
A. Proof of the Gumbel-Top-k trick
Theorem 1. For k ≤ n, let I∗1 , ..., I

∗
k = arg top k Gφi

.
Then I∗1 , ..., I

∗
k is an (ordered) sample without replace-

ment from the Categorical
(

expφi∑
j∈N expφj

, i ∈ N
)

distribu-
tion, e.g. for a realization i∗1, ..., i

∗
k it holds that

P (I∗1 = i∗1, ..., I
∗
k = i∗k) =

k∏
j=1

expφi∗j∑
`∈N∗j

expφ`
(15)

where N∗j = N \ {i∗1, ..., i∗j−1} is the domain (without
replacement) for the j-th sampled element.

Proof. First note that

P
(
I∗k = i∗k

∣∣I∗1 = i∗1, ..., I
∗
k−1 = i∗k−1

)
=P

(
i∗k = argmax

i∈N∗k
Gφi

∣∣∣∣∣I∗1 = i∗1, ..., I
∗
k−1 = i∗k−1

)

=P

(
i∗k = argmax

i∈N∗k
Gφi

∣∣∣∣∣max
i∈N∗k

Gφi < Gφi∗
k−1

)
(16)

=P

(
i∗k = argmax

i∈N∗k
Gφi

)
(17)

=
expφi∗k∑
`∈N∗k

expφ`
. (18)

The step from (16) to (17) follows from the independence of
the max and argmax (Section 2.3) and the step from (17)
to (18) uses the Gumbel-Max trick. The proof follows by
induction on k. The case k = 1 is the Gumbel-Max trick,
while if we assume the result (15) proven for k − 1, then

P (I∗1 = i∗1, ..., I
∗
k = i∗k)

=P
(
I∗k = i∗k

∣∣I∗1 = i∗1, ..., I
∗
k−1 = i∗k−1

)
· P
(
I∗1 = i∗1, ..., I

∗
k−1 = i∗k−1

)
=

expφi∗k∑
`∈N∗k

expφ`
·
k−1∏
j=1

expφi∗j∑
`∈N∗j

expφ`
(19)

=

k∏
j=1

expφi∗j∑
`∈N∗j

expφ`
.

In (19) we have used Equation (18) and Equation (15) for
k − 1 by induction.

B. Sampling set of Gumbels with maximum T

B.1. The truncated Gumbel distribution

A random variable G′ has a truncated Gumbel distri-
bution with location φ and maximum T (e.g. G′ ∼
TruncatedGumbel(φ, T )) with CDF Fφ,T (g) if:

Fφ,T (g)

=P (G′ ≤ g)
=P (G ≤ g|G ≤ T )

=
P (G ≤ g ∩G ≤ T )

P (G ≤ T )

=
P (G ≤ min(g, T ))

P (G ≤ T )

=
Fφ(min(g, T ))

Fφ(T )

=
exp(− exp(φ−min(g, T )))

exp(− exp(φ− T ))
= exp(exp(φ− T )− exp(φ−min(g, T ))). (20)

The inverse CDF is:

F−1φ,T (u) = φ− log(exp(φ− T )− log u). (21)

B.2. Sampling set of Gumbels with maximum T

In order to sample a set of Gumbel variables
{G̃φi

|maxi G̃φi
= T}, e.g. with their maximum be-

ing exactly T , we can first sample the argmax, i∗ and then
sample the Gumbels conditionally on both the max and
argmax:

1. Sample i∗ ∼ Categorical
(

expφi∑
j expφj

)
. We do not

need to condition on T since the argmax i∗ is in-
dependent of the max T (Section 2.3).

2. Set G̃φi∗ = T , since this follows from conditioning on
the max T and argmax i∗.

3. Sample G̃φi ∼ TruncatedGumbel(φi, T ) for i 6= i∗.
This works because, conditioning on the max T and
argmax i∗, it holds that:

P (G̃φi
< g|max

i
G̃φi

= T, argmax
i

G̃φi
= i∗, i 6= i∗)

= P (G̃φi
< g|G̃φi

< T ).

Equivalently, we can let Gφi
∼ Gumbel(φi), let Z =

maxiGφi
and define

G̃φi
= F−1φi,T

(Fφi,Z(Gφi
))

= φi − log(exp(φi − T )
− exp(φi − Z) + exp(φi −Gφi

))

= − log(exp(−T )− exp(−Z) + exp(−Gφi
)).

(22)



Here we have used (20) and (21). Since the transformation
(22) is monotonically increasing, it preserves the argmax
and it follows from the Gumbel-Max trick (3) that

argmax
i

G̃φi
= argmax

i
Gφi
∼ Categorical

(
expφi∑
j expφj

)
.

We can think of this as using the Gumbel-Max trick for step
1 (sampling the argmax) in the sampling process described
above. Additionally, for i = argmaxiGφi :

G̃φi = F−1φi,T
(Fφi,Z(Gφi)) = F−1φi,T

(Fφi,Z(Z)) = T

so here we recover step 2 (setting G̃φi∗ = T ). For i 6=
argmaxiGφi

it holds that:

P (G̃φi
≤ g|i 6= argmax

i
Gφi

)

=EZ(P (G̃φi ≤ g|Z, i 6= argmax
i

Gφi))

=EZ(P (G̃φi
≤ g|Z,Gφi

< Z))

=EZ(P (F−1φi,T
(Fφi,Z(Gφi

)) ≤ g|Z,Gφi
< Z))

=EZ(P (Gφi
≤ F−1φi,Z

(Fφi,T (g))|Z,Gφi
< Z))

=EZ(Fφi,Z(F
−1
φi,Z

(Fφi,T (g))))

=EZ(Fφi,T (g)) = Fφi,T (g).

This means that G̃φi ∼ TruncatedGumbel(φi, T ),
so this is equivalent to step 3 (sampling G̃φi

∼
TruncatedGumbel(φi, T ) for i 6= i∗).

B.3. Numeric stability of truncated Gumbel
computation

Direct computation of (22) can be unstable as large terms
need to be exponentiated. Instead, we compute:

vi = T −Gφi + log1mexp(Gφi − Z) (23)

G̃φi
= T −max(0, vi)− log1pexp(−|vi|) (24)

where we have defined

log1mexp(a) = log(1− exp(a)), a ≤ 0

log1pexp(a) = log(1 + exp(a)).

This is equivalent as

T −max(0, vi)− log(1 + exp(−|vi|))
=T − log(1 + exp(vi))

=T − log (1 + exp (T −Gφi
+ log (1− exp (Gφi

− Z))))
=T − log (1 + exp (T −Gφi

) (1− exp (Gφi
− Z)))

=T − log (1 + exp (T −Gφi
)− exp (T − Z))

= − log (exp(−T ) + exp(−Gφi
)− exp(−Z))

= G̃φi

The first step can be easily verified by considering the
cases vi < 0 and vi ≥ 0. log1mexp and log1pexp can
be computed accurately using log1p(a) = log(1 + a) and
expm1(a) = exp(a)− 1 (Mächler, 2012):

log1mexp(a) =

{
log(− expm1(a)) a > −0.693
log1p(− exp(a)) otherwise

log1pexp(a) =

{
log1p(exp(a)) a < 18

x+ exp(a) otherwise

C. Numerical stability of importance weights
We have to take care computing the importance weights
as depending on the entropy the terms in the quotient
pθ(yi|x)
qθ(yi|x) can become very small, and in our case the com-
putation of P (Gφi

> κ) = 1 − exp(− exp(φi − κ))
can suffer from catastrophic cancellation. We can rewrite
this expression using the more numerically stable imple-
mentation exp1m(x) = exp(x) − 1 as p(Gφi > κ) =
−exp1m(− exp(φi− κ)) but in some cases this still suffers
from instability as exp(φi − κ) can underflow if φi − κ is
small. Instead, for φi − κ < −10 we use the identity

log(1− exp(−z)) = log(z)− z

2
+
z2

24
− z4

2880
+O(z6)

to directly compute the log importance weight using z =
exp(φi − κ) and φi = log pθ(yi|x) (we assume φi is nor-
malized):

log

(
pθ(yi|x)
qθ(yi|x)

)
= log pθ(yi|x)− log qθ(yi|x)

= log pθ(yi|x)− log (1− exp(− exp(φi − κ)))
= log pθ(yi|x)− log (1− exp(−z))

= log pθ(yi|x)−
(
log(z)− z

2
+
z2

24
− z4

2880
+O(z6)

)
= log pθ(yi|x)−

(
φi − κ−

z

2
+
z2

24
− z4

2880
+O(z6)

)
=κ+

z

2
− z2

24
+

z4

2880
+O(z6)

If φi − κ < −10 then 0 < z < 10−6 so this computation
will not lose any significant digits.



D. Proof of unbiasedness of priority sampling
estimator

The following proof is adapted from the proofs by Duffield
et al. (2007) and Vieira (2017). For generality of the proof,
we write f(i) = f(yi), pi = pθ(y

i|x) and qi(κ) =
qθ,κ(y

i|x), and we consider general keys hi (not neces-
sarily Gumbel perturbations).

We assume we have a probability distribution over a fi-
nite domain 1, ..., n with normalized probabilities pi, e.g.∑n
i=1 pi = 1. For a given function f(i) we want to estimate

the expectation

E[f(i)] =
n∑
i=1

pif(i).

Each element i has an associated random key hi and we
define qi(a) = P (hi > a). This way, if we know the
threshold a it holds that qi(a) = P (i ∈ S) is the probability
that element i is in the sample S. As was noted by Vieira
(2017), the actual distribution of the key does not influence
the unbiasedness of the estimator but does determine the
effective sampling scheme. Using the Gumbel perturbed
log-probabilities as keys (e.g. hi = Gφi

) is equivalent to
the PPSWOR scheme described by Vieira (2017).

We define shorthand notation h1:n = {h1, ..., hn}, h−i =
{h1, ..., hi−1, hi+1, ..., hn} = h1:n \ {hi}. For a given
sample size k, let κ be the (k+1)-th largest element of h1:n,
so κ is the empirical threshold. Let κ′i be the k-th largest
element of h−i (the k-th largest of all other elements).

Similar to Duffield et al. (2007) we will show that every
element i in our sample contributes an unbiased estimate
of E[f(i)], so that the total estimator is unbiased. Formally,
we will prove that

Eh1:n

[
1{i∈S}

qi(κ)

]
= 1 (25)

from which the result follows:

Eh1:n

[∑
i∈S

pi
qi(κ)

f(i)

]

=Eh1:n

[
n∑
i=1

pi
qi(κ)

f(i)1{i∈S}

]

=

n∑
i=1

pif(i) · Eh1:n

[
1{i∈S}

qi(κ)

]

=

n∑
i=1

pif(i) · 1 =

n∑
i=1

pif(i) = E[f(i)]

To prove (25), we make use of the observation (slightly
rephrased) by Duffield et al. (2007) that conditioning on

h−i, we know κ′i and the event i ∈ S implies that κ = κ′i
since i will only be in the sample if hi > κ′i which means
that κ′i is the k + 1-th largest value of h−i ∪ {hi} = h1:n.
The reverse is also true (if κ = κ′i then hi must be larger
than κ′i since otherwise the k + 1-th largest value of h1:n
will be smaller than κ′i).

Eh1:n

[
1{i∈S}

qi(κ)

]
=Eh−i

[
Ehi

[
1{i∈S}

qi(κ)

∣∣∣∣hi]]
=Eh−i

[
Ehi

[
1{i∈S}

qi(κ)

∣∣∣∣h−i, i ∈ S]P (i ∈ S|h−i)
+Ehi

[
1{i∈S}

qi(κ)

∣∣∣∣h−i, i 6∈ S]P (i 6∈ S|h−i)]
=Eh−i

[
Ehi

[
1

qi(κ)

∣∣∣∣h−i, i ∈ S]P (i ∈ S|h−i) + 0

]
=Eh−i

[
Ehi

[
1

qi(κ)

∣∣∣∣h−i, i ∈ S] qi(κ′i)]
=Eh−i

[
Ehi

[
1

qi(κ)

∣∣∣∣κ = κ′i

]
qi(κ

′
i)

]
=Eh−i

[
Ehi

[
1

qi(κ′i)

]
qi(κ

′
i)

]
=Eh−i

[
1

qi(κ′i)
qi(κ

′
i)

]
= Eh−i [1] = 1


