e. the algorithm preserves the average

over all iterations. This can be seen from (6):

X(t+1)( 1
n11

>) = X(t)W ( 1
n11

>) = X(t)( 1
n11

>) = X ,

by Definition 1. The proof for arbitrary γ follows the same
lines and is given in the appendix.

3.3. Gossip with Quantized Communication

In every round of scheme (E-G) a full dimensional vector
g ∈ Rd is exchanged between two neighboring nodes for
every link on the communication graph (node j sends g =

x
(t)
j to all its neighbors i, {i, j} ∈ E). A natural way to

reduce the communication is to compress g before sending
it, denoted as Q(g), for a (potentially random) compression
Q : Rd → Rd. Informally, we can think of Q as either
a sparsification operator (that enforces sparsity of Q(g))
or a quantization operator that reduces the number of bits
required to represent Q(g). For instance random rounding
to less precise floating point numbers or to integers.

Aysal et al. (2008) propose the quantized gossip (Q1-G),

γ := 1, ∆
(t)
ij := Q(x

(t)
j )− x

(t)
i , (Q1-G)

in scheme (3), i.e. to apply the compression operator directly
on the message that is send out from node j to node i.
However, this algorithm does not preserve the average of
the iterates over the iterations, 1

n

∑n
i=1 x

(0)
i 6= 1

n

∑n
i=1 x

(t)
i

for t ≥ 1, and as a consequence does not converge to the
optimal solution x of (2).

An alternative proposal by Carli et al. (2007) alleviates this
drawback. The scheme

γ := 1, ∆
(t)
ij := Q(x

(t)
j )−Q(x

(t)
i ) , (Q2-G)

preserves the average of the iterates over the iterations. How-
ever, the scheme also fails to converge for arbitrary preci-
sion. If x 6= 0, the noise introduced by the compression,∥∥Q(x

(t)
j )
∥∥, does not vanish for t→∞. As a consequence,

the iterates oscillate around x when compression error be-
comes larger than the suboptimality

∥∥x(t)
i − x

∥∥.

Both these schemes have been theoretically studied in (Carli
et al., 2010b) under assumption of unbiasendness, i.e. as-
suming EQ Q(x) = x for all x ∈ Rd. We will later adopt
this theoretically understood setting in our experiments.

3.4. Proposed Method for Compressed Communication

We propose the novel compressed gossip scheme CHOCO-
GOSSIP that supports a much larger class of compression
operators, beyond unbiased quantization as for the schemes
above. The algorithm can be summarized as

∆
(t)
ij := x̂

(t)
j − x̂

(t)
i ,

x̂
(t+1)
j := x̂

(t)
j +Q(x

(t+1)
j − x̂

(t)
j ) ,

(CHOCO-G)

for a stepsize γ < 1 depending on the specific compression
operator Q (this will be detailed below). Here x̂

(t)
i ∈ Rd

denote additional variables that are stored by all neighbors
j of node i, {i, j} ∈ E, as well as on node i itself.

We will show in Theorem 2 below that this scheme (i) pre-
serves the averages of the iterates x

(t)
i , i ∈ [n] over the

iterations t ≥ 0. Moreover, (ii) the noise introduced by the
compression operator vanishes as t→∞. Precisely, we will
show that (x

(t)
i , x̂

(t)
i )→ (x,x) for t→∞ for every i ∈ [n].

Consequently, the argument for Q in (CHOCO-G) goes to
zero, and the noise introduced by Q can be controlled.

The proposed scheme is summarized in Algorithm 1. Every
worker i ∈ [n] stores and updates its own local variable xi
as well as the variables x̂j for all neighbors (including itself)
j : {i, j} ∈ E. This seems to require each machine to store
deg(i) + 2 vectors. This is not necessary and the algorithm
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Algorithm 1 CHOCO-GOSSIP

input : Initial values x
(0)
i ∈ Rd on each node i ∈ [n],

stepsize γ, communication graph G = ([n], E) and
mixing matrix W , initialize x̂

(0)
i := 0 ∀i

1: for t in 0 . . . T−1 do in parallel for all workers i ∈ [n]

2: x
(t+1)
i := x

(t)
i + γ

∑
j:{i,j}∈E wij

(
x̂
(t)
j − x̂

(t)
i

)
3: q

(t)
i := Q(x

(t+1)
i − x̂

(t)
i )

4: for neighbors j : {i, j} ∈ E (including {i} ∈ E) do
5: Send q

(t)
i and receive q

(t)
j

6: x̂
(t+1)
j := x̂

(t)
j + q

(t)
j

7: end for
8: end for

could be re-written in a way that every node stores only three
vectors: xi, x̂i and si =

∑
j:{i,j}∈E wijx̂j . For simplicity,

we omit this modification here and refer to Appendix E for
the exact form of the memory-efficient algorithm.

3.5. Convergence Analysis for CHOCO-GOSSIP

We analyze Algorithm 1 under the following general quality
notion for the compression operator Q.
Assumption 1 (Compression operator). We assume that the
compression operator Q : Rd → Rd satisfies

EQ ‖Q(x)− x‖ 2 ≤ (1− δ) ‖x‖2 , ∀x ∈ Rd , (7)

for a parameter δ > 0. Here EQ denotes the expectation
over the internal randomness of operator Q.

Example operators that satisfy (7) include

• sparsification: Randomly selecting k out of d coordinates
(randk), or the k coordinates with highest magnitude val-
ues (topk) give δ = k

d (Stich et al., 2018, Lemma A.1).
• randomized gossip: Setting Q(x) = x with probability
p ∈ (0, 1] and Q(x) = 0 otherwise, gives δ = p.
• rescaled unbiased estimators: suppose EQ Q(x) = x,
∀x ∈ Rd and EQ ‖Q(x)‖2 ≤ τ ‖x‖2, then Q′(x) :=
1
τQ(x) satisfies (7) with δ = 1

τ .
• random quantization: For precision (levels) s ∈ N+, and
τ = (1 + min{d/s2,

√
d/s}) the quantization operator

qsgds(x) =
sign(x) · ‖x‖

sτ
·
⌊
s
|x|
‖x‖

+ ξ

⌋
,

for random variable ξ ∼u.a.r. [0, 1]d satisfies (7) with
δ = 1

τ (Alistarh et al., 2017, Lemma 3.1).

Theorem 2. CHOCO-GOSSIP (Algorithm 1) converges lin-
early for average consensus:

et ≤
(

1− ρ2δ

82

)t
e0 ,

when using the stepsize γ := ρ2δ
16ρ+ρ2+4β2+2ρβ2−8ρδ ,

where δ is the compression factor as in Assumption 1, and
et = EQ

∑n
i=1

(∥∥x(t)
i − x

∥∥2 +
∥∥x(t)

i − x̂
(t)
i

∥∥2) .

For the proof we refer to the appendix. For the exact com-
munication case δ = 1 we recover the rate from Theorem 1
for stepsize γ < 1 up to constant factors (which seems to be
a small artifact of our proof technique). The theorem shows
convergence for arbitrary δ > 0, showing the superiority of
scheme (CHOCO-G) over (Q1-G) and (Q2-G).

4. Decentralized Stochastic Optimization
We now leverage our proposed average consensus Alg. 1 to
achieve consensus among the compute nodes in a decentral-
ized optimization setting with communication restrictions.

In the decentralized optimization setting (1), not only does
every node have a different local objective fi, but we also
allow each fi to have stochastic optimization (or sum) struc-
ture, that is

fi(x) := Eξi∼Di Fi(x, ξi) , (8)

for a loss function Fi : Rd × Ω → R and distributions
D1, . . . ,Dn which can be different on every node. Our
framework therefore covers both stochastic optimization
(e.g. when all Di are identical) and empirical risk minimiza-
tion when the Di’s are discrete with disjoint support.

4.1. Proposed Scheme for Decentralized Optimization

Our proposed method CHOCO-SGD—Communication-
Compressed Decentralized SGD—is stated in Algorithm 2.

Algorithm 2 CHOCO-SGD

input : Initial values x
(0)
i ∈ Rd on each node i ∈ [n],

consensus stepsize γ, SGD stepsizes {ηt}t≥0, commu-
nication graph G = ([n], E) and mixing matrix W ,
initialize x̂

(0)
i := 0 ∀i

1: for t in 0 . . . T−1 do in parallel for all workers i ∈ [n]

2: Sample ξ(t)i , compute gradient g(t)
i := ∇Fi(x(t)

i , ξ
(t)
i )

3: x
(t+ 1

2 )
i := x

(t)
i − ηtg

(t)
i

4: x
(t+1)
i := x

(t+ 1
2 )

i + γ
∑
j:{i,j}∈E wij

(
x̂
(t)
j − x̂

(t)
i

)
5: q

(t)
i := Q(x

(t+1)
i − x̂

(t)
i )

6: for neighbors j : {i, j} ∈ E (including {i} ∈ E) do
7: Send q

(t)
i and receive q

(t)
j

8: x̂
(t+1)
j := q

(t)
j + x̂

(t)
j

9: end for
10: end for

The algorithm consists of four parts. The stochastic gradient
step in line 3, iterate update in step 4, application of the
compression operator in step 5, followed by the (CHOCO-G)
local communication in lines 6–9.
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Remark 3. As a special case for δ = 1 and consensus
stepsize γ = 1, CHOCO-SGD (Algorithm 2) recovers the
following standard variant of decentralized SGD with gossip
(similar e.g. to (Sirb & Ye, 2016; Lian et al., 2017)), given
for illustration in Algorithm 3.

Algorithm 3 PLAIN DECENTRALIZED SGD
1: for t in 0 . . . T−1 do in parallel for all workers i ∈ [n]

2: Sample ξ(t)i , compute gradient g(t)
i := ∇Fi(x(t)

i , ξ
(t)
i )

3: x
(t+ 1

2 )
i := x

(t)
i − ηtg

(t)
i

4: x
(t+1)
i :=

∑n
i=1 wijx

(t+ 1
2 )

j

5: end for

4.2. Convergence Analysis for CHOCO-SGD

Assumption 2. We assume that each function fi : Rd → R
for i ∈ [n] is L-smooth and µ-strongly convex and that the
variance on each worker is bounded

Eξi ‖∇Fi(x, ξi)−∇fi(x)‖2 ≤ σ2
i , ∀x ∈ Rd, i ∈ [n],

Eξi ‖∇Fi(x, ξi)‖
2 ≤ G2 , ∀x ∈ Rd, i ∈ [n],

where Eξi [·] denotes the expectation over ξi ∼ Di. It will
be also convenient to denote

σ2 :=
1

n

n∑
i=1

σ2
i .

For the (standard) definitions of smoothness and strong
convexity we refer to Appendix A.1. The assumptions above
could be relaxed to only hold for x ∈

{
x
(t)
i

}T
t=1

, the set of
iterates of Algorithm 2.
Theorem 4. Under Assumption 2, Algorithm 2 with SGD
stepsizes ηt := 4

µ(a+t) for parameter a ≥ max
{

410
ρ2δ , 16κ

}
for condition number κ = L

µ and consensus stepsize γ :=

γ(ρ, δ) chosen as in Theorem 2, converges with the rate

EΥ(T ) =O
(
σ2

µnT

)
+O

(
κG2

µδ2ρ4T 2

)
+O

(
G2

µδ3ρ6T 3

)
,

where Υ(T ) := f(x
(T )
avg) − f? for an averaged iterate

x
(T )
avg = 1

ST

∑T−1
t=0 wtx

(t) with weights wt = (a+ t)2, and

ST =
∑T−1
t=0 wt. As reminder, ρ denotes the eigengap of

W , and δ the compression ratio.

For the proof we refer to the appendix. When T and σ are
sufficiently large, the second two terms become negligible
compared to O

(
σ2

µnT

)
—and we recover the convergence

rate of of mini-batch SGD in the centralized setting and with
exact communication. This is because topology (parameter
ρ) and compression (parameter δ) only affect the higher-
order terms in the rate. We also see that we obtain in this
setting a n× speed up compared to the serial implementation
of SGD on only one worker.

1

2

3

4

5

6

1 2 3

4 5 6

7 8 9

Figure 1. Ring topology (left) and Torus topology (right).

4.3. Distinction to Previous Baselines

Unlike the previous methods DCD-SGD and ECD-SGD
from (Tang et al., 2018a), CHOCO-SGD converges under
arbitrary high compression. As main difference to those
schemes, CHOCO-SGD tries to carefully compensate quan-
tization errors, while DCD- and ECD-SGD ignore them.
In both, DCD- and ECD-SGD, the local variable on each
worker is updated using only copies on the neighbors (in
DCD copies and local variables are the same), which do
not carry information about the true uncompressed values.
Errors made previously are lost and cannot be corrected in
later iterations. In CHOCO-SGD, the shared copy x̂i is in
general different from the private copy xi, allowing to carry
on the true values to the next iterations, and to compensate
for errors made in previous quantization steps.

5. Experiments
We first compare CHOCO-GOSSIP to the gossip baselines
from Sec. 5.2 and then compare the CHOCO-SGD to state of
the art decentralized stochastic optimization schemes (that
also support compressed communication) in Sec. 5.3.

5.1. Shared Experimental Setup

For our experiments we always report the number of iter-
ations of the respective scheme, as well as the number of
transmitted bits. These quantities are independent of sys-
tems architectures and network bandwidth.

Datasets. We rely on the epsilon (Sonnenburg et al.,
2008) and rcv1 (Lewis et al., 2004) datasets (cf. Table 2).

Compression operators. We use the (randk), (topk) and
(qsgds) compression operators introduced in Sec. 3.5, with
k set to 1% of all coordinates and s ∈ {24, 28}. Details of
counting number of bits are presented in Appendix F.2

In contrast to CHOCO-GOSSIP, the earlier schemes (Q1-G)
and (Q2-G) were both analyzed for unbiased compression
operators (Carli et al., 2010b). In order to reflect this theo-
retically understood setting we use the rescaled operators
( dk · randk) and (τ · qsgds) in combination with those.

5.2. Average Consensus

We compare the performance of the gossip schemes (E-G)
(exact communication), (Q1-G), (Q2-G) (both with unbi-
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Figure 2. Average consensus on the ring topology with n = 25
nodes, d = 2000 and (qsgd256) compression.
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Figure 3. Average consensus on the ring topology with n = 25
nodes, d = 2000 and (rand1%) and (top1%) compression.

ased compression), and our scheme (CHOCO-G) in Figure 2
for the (qsgd256) compression scheme and in Figure 3 for
the random (rand1%) compression scheme. In addition, we
also depict the performance of CHOCO-GOSSIP with biased
(top1%) compression. We use ring topology with uniformly
averaging mixing matrix W as in Figure 1, left. The step-
sizes γ that were used for CHOCO-GOSSIP are listed in
Table 3. We consider here the consensus problem (2) with
data (xi + 1) ∈ Rd on the i-machine with xi being the
i-th vector in the epsilon dataset. The shift was added to
move the average away from 0, as some of the schemes
are biased towards this special output. We depict the errors
1
n

∑n
i=1

∥∥x(t)
i −x

∥∥2. For more details, plots of the full error
et and additional experiments we refer to Appendix G.1.

The proposed scheme (CHOCO-G) with 8 bit quantization
(qsgd256) converges with the same rate as (E-G) that uses ex-
act communications (Fig. 2, left), while it requires much less
data to be transmitted (Fig. 2, right). The schemes (Q1-G)
and (Q2-G) do not converge in both settings (Fig. 2, 3,
right). (Q1-G) diverges because the quantization error is too
large already after the first step.

With sparsified communication (rand1%), i.e. transmitting
only 1% of all the coordinates, the scheme (Q1-G) quickly
zeros out all the coordinates (Fig. 3). CHOCO-GOSSIP
proves to be more robust and converges. The observed
rate matches with the theoretical findings, as we expect the
scheme with factor 100× compression to be 100× slower
than (E-G) without compression. In terms of total data
transmitted, both schemes converge at approximately same
speed (Fig. 3, right). We also see that (rand1%) sparsifica-
tion can give additional gains and comes out as the most
data-efficient method in these experiments.

dataset m d density
epsilon 400000 2000 100%
rcv1 20242 47236 0.15%

Table 2. Size (m, d) and density of
the datasets.

experiment γ
CHOCO, (qsgd256) 1
CHOCO, (rand1%) 0.011
CHOCO, (top1%) 0.046

Table 3. Tuned stepsizes γ
for averaging in Figs. 2– 3.

epsilon rcv1
algorithm a b γ a b γ

PLAIN 0.1 d - 1 1 -
CHOCO, (qsgd16) 0.1 d 0.34 1 1 0.078
CHOCO, (rand1%) 0.1 d 0.01 1 1 0.016
CHOCO, (top1%) 0.1 d 0.04 1 1 0.04
DCD, (rand1%) 10−15 d - 10−10 d -
DCD, (qsgd16) 0.01 d - 10−10 d -
ECD, (rand1%) 10−10 d - 10−10 d -
ECD, (qsgd16) 10−12 d - 10−10 d -

Table 4. SGD learning rates ηt = ma
t+b

and consensus learning
rates γ used in the experiments in Figs. 5–6. The parameters where
tuned separately for each algorithm, tuning details can be found
in Appendix F.1. The ECD and DCD stepsizes are small because
the algorithms were observed to diverge for larger choices.

5.3. Decentralized SGD

We assess the performance of CHOCO-SGD on logistic
regression, defined as 1

m

∑m
j=1 log(1 + exp(−bja>j x)) +

1
2m ‖x‖

2, where aj ∈ Rd and bj ∈ {−1, 1} are the data
samples andm denotes the number of samples in the dataset.
We distribute the m data samples evenly among the n work-
ers and consider two settings: (i) randomly shuffled, where
datapoints are randomly assigned to workers, and the more
difficult (ii) sorted setting, where each worker only gets data
samples just from one class (with the possible exception of
one worker that gets two labels assigned). Moreover, we
try to make the setting as difficult as possible, meaning that
e.g. on the ring topology the machines with the same label
form two connected clusters. We repeat each experiment
three times and depict the mean curve and the area corre-
sponding to one standard deviation. We plot suboptimality,
i.e. f(x(t))− f? (obtained by the LogisticSGD optimizer
from scikit-learn (Pedregosa et al., 2011)) versus number
of iterations and the number of transmitted bits between
workers, which is proportional to the actual running time if
communication is a bottleneck.

Algorithms. As baselines we consider Alg. 3 with exact
communication (denoted as ‘plain’) and the communication
efficient state-of-the-art optimization schemes DCD-SGD
and ECD-SGD recently proposed in (Tang et al., 2018a)
(for unbiased quantization operators) and compare them to
CHOCO-SGD. We use decaying stepsize ηt = ma

t+b where
the parameters a, b are individually tuned for each algorithm
and compression scheme, with values given in Table 4. Con-
sensus learning rates γ were tuned on the simpler problem
separately from optimization (see appendix F.1 for details,
Table 4 for final values).
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Figure 4. Performance of Algorithm 3 on ring, torus and fully connected topologies for n ∈ {9, 25, 64} nodes. Here we consider the
sorted setting, whilst the performance for randomly shuffled data is depicted in the Appendix G.

Figure 5. Comparison of Algorithm 3 (plain), ECD-SGD, DCD-
SGD and CHOCO-SGD with (rand1%) sparsification (in addition
(top1%) for CHOCO-SGD), for epsilon (top) and rcv1 (bottom)
in terms of iterations (left) and communication cost (right), n = 9.

Impact of Topology. In Figure 4 we show the perfor-
mance of the baseline Algorithm 3 with exact communica-
tion on different topologies (ring, torus and fully-connected;
Fig. 1) with uniformly averaging mixing matrix W . Note
that Algorithm 3 for fully-connected graph corresponds to
mini-batch SGD. Increasing the number of workers from
n = 9 to n = 25 and n = 64 shows the mild effect of the
network topology on the convergence. We observe that the
sorted setting is more difficult than the randomly shuffled
setting (see Fig. 11 in the Appendix G), where the conver-
gence behavior remains almost unaffected. In the following
we focus on the hardest case, i.e. the ring topology.

Comparison to Baselines. Figures 5 and 6 depict the per-
formance of the algorithms on the ring topology with n = 9
nodes for sorted data of the epsilon and rcv1 datasets.
CHOCO-SGD performs almost as good as the exact Alg. 3,
but uses 100× less communication with (rand1%) sparsi-
fication (Fig. 5, right) and approximately 13× less com-
munication for (qsgd16) quantization. The (top1%) variant
performs slightly better than (rand1%) sparsification.

CHOCO-SGD consistently outperforms DCD-SGD in all
settings. We also observed that DCD-SGD starts to per-
form better for larger number of levels s in the (qsgds) in

Figure 6. Comparison of Algorithm 3 (plain), ECD-SGD, DCD-
SGD and CHOCO-SGD with (qsgd16) quantization, for epsilon
(top) and rcv1 (bottom) in terms of iterations (left) and communi-
cation cost (right), on n = 9 nodes on a ring topology.

the quantification operator (increasing communication cost).
This is consistent with the reporting in (Tang et al., 2018a)
that assumed high precision quantization. As a surprise to
us, ECD-SGD, which was proposed in (Tang et al., 2018a)
as the preferred alternative over DCD-SGD for less precise
quantization operators, always performs worse than DCD-
SGD, and often diverges.
Figures for randomly shuffled data can be found in the Ap-
pendix G. In that case CHOCO-SGD performs exactly as
well as the exact Algorithm 3 in all situations.

Conclusion. The experiments verify our theoretical find-
ings: CHOCO-GOSSIP is the first linearly convergent gossip
algorithm with quantized communication and CHOCO-SGD
consistently outperforms the baselines for decentralized op-
timization, reaching almost the same performance as exact
communication, while significantly reducing communica-
tion cost. In view of the striking popularity of SGD as
opposed to full-gradient methods for deep-learning, the ap-
plication of CHOCO-SGD to decentralized deep learning—
an instance of problem (1)—is a promising direction. We
leave the analysis of CHOCO-SGD on non-convex func-
tion for future work. We believe that most of techniques
presented here should carry over to the smooth non-convex
setting as well.
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