
Similarity of Neural Network Representations Revisited

A. Proof of Theorem 1
Theorem. Let X and Y be n× p matrices. Suppose s is invariant to invertible linear transformation in the first argument,
i.e. s(X,Z) = s(XA,Z) for arbitrary Z and any A with rank(A) = p. If rank(X) = rank(Y) = n, then s(X,Z) =
s(Y, Z).

Proof. Let

X ′ =

[
X
KX

]
Y ′ =

[
Y
KY

]
,

where KX is a basis for the null space of the rows of X and KY is a basis for the null space of the rows of Y . Then let
A = X ′−1Y ′. [

X
KX

]
A =

[
Y
KY

]
=⇒ XA = Y.

Because X ′ and Y ′ have rank p by construction, A also has rank p. Thus, s(X,Z) = s(XA,Z) = s(Y,Z).

B. Orthogonalization and Invariance to Invertible Linear Transformation
Here we show that any similarity index that is invariant to orthogonal transformation can be made invariant to invertible
linear transformation by orthogonalizing the columns of the input.

Proposition 1. Let X be an n× p matrix of full column rank and let A be an invertible p× p matrix. Let X = QXRX and
XA = QXARXA, where QTXQX = QTXAQXA = I and RX and RXA are invertible. If s(·, ·) is invariant to orthogonal
transformation, then s(QX , Y) = s(QXA, Y).

Proof. Let B = RXAR
−1
XA. Then QXB = QXA, and B is an orthogonal transformation:

BTB = BTQT
XQXB = QT

XAQXA = I.

Thus s(QX , Y) = s(QXB, Y) = s(QXA, Y).

C. CCA and Linear Regression
C.1. Linear Regression

Consider the linear regression fit of the columns of an n×m matrix C with an n× p matrix A:

B̂ = arg min
B

||C −AB||2F = (ATA)−1ATC.

Let A = QR, the thin QR decomposition of A. Then the fitted values are given by:

Ĉ = AB̂

= A(ATA)−1ATC

= QR(RTQTQR)−1RTQTC

= QRR−1(RT)−1RTQTC

= QQTC.

The residuals E = C − Ĉ are orthogonal to the fitted values, i.e.

ETĈ = (C −QQTC)TQQTC

= CTQQTC − CTQQTC = 0.

Similarity of Neural Network Representations Revisited

Thus:

||E||2F = tr(ETE)

= tr(ETC − ETĈ)

= tr((C − Ĉ)TC)

= tr(CTC)− tr(CTQQTC)

= ||C||2F − ||QTC||2F. (15)

Assuming that C was centered by subtracting its column means prior to the linear regression fit, the total fraction of variance
explained by the fit is:

R2 = 1− ||E||
2
F

||C||2F
= 1− ||C||

2
F − ||QTC||2F
||C||2F

=
||QTC||2F
||C||2F

. (16)

Although we have assumed that Q is obtained from QR decomposition, any orthonormal basis with the same span will
suffice, because orthogonal transformations do not change the Frobenius norm.

C.2. CCA

Let X be an n× p1 matrix and Y be an n× p2 matrix, and let p = min(p1, p2). Given the thin QR decompositions of X
and Y , X = QXRX , Y = QYRY such that QT

XQX = I , QT
YQY = I , the canonical correlations ρi are the singular values

of A = QT
XQY (Björck & Golub, 1973; Press, 2011) and thus the square roots of the eigenvalues of ATA. The squared

canonical correlations ρ2i are the eigenvalues of ATA = QT
YQXQ

T
XQY . Their sum is

∑p
i=1 ρ

2
i = tr(ATA) = ||QT

YQX ||2F.

Now consider the linear regression fit of the columns of QX with Y . Assume that QX has zero mean. Substituting QY for
Q and QX for C in Equation 16, and noting that ||QX ||2F = p1:

R2 =
||QT

YQX ||2F
p1

=

∑p
i=1 ρ

2
i

p1
. (17)

C.3. Projection-Weighted CCA

Morcos et al. (2018) proposed to compute projection-weighted canonical correlation as:

ρ̄PW =

∑c
i=1 αiρi∑
i=1 αi

αi =
∑
j

|〈hi,xj〉|,

where the xj are the columns ofX , and the hi are the canonical variables formed by projectingX to the canonical coordinate
frame. Below, we show that if we modify ρ̄PW by squaring the dot products and ρi, we recover linear regression. Specifically:

R2
MPW =

∑c
i=1 α

′
iρ

2
i∑

i=1 α
′
i

= R2
LR α′i =

∑
j

〈hi,xj〉2.

Our derivation begins by forming the SVD QT
XQY = UΣV T. Σ is a diagonal matrix of the canonical correlations ρi, and

the matrix of canonical variables H = QXU . Then R2
MPW is:

R2
MPW =

||XTHΣ||2F
||XTH||2F

(18)

=
tr((XTHΣ)T(XTHΣ))

tr((XTH)T(XTH))

=
tr(ΣHTXXTHΣ)

tr(HTXXTH)

=
tr(XTHΣ2HTX)

tr(XTHHTX)

=
tr(RT

XQ
T
XHΣ2HTQXRX)

tr(RT
XQ

T
XQXUU

TQT
XQXRX)

.

Similarity of Neural Network Representations Revisited

Noting that QT
XH = U and UΣ = QT

XQY V :

R2
MPW =

tr(RT
XUΣ2UTRX)

tr(RT
XQ

T
XQXRX)

=
tr(RT

XQ
T
XQY V ΣUTRX)

tr(XTX)

=
tr(XTQYQ

T
YQXRX)

tr(XTX)

=
tr(XTQYQ

T
YX)

tr(XTX)

=
||QT

YX||2F
||X||2F

.

Substituting QY for Q and X for C in Equation 16:

R2
LR =

||QT
YX||2F
||X||2F

= R2
MPW.

D. Notes on Other Methods
D.1. Canonical Ridge

Beyond CCA, we could also consider the “canonical ridge” regularized CCA objective (Vinod, 1976):

σi = max
wiX ,w

i
Y

(Xwi
X)T(Ywi

Y)√
||Xwi

X ||2 + κX ||wi
X ||22

√
||Ywi

Y ||2 + κY ||wi
Y ||2

subject to ∀j<i (wiX)T(XTX + κI)wjX = 0

∀j<i (wiY)T(Y TY + κI)wjY = 0.

(19)

Given the singular value decompositionsX = UXΣXV
T
X and Y = UY ΣY V

T
Y , one can form “partially orthogonalized” bases

Q̃X = UXΣX(Σ2
X+κXI)−1/2 and Q̃Y = UY ΣY (Σ2

Y +κY I)−1/2. Given the singular value decomposition of their product
Ũ Σ̃Ṽ T = Q̃T

XQ̃Y , the canonical weights are given by WX = VX(Σ2
X + κXI)−1/2Ũ and WY = VY (Σ2

Y + κY I)−1/2Ṽ ,
as previously shown by Mroueh et al. (2015). As in the unregularized case (Equation 13), there is a convenient expression
for the sum of the squared singular values

∑
σ̃2
i in terms of the eigenvalues and eigenvectors of XXT and Y Y T. Let the ith

left-singular vector of X (eigenvector of XXT) be indexed as ui
X and let the ith eigenvalue of XXT (squared singular value

of X) be indexed as λiX , and similarly let the left-singular vectors of Y Y T be indexed as ui
Y and the eigenvalues as λiY .

Then:

p1∑
i=1

σ̃2
i = ||Q̃T

Y Q̃X ||2F (20)

= ||(Σ2
Y + κY I)−1/2ΣY U

T
Y UXΣX(Σ2

X + κXI)−1/2||2F (21)

=

p1∑
i=1

p2∑
j=1

λiXλ
j
Y

(λiX + κX)(λjY + κY)
〈uiX ,u

j
Y 〉

2. (22)

Unlike in the unregularized case, the singular values σi do not measure the correlation between the canonical variables.
Instead, they become arbitrarily small as κX or κY increase. Thus, we need to normalize the statistic to remove the
dependency on the regularization parameters.

Similarity of Neural Network Representations Revisited

Applying von Neumann’s trace inequality yields a bound:

p1∑
i=1

σ̃2
i = tr(Q̃Y Q̃T

Y Q̃XQ̃
T
X) (23)

= tr((UY Σ2
Y (Σ2

Y + κY I)−1UT
Y)(UXΣ2

X(Σ2
X + κXI)−1UT

X)) (24)

≤
p1∑
i=1

λiXλ
i
Y

(λiX + κX)(λiY + κY)
. (25)

Applying the Cauchy-Schwarz inequality to (25) yields the alternative bounds:

p1∑
i=1

σ̃2
i ≤

√√√√ p1∑
i=1

(
λiX

λiX + κX

)2
√√√√ p1∑

i=1

(
λiY

λiY + κY

)2

(26)

≤

√√√√ p1∑
i=1

(
λiX

λiX + κX

)2
√√√√ p2∑

i=1

(
λiY

λiY + κY

)2

. (27)

A normalized form of (22) could be produced by dividing by any of (25), (26), or (27).

If κX = κY = 0, then (25) and (26) are equal to p1. In this case, (22) is simply the sum of the squared canonical correlations,
so normalizing by either of these bounds recovers R2

CCA.

If κY = 0, then as κX →∞, normalizing by the bound from (25) recovers R2:

lim
κX→∞

∑p1
i=1

∑p2
j=1

λiXλ
j
Y

(λiX+κX)(λjY +0)
〈uiX ,u

j
Y 〉2∑p1

i=1
λiXλ

i
Y

(λiX+κX)(λiY +0)

(28)

= lim
κX→∞

∑p1
i=1

∑p2
j=1

λiX(
λi
X
κX

+1

) 〈uiX ,ujY 〉2∑p1
i=1

λiX(
λi
X
κX

+1

) (29)

=

∑p1
i=1

∑p2
j=1 λ

i
X〈uiX ,u

j
Y 〉2∑p1

i=1 λ
i
X

(30)

=
||UT

Y UXΣX ||2F
||X||2F

=
||QT

YX||2F
||X||2F

= R2
LR. (31)

The bound from (27) differs from the bounds in (25) and (26) because it is multiplicatively separable in X and Y .
Normalizing by this bound leads to CKA(Q̃XQ̃

T
X , Q̃Y Q̃

T
Y):

∑p1
i=1

∑p2
j=1

λiXλ
j
Y

(λiX+κX)(λjY +κY)
〈uiX ,u

j
Y 〉2√∑p1

i=1

(
λiX

λiX+κX

)2√∑p2
i=1

(
λiY

λiY +κY

)2 (32)

=
||Q̃T

Y Q̃X ||2F
||Q̃T

XQ̃X ||F||Q̃T
Y Q̃Y ||F

= CKA(Q̃XQ̃
T
X , Q̃Y Q̃

T
Y). (33)

Similarity of Neural Network Representations Revisited

Moreover, setting κX = κY = κ and taking the limit as κ→∞, the normalization from (27) leads to CKA(XXT, Y Y T):

lim
κ→∞

∑p1
i=1

∑p2
j=1

λiXλ
j
Y

(λiX+κ)(λjY +κ)
〈uiX ,u

j
Y 〉2√∑p1

i=1

(
λiX

λiX+κ

)2√∑p2
i=1

(
λiY

λiY +κ

)2 (34)

= lim
κ→∞

∑p1
i=1

∑p2
j=1

λiXλ
j
Y(

λi
X
κ +1

)(
λ
j
Y
κ +1

) 〈uiX ,ujY 〉2√∑p1
i=1

(
λiX

λi
X
κ +1

)2
√∑p2

i=1

(
λiY

λi
Y
κ +1

)2
(35)

=

∑p1
i=1

∑p2
j=1 λ

i
Xλ

j
Y 〈uiX ,u

j
Y 〉2√∑p1

i=1

(
λiX
)2√∑p2

i=1

(
λiY
)2 (36)

= CKA(XXT, Y Y T).

Overall, the hyperparameters of the canonical ridge objective make it less useful for exploratory analysis. These hyperpa-
rameters could be selected by cross-validation, but this is computationally expensive, and the resulting estimator would be
biased by sample size. Moreover, our goal is not to map representations of networks to a common space, but to measure the
similarity between networks. Appropriately chosen regularization will improve out-of-sample performance of the mapping,
but it makes the meaning of “similarity” more ambiguous.

D.2. The Orthogonal Procrustes Problem

The orthogonal Procrustes problem consists of finding an orthogonal rotation in feature space that produces the smallest
error:

Q̂ = arg min
Q

||Y −XQ||2F subject to QTQ = I. (37)

The objective can be written as:

||Y −XQ||2F = tr((Y −XQ)T(Y −XQ))

= tr(Y TY)− tr(Y TXQ)− tr(QTXTY) + tr(QTXTXQ)

= ||Y ||2F + ||X||2F − 2tr(Y TXQ). (38)

Thus, an equivalent objective is:

Q̂ = arg max
Q

tr(Y TXQ) subject to QTQ = I. (39)

The solution is Q̂ = UV T where UΣV T = XTY , the singular value decomposition. At the maximum of (39):

tr(Y TXQ̂) = tr(V ΣUTUV T) = tr(Σ) = ||XTY ||∗ = ||Y TX||∗, (40)

which is similar to what we call “dot product-based similarity” (Equation 1), but with the squared Frobenius norm of Y TX
(the sum of the squared singular values) replaced by the nuclear norm (the sum of the singular values). The Frobenius norm
of Y TX can be obtained as the solution to a similar optimization problem:

||Y TX||F = max
W

tr(Y TXW) subject to tr(W TW) = 1. (41)

In the context of neural networks, Smith et al. (2017) previously proposed using the solution to the orthogonal Procrustes
problem to align word embeddings from different languages, and demonstrated that it outperformed CCA.

Similarity of Neural Network Representations Revisited

E. Architecture Details
All non-ResNet architectures are based on All-CNN-C (Springenberg et al., 2015), but none are architecturally identical. The
Plain-10 model is very similar, but we place the final linear layer after the average pooling layer and use batch normalization
because these are common choices in modern architectures. We use these models because they train in minutes on modern
hardware.

Tiny-10

3× 3 conv. 16-BN-ReLu ×2
3× 3 conv. 32 stride 2-BN-ReLu
3× 3 conv. 32-BN-ReLu ×2
3× 3 conv. 64 stride 2-BN-ReLu
3× 3 conv. 64 valid padding-BN-ReLu
1× 1 conv. 64-BN-ReLu
Global average pooling
Logits

Table E.1. The Tiny-10 architecture, used in Figures 2, 8, F.3, . The average Tiny-10 model achieved 89.4% accuracy.

Plain-(8n+ 2)

3× 3 conv. 96-BN-ReLu ×(3n− 1)
3× 3 conv. 96 stride 2-BN-ReLu
3× 3 conv. 192-BN-ReLu ×(3n− 1)
3× 3 conv. 192 stride 2-BN-ReLu
3× 3 conv. 192 BN-ReLu ×(n− 1)
3×3 conv. 192 valid padding-BN-ReLu
1× 1 conv. 192-BN-ReLu ×n
Global average pooling
Logits

Table E.2. The Plain-(8n+ 2) architecture, used in Figures 3, 5, 7, F.4, F.5, F.6, and F.7. Mean accuracies: Plain-10, 93.9%; Plain-18:
94.8%; Plain-34: 93.7%; Plain-66: 91.3%

Width-n

3× 3 conv. n-BN-ReLu ×2
3× 3 conv. n stride 2-BN-ReLu
3× 3 conv. n-BN-ReLu ×2
3× 3 conv. n stride 2-BN-ReLu
3× 3 conv. n valid padding-BN-ReLu
1× 1 conv. n-BN-ReLu
Global average pooling
Logits

Table E.3. The architectures used for width experiments in Figure 6.

Similarity of Neural Network Representations Revisited

F. Additional Experiments
F.1. Sanity Check for Transformer Encoders

Figure F.1. All similarity indices broadly reflect the structure of
Transformer encoders. Similarity indexes are computed between
the 12 sublayers of Transformer encoders, for each of the 4 possible
places in each sublayer that representations may be taken (see Fig-
ure F.2), averaged across 10 models trained from different random
initializations.

Layer Normalization

Channel-wise Scale

Self-Attention or
Feed-Forward Network

+Residual

From Previous Sublayer

To Next Sublayer

Figure F.2. Architecture of a single sublayer of the Transformer
encoder used for our experiments. The full encoder includes 12 sub-
layers, alternating between self-attention and feed-forward network
sublayers.

Index Layer Norm Scale Attn/FFN Residual

CCA (ρ̄) 85.3 85.3 94.9 90.9
CCA (R2

CCA) 87.8 87.8 95.3 95.2
SVCCA (ρ̄) 78.2 83.0 89.5 75.9
SVCCA (R2

CCA) 85.4 86.9 90.8 84.7
PWCCA 88.5 88.9 96.1 87.0
Linear Reg. 78.1 83.7 76.0 36.9
CKA (Linear) 78.6 95.6 86.0 73.6
CKA (RBF 0.2) 76.5 73.1 70.5 76.2
CKA (RBF 0.4) 92.3 96.5 89.1 98.1
CKA (RBF 0.8) 80.8 95.8 93.6 90.0

Table F.1. Accuracy of identifying corresponding sublayers based
maximum similarity, for 10 architecturally identical 12-sublayer
Transformer encoders at the 4 locations in each sublayer after which
the representation may be taken (see Figure F.2). Results not sig-
nificantly different from the best result are bold-faced (p < 0.05,
jackknife z-test).

When applied to Transformer encoders, all similarity indexes we investigated passed the sanity check described in Section 6.1.
In Figure F.1, we show similarity between the 12 sublayers of the encoders of 10 Transformer models (45 pairs) (Vaswani
et al., 2017) trained from different random initializations to perform English to German translation. Each Transformer
sublayer contains four operations, shown in Figure F.2, and results vary based which operation the representation is taken
after. Table F.1 shows the accuracy with which we can identify corresponding layers between network pairs by maximal
similarity.

The Transformer architecture alternates between self-attention and feed-forward network sublayers. The checkerboard pattern
in similarity plots for the Attention/FFN layer in Figure F.1 indicates that representations of feed-forward network sublayers
are more similar to other feed-forward network sublayers than to self-attention sublayers, and similarly, representations of
self-attention sublayers are more similar to other self-attention sublayers than to feed-forward network layers. CKA also
reveals a checkerboard pattern for activations after the channel-wise scale operation (before the self-attention/feed-forward
network operation) that other methods do not. Because CCA is invariant to non-isotropic scaling, CCA similarities before
and after channel-wise scaling are identical. Thus, CCA cannot capture this structure, even though it is consistent across
different networks.

Similarity of Neural Network Representations Revisited

F.2. SVCCA at Alternative Thresholds

Figure F.3. Same as Figure 2 row 2, but for more SVCCA thresholds than the 0.99 threshold suggested by Raghu et al. (2017). No
threshold reveals the structure of the network.

F.3. CKA at Initialization

Figure F.4. Similarity of the Plain-18 network at initialization. Left:
Similarity between layers of the same network. Middle: Similarity
between untrained networks with different initializations. Right:
Similarity between untrained and trained networks.

Figure F.5. Similarity between layers at initialization for deeper
architectures.

F.4. Additional CKA Results

Figure F.6. Networks with and without batch normalization trained
from different random initializations learn similar representations
according to CKA. The largest difference between networks is at
the last convolutional layer. Optimal hyperparameters were sepa-
rately selected for the batch normalized network (93.9% average
accuracy) and the network without batch normalization (91.5%
average accuracy).

Figure F.7. Within-class CKA is similar to CKA based on all exam-
ples. To measure within-class CKA, we computed CKA separately
for examples belonging to each CIFAR-10 class based on represen-
tations from Plain-10 networks, and averaged the resulting CKA
values across classes.

Similarity of Neural Network Representations Revisited

F.5. Similarity Between Different Architectures with Other Indexes

Figure F.8. Similarity between layers of different architectures (Tiny-10 and ResNet-14) for all methods investigated. Only CKA reveals
meaningful correspondence. SVCCA results resemble Figure 7 of Raghu et al. (2017). In order to achieve better performance for
CCA-based techniques, which are sensitive to the number of examples used to compute similarity, all plots show similarity on the
CIFAR-10 training set.

