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A. Making SAGA Robust to Stochastic Perturbations

Algorithm 3 Iteration (A) with SAGA estimator

1: Input: x0 in Rp (initial point); K (number of iterations); (ηk)k≥0 (step sizes); β ∈ [0, µ]; if averaging, γ0 ≥ µ.
2: Initialization: zi0 = ∇̃fi(x0)− βx0 for all i = 1, . . . , n and z̄0 = 1

n

∑n
i=1 z

i
0.

3: for k = 1, . . . ,K do
4: Sample ik according to the distribution Q = {q1, . . . , qn};
5: Compute the gradient estimator, possibly corrupted by random perturbations:

gk =
1

qikn

(
∇̃fik(xk–1)− βxk–1 − zikk–1

)
+ z̄k–1 + βxk–1;

6: Obtain the new iterate
xk ← Proxηkψ [xk–1 − ηkgk] ;

7: Draw jk from the uniform distribution in {1, . . . , n};
8: Update the auxiliary variables

zjkk = ∇̃fjk(xk)− βxk and zjk = zjk–1 for all j 6= jk;

9: Update the average variable z̄k = z̄k–1 + 1
n (zjkk − z

jk
k–1).

10: Optional: Use the same averaging strategy as in Algorithm 1.
11: end for
12: Output: xk or x̂k (if averaging).

B. Details about the Experimental Setup
We consider three datasets with various number of points n and dimension p, coming from different scientific fields:

• alpha is from the Pascal Large Scale Learning Challenge website1 and contains n = 250 000 with p = 500.

• gene consists of gene expression data and the binary labels bi characterize two different types of breast cancer. This is
a small dataset with n = 295 and p = 8 141.

• ckn-cifar is an image classification task where each image from the CIFAR-10 dataset2 is represented by using a
two-layer unsupervised convolutional neural network (Mairal, 2016). Since CIFAR-10 originally contains 10 different
classes, we consider the binary classification task consisting of predicting the class 1 vs. other classes. The dataset
contains n = 50 000 images and the dimension of the representation is p = 9 216.

For simplicity, we normalize the features of all datasets and thus we use a uniform sampling strategy Q in all algorithms.
Then, we consider several methods with their theoretical step sizes, described in Table 1. Note that we also evaluate the
strategy random-SVRG with step size 1/3L, even though our analysis requires 1/12L, in order to get a fair comparison
with the accelerated SVRG method. In all figures, we consider that n iterations of SVRG count as 2 effective passes over
the data since it appears empirically to be a good proxy of the computational time. Indeed, (i) if one is allowed to store
all variables zki , then n iterations indeed correspond to two passes over the data; (ii) the gradients ∇̃fi(xk–1)− ∇̃fi(x̃k–1)
access the same training point which reduces the data access overhead; (iii) computing the full gradient z̄k can be done in
practice in a much more efficient manner than computing individually the n gradients ∇̃fi(xk), either through parallelization

1http://largescale.ml.tu-berlin.de/
2https://www.cs.toronto.edu/˜kriz/cifar.html

http://largescale.ml.tu-berlin.de/
https://www.cs.toronto.edu/~kriz/cifar.html
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or by using more efficient routines (e.g., BLAS2). Each experiment is conducted five times and we always report the average
of the five experiments in each figure.

To evaluate the quality of a solution, when σ̃2 = 0, we can check that the value F ∗ we consider is optimal by computing a
duality gap using Fenchel duality. In the stochastic case when σ̃2 6= 0, we evaluate the loss function every 5 data passes and
we estimate the expectation (16) by drawing 5 random perturbations per data point, resulting in 5n samples. The optimal
value F ∗ is estimated by letting the methods run for 1000 epochs and selecting the best point found as a proxy of F ∗.

Algorithm step size ηk Theory Complexity O(.) Bias O(.)

SGD 1
L Cor. 1 L

µ log
(
C0

ε

)
σ2

L

SGD-d min
(

1
L ,

2
µ(k+2)

)
Cor. 2 L

µ log
(
C0

ε

)
+ σ2

µε 0

acc-SGD 1
L Cor. 5

√
L
µ log

(
C0

ε

)
σ2
√
µL

acc-SGD-d min
(

1
L ,

4
µ(k+2)2

)
Cor. 6

√
L
µ log

(
C0

ε

)
+ σ2

µε 0

acc-mb-SGD-d min
(

1
L ,

4
µ(k+2)2

)
Cor. 6 L

µ log
(
C0

ε

)
+ σ2

µε 0

rand-SVRG 1
12L Cor. 3

(
n+ L

µ

)
log
(
C0

ε

)
σ̃2

L

rand-SVRG-d min
(

1
12LQ

, 1
5µn ,

2
µ(k+2)

)
Cor. 4

(
n+ L

µ

)
log
(
C0

ε

)
+ σ̃2

µε 0

acc-SVRG min
(

1
3LQ

, 1
15µn

)
Cor. 7

(
n+

√
nL
µ

)
log
(
C0

ε

)
σ̃2

√
nµL+nµ

acc-SVRG-d min
(

1
3LQ

, 1
15µn ,

12n
5µ(k+2)2

)
Cor. 8

(
n+

√
nL
µ

)
log
(
C0

ε

)
+ σ̃2

µε 0

Table 1. List of algorithms used in the experiments, along with the step size used and the pointer to the corresponding convergence
guarantees, with C0 = F (x0)− F ∗. In the experiments, we also use the method rand-SVRG with step size η = 1/3L. The approach
acc-mb-SGD-d uses minibatches of size d

√
L/µe and could thus easily be parallelized. Note that we potentially have σ̃ � σ.

C. Useful Mathematical Results
C.1. Simple Results about Convexity and Smoothness

The next three lemmas are classical upper and lower bounds for smooth or strongly convex functions (Nesterov, 2004).

Lemma C.1 (Quadratic upper bound for L-smooth functions).
Let f : Rp → R be L-smooth. Then, for all x, x′ in Rp,

|f(x′)− f(x)−∇f(x)>(x′ − x)| ≤ L

2
‖x− x′‖2.

Lemma C.2 (Lower bound for strongly convex functions).
Let f : Rp → R be a µ-strongly convex function. Let z be in ∂f(x) for some x in Rp. Then, the following inequality holds
for all x′ in Rp:

f(x′) ≥ f(x) + z>(x′ − x) +
µ

2
‖x− x′‖2.

Lemma C.3 (Second-order growth property).
Let f : Rp → R be a µ-strongly convex function and X ⊆ Rp be a convex set. Let x∗ be the minimizer of f on X . Then, the
following condition holds for all x in X :

f(x) ≥ f(x∗) +
µ

2
‖x− x∗‖2.

C.2. Useful Results to Select Step Sizes

In this section, we present basic mathematical results regarding the choice of step sizes. The proof of the first two lemmas is
trivial by induction.

Lemma C.4 (Relation between (δk)k≥0 and (Γk)k≥0). Consider the following scenarios for δk and Γk =
∏k
t=1(1− δt):

• δk = δ (constant). Then Γk = (1− δ)k.
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• δk = 2/(k + 2). Then, Γk = 2
(k+1)(k+2) .

• δk = min(2/(k + 2), δ). Then,

Γk =

{
(1− δ)k if k < k0 with k0 =

⌈
2
δ − 2

⌉
Γk0−1

k0(k0+1)
(k+1)(k+2) otherwise.

Lemma C.5 (Simple relation). Consider a sequence of weights (δk)k≥0 in (0, 1). Then,

k∑
t=1

δt
Γt

+ 1 =
1

Γk
where Γt :=

t∏
i=1

(1− δi). (17)

Lemma C.6 (Convergence rate of Γk). Consider the same quantities defined in the previous lemma and consider the
sequence γk = (1 − δk)γk–1 + δkµ = Γkγ0 + (1 − Γk)µ with γ0 ≥ µ, and assume the relation δk = γkη. Then, for all
k ≥ 0,

Γk ≤ min

(
(1− µη)

k
,

1

1 + γ0ηk

)
. (18)

Besides,

• when γ0 = µ, then Γk = (1− µη)k.

• when µ = 0, Γk = 1
1+γ0ηk

.

Proof. First, we have for all k, γk ≥ µ such that δk ≥ ηµ, which leads then to Γk ≤ (1− ηµ)
k. Besides, γk ≥ Γkγ0 and

thus Γk = (1− δk)Γk–1 ≤ (1− Γkγ0η) Γk–1. Then, 1
Γk

(1− Γkγ0η) ≥ 1
Γk–1

, and

1

Γk
≥ 1

Γk–1
+ γ0η ≥ 1 + γ0ηk,

which is sufficient to obtain (18). Then, the fact that γ0 = µ leads to Γk = (1 − µη)k is trivial, and the fact that µ = 0
yields Γk = 1

1+γ0ηk
can be shown by induction. Indeed, the relation is true for Γ0 and then, assuming the relation is true for

k − 1, we have for k ≥ 1,

Γk = (1− δk)Γk–1 = (1− ηγk)Γk–1 = (1− ηγ0Γk)Γk–1 ≥ (1− ηγ0Γk)
1

1 + γ0η(k–1)
,

which leads to Γk = 1
1+γ0ηk

.

Lemma C.7 (Accelerated convergence rate of Γk). Consider the same quantities defined in Lemma C.5 and consider the
sequence γk = (1− δk)γk–1 + δkµ = Γkγ0 + (1− Γk)µ with γ0 ≥ µ, and assume the relation δk =

√
γkη. Then, for all

k ≥ 0,

Γk ≤ min

(
(1−√µη)

k
,

4

(2 +
√
γ0ηk)2

)
.

Besides, when γ0 = µ, then Γk = (1−√µη)k.

Proof. see Lemma 2.2.4 of (Nesterov, 2004).

C.3. Averaging Strategy

Next, we show a generic convergence result and an appropriate averaging strategy given a recursive relation between
quantities acting as Lyapunov function.
Lemma C.8 (Averaging strategy). Assume that an algorithm generates a sequence (xk)k≥0 for minimizing a convex
function F , and that there exist sequences (Tk)k≥0, (δk)k≥1 in (0, 1), (βk)k≥1 and a scalar α > 0 such that for all k ≥ 1,

δk
α
E[F (xk)− F ∗] + Tk ≤ (1− δk)Tk–1 + βk, (19)

where the expectation is taken with respect to any random parameter used by the algorithm. Then, we consider two cases:
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No averaging.

E[F (xk)− F ∗] +
α

δk
Tk ≤

αΓk
δk

(
T0 +

k∑
t=1

βt
Γt

)
where Γk :=

k∏
t=1

(1− δt). (20)

Averaging. By defining the averaging sequence (x̂k)k≥0,

x̂k = Γk

(
x0 +

k∑
t=1

δt
Γt
xt

)
= (1− δk)x̂k–1 + δkxk (for k ≥ 1),

then,

E[F (x̂k)− F ∗] + αTk ≤ Γk

(
αT0 + E[F (x0)− F ∗] + α

k∑
t=1

βt
Γt

)
. (21)

Proof. Given that Tk ≤ (1− δk)Tk–1 + βk, we obtain (20) by simply unrolling the recursion. To analyze the effect of the
averaging strategies, divide now (19) by Γk:

δk
αΓk

E[F (xk)− F ∗] +
Tk
Γk
≤ Tk–1

Γk–1
+
βk
Γk
.

Sum from t = 1 to k and notice that we have a telescopic sum:

1

α

k∑
t=1

δt
Γt

E[F (xt)− F ∗] +
Tk
Γk
≤ T0 +

k∑
t=1

βt
Γt
.

Then, add (1/α)E[F (x0)− F ∗] on both sides and multiply by αΓk:

k∑
t=1

δtΓk
Γt

E[F (xt)− F ∗] + ΓkE[F (x0)− F ∗] + αTk ≤ Γk

(
αT0 + E[F (x0)− F ∗] + α

k∑
t=1

βt
Γt

)
.

By exploiting the relation (17), we may then use Jensen’s inequality and we obtain (21).

D. Proofs of the Main Results
D.1. Proof of Proposition 1

Proof.

d∗k = dk(xk) = (1− δk)dk–1(xk) + δk

(
f(xk–1) + g>k (xk − xk–1) +

µ

2
‖xk − xk–1‖2 + ψ(xk)

)
≥ (1− δk)d∗k–1 +

γk
2
‖xk − xk–1‖2 + δk

(
f(xk–1) + g>k (xk − xk–1) + ψ(xk)

)
≥ (1− δk)d∗k–1 + δk

(
f(xk–1) + g>k (xk − xk–1) +

L

2
‖xk − xk–1‖2 + ψ(xk)

)
≥ (1− δk)d∗k–1 + δkF (xk) + δk(gk −∇f(xk–1))>(xk − xk–1),

where the first inequality comes from Lemma C.3—it is in fact an equality when considering Algorithm (A)—and the
second inequality simply uses the assumption ηk ≤ 1/L, which yields δk = γkηk ≤ γk/L. Finally, the last inequality uses
a classical upper-bound for L-smooth functions presented in Lemma C.1. Then, after taking expectations,

E[d∗k] ≥ (1− δk)E[d∗k–1] + δkE[F (xk)] + δkE[(gk −∇f(xk–1))>(xk − xk–1)]

= (1− δk)E[d∗k–1] + δkE[F (xk)] + δkE[(gk −∇f(xk–1))>xk]

= (1− δk)E[d∗k–1] + δkE[F (xk)] + δkE
[
(gk −∇f(xk–1))> (xk − wk–1)

]
,

where we have defined the following quantity

wk–1 = Proxηkψ [xk–1 − ηk∇f(xk–1)] .
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In the previous relations, we have used twice the fact that E[(gk −∇f(xk–1))>y|Fk–1] = 0, for all y that is deterministic
given xk–1 such as y = xk–1 or y = wk–1. We may now use the non-expansiveness property of the proximal operator (Moreau,
1965) to control the quantity ‖xk − wk–1‖, which gives us

E[d∗k] ≥ (1− δk)E[d∗k–1] + δkE[F (xk)]− δkE [‖gk −∇f(xk–1)‖‖xk − wk–1‖]
≥ (1− δk)E[d∗k–1] + δkE[F (xk)]− δkηkE

[
‖gk −∇f(xk–1)‖2

]
= (1− δk)E[d∗k–1] + δkE[F (xk)]− δkηkσ2

k.

This relation can now be combined with (8) when z = x∗, and we obtain (11).

D.2. Proof of Corollary 2

Proof. Given the linear convergence rate (12), the number of iterations to guarantee E[F (x̂k) − F ∗] ≤ 2σ2/L with the
constant step-size strategy is upper bounded by

O

(
L

µ
log

(
F (x0)− F ∗

ε

))
.

Then, after restarting the algorithm, we may apply Theorem 1 with E[F (x0) − F ∗] ≤ 2σ2/L. With γ0 = µ, we have
γk = µ for all k ≥ 0, and the rate of Γk is given by Lemma C.4, which yields for k ≥ k0 =

⌈
2L
µ − 2

⌉
,

E[F (x̂k)− F ∗] ≤ Γk

(
E
[
F (x0)− F ∗ +

µ

2
‖x0 − x∗‖2

]
+ σ2

k∑
t=1

δtηt
Γt

)

≤ Γk

(
4σ2

L
+
σ2

L

k0−1∑
t=1

δt
Γt

+ σ2
k∑

t=k0

2δt
Γtµ(t+ 2)

)

=
k0(k0 + 1)

(k + 1)(k + 2)

(
Γk0−1

4σ2

L
+
σ2

L
Γk0−1

k0−1∑
t=1

δt
Γt

)
+ σ2

k∑
t=k0

2δtΓk
Γtµ(t+ 2)

=
k0(k0 + 1)

(k + 1)(k + 2)

(
Γk0−1

4σ2

L
+ (1− Γk0−1)

σ2

L

)
+ σ2

k∑
t=k0

2δtΓk
Γtµ(t+ 2)

≤ k0(k0 + 1)

(k + 1)(k + 2)

4σ2

L
+ σ2 1

(k + 1)(k + 2)

(
k∑

t=k0+1

4(t+ 1)(t+ 2)

µ(t+ 2)2

)

≤ k0

(k + 1)(k + 2)

8σ2

µ
+

4σ2

µ(k + 2)
,

where the second inequality uses the fact that µ2 ‖x0 − x∗‖2 ≤ F (x0)− F ∗ ≤ 2σ2

L , and then we use Lemmas C.4 and C.5.
The term on the right is of order O(σ2/µk) whereas the term on the left becomes of the same order or smaller whenever
k ≥ k0 = O(L/µ). This leads to the desired iteration complexity.

D.3. Proof of Proposition 2

Proof. The proof borrows a large part of the analysis of Xiao & Zhang (2014) for controlling the variance of the gradient
estimate in the SVRG algorithm. First, we note that all the gradient estimators we consider may be written as

gk =
1

qikn

(
∇̃fik(xk–1)− zikk–1

)
+ z̄k–1.
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Then, we will write ∇̃fik(xk–1) = ∇fik(xk–1) + ζk, where ζk is a zero-mean variable with variance σ̃2 drawn at iteration k,
and zik = uik + ζik for all k, i, where ζik has zero-mean with variance σ̃2 and was drawn during the previous iterations. Then,

σ2
k = E

∥∥∥∥ 1

qikn
(∇̃fik(xk–1)− zikk–1) + z̄k–1 −∇f(xk–1)

∥∥∥∥2

= E
∥∥∥∥ 1

qikn
(∇fik(xk–1)− zikk–1) + z̄k–1 −∇f(xk–1)

∥∥∥∥2

+ E
[

1

(qikn)2
‖ζk‖2

]
≤ E

∥∥∥∥ 1

qikn
(∇fik(xk–1)− zikk–1) + z̄k–1 −∇f(xk–1)

∥∥∥∥2

+ ρQσ̃
2

≤ E
∥∥∥∥ 1

qikn
(∇fik(xk–1)− zikk–1)

∥∥∥∥2

+ ρQσ̃
2

=
1

n

n∑
i=1

1

qin
E
[
‖∇fi(xk–1)− zik–1‖2

]
+ ρQσ̃

2

=
1

n

n∑
i=1

1

qin
E
[
‖∇fi(xk–1)− ui∗ + ui∗ − zik–1‖2

]
+ ρQσ̃

2 with u∗i = ∇fi(x∗)

≤ 2

n

n∑
i=1

1

qin
E
[
‖∇fi(xk–1)− ui∗‖2

]
+

2

n

n∑
i=1

1

qin
E
[
‖zik–1 − ui∗‖2

]
+ ρQσ̃

2

≤ 2

n

n∑
i=1

1

qin
E
[
‖∇fi(xk–1)−∇fi(x∗))‖2

]
+

2

n

n∑
i=1

1

qin
E
[
‖uik–1−ui∗‖2

]
+ 3ρQσ̃

2

≤ 4

n

n∑
i=1

Li
qin

E
[
fi(xk–1)−fi(x∗)−∇fi(x∗)>(xk–1−x∗)

]
+

2

n

n∑
i=1

1

qin
E
[
‖uik–1−ui∗‖2

]
+3ρQσ̃

2

≤ 4LQE
[
f(xk–1)− f(x∗)−∇f(x∗)>(xk–1 − x∗)

]
+

2

n

n∑
i=1

1

qin
E
[
‖uik–1 − ui∗‖2

]
+ 3ρQσ̃

2,

where the second inequality uses the relation E[‖X−E[X]‖2] ≤ E[‖X‖2] for all random variableX , taking here expectation
with respect to the index ik ∼ Q and conditioning on Fk–1; the third inequality uses the relation ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2;
the fifth inequality uses Theorem 2.1.5 of (Nesterov, 2004).

Then, since x∗ minimizes F , we have 0 ∈ ∇f(x∗) + ∂ψ(x∗) and thus −∇f(x∗) is a subgradient in ∂ψ(x∗). By using as
well the convexity inequality ψ(x) ≥ ψ(x∗)−∇f(x∗)>(x− x∗), we obtain

f(xk–1)− f(x∗)−∇f(x∗)>(xk–1 − x∗) ≤ 2LQ(F (xk–1)− F ∗).

Finally, given the previous relations, we obtain (13).

D.4. Proof of Proposition 3

Proof. To make the notation more compact, we call

Fk = E[F (xk)− F ∗], Dk = E[dk(x∗)− d∗k] and Ck = E

[
1

n

n∑
i=1

1

qin
‖uik − ui∗‖2

]
.

Then, according to Proposition 2, we have

σ2
k ≤ 4LQFk–1 + 2Ck–1 + 3ρQσ̃

2,

and according to Proposition 1,

δkFk +Dk ≤ (1− δk)Dk–1 + 4LQηkδkFk–1 + 2ηkδkCk–1 + 3ρQηkδkσ̃
2. (22)
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Then, we note that both for the SVRG and SAGA, we have,

E[‖uik − ui∗‖2] =

(
1− 1

n

)
E[‖uik–1 − ui∗‖2] +

1

n
E‖∇fi(xk)−∇fi(x∗)‖2.

By taking a weighted average, this yields

Ck ≤
(

1− 1

n

)
Ck–1 +

1

n2

n∑
i=1

1

qin
E
[
‖∇fi(xk)−∇fi(x∗)‖2

]
≤
(

1− 1

n

)
Ck–1 +

1

n2

n∑
i=1

2Li
qin

E
[
fi(xk)− fi(x∗)−∇fi(x∗)>(xk − x∗)

]
≤
(

1− 1

n

)
Ck–1 +

2LQFk
n

,

where the second inequality comes from Theorem 2.1.5 of (Nesterov, 2004) and the last one uses similar arguments as in the
proof of Proposition 2. Then, we add a quantity βkCk on both sides of the relation (22) with some βk > 0 that we will
specify later:(
δk − βk

2LQ
n

)
Fk +Dk + βkCk ≤ (1− δk)Dk–1 +

(
βk

(
1− 1

n

)
+ 2ηkδk

)
Ck–1 + 4LQηkδkFk–1 + 3ρQηkδkσ̃

2,

and then choose βk

n = 5
2ηkδk, which yields

δk (1− 5LQηk)Fk +Dk + βkCk ≤ (1− δk)Dk–1 + βk

(
1− 1

5n

)
Ck–1 + 4LQηkδkFk–1 + 3ρQηkδkσ̃

2.

Remember that τk = min
(
δk,

1
5n

)
, notice that the sequences (βk)k≥0, (ηk)k≥0 and (δk)k≥0 are non-increasing and note

that 4 ≤ 5(1− 1
5n ) for all n ≥ 1. Then,

δk (1− 10LQηk)Fk + 5LQηkδk +Dk + βkCk︸ ︷︷ ︸
Tk

≤ (1− τk) (Dk–1 + βk–1Ck–1 + 5LQηk–1δk–1Fk–1) + 3ρQηkδkσ̃
2,

which immediately yields (14) with the appropriate definition of Tk, and by noting that (1− 10LQηk) ≥ 1
6 .

D.5. Proof of Corollary 3

Proof. First, notice that (i) Tk ≥ dk(x∗)−d∗k ≥
µ
2 ‖xk−x

∗‖2, that (ii) δk = ηkγk = µ
12LQ

and that µ τkδk = min
(
µ,

12LQ

5n

)
.

Then, we apply Theorem 2 and obtain

E
[
F (x̂k)− F ∗ + α‖xk − x∗‖2

]
≤ Θk

(
F (x0)− F ∗ +

6τk
δk

T0 +
18ρQτkσ̃

2

δk

k∑
t=1

ηtδt
Θt

)

= Θk

(
F (x0)− F ∗ +

6τk
δk

T0 +
3ρQσ̃

2

2LQ

k∑
t=1

τt
Θt

)

≤ Θk

(
F (x0)− F ∗ +

6τk
δk

T0

)
+

3ρQσ̃
2

2LQ
.

Then, note that

T0 =
5δ0
12

(F (x0)− F ∗) +
µ

2
‖x0 − x∗‖2 +

5δ0
24LQn

n∑
i=1

1

qin
‖ui0 − ui∗‖2

≤ 5δ0
12

(F (x0)− F ∗) +
µ

2
‖x0 − x∗‖2 +

5δ0
12

(F (x0)− F ∗),

where the inequality comes from Theorem 2.1.5 of (Nesterov, 2004) and the definition of the ui0’s. Then, we conclude by
noting that 5τ ≤ 1, and that α ≤ 3µ and we use Lemma C.3.
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D.6. Proof of Corollary 4

Proof. We start by following similar steps as in the proof of Corollary 3 to study the convergence of the first phase with
constant step size. We note that with the choice of ηk, we have δk = τk for all k. Then, we apply Theorem 2 and obtain

E
[
F (x̂k)− F ∗ + 3µ‖xk − x∗‖2

]
≤ Θk

(
F (x0)− F ∗ + 6T0 + 18ρQσ̃

2η

k∑
t=1

τt
Θt

)
≤ Θk (F (x0)− F ∗ + 6T0) + 18ρQσ̃

2η.

Then, we use the same upper-bound on T0 as in the proof of Corollary 3, giving us 6T0 ≤ 5δ0(F (x0)−F ∗)+3µ‖x0−x∗‖2 ≤
7(F (x0)− F ∗) since δ0 = µη ≤ 1/5, which is sufficient to conclude that

E
[
F (x̂k)− F ∗ + 3µ‖xk − x∗‖2

]
≤ 8Θk (F (x0)− F ∗) + 18ρQησ̃

2. (23)

Then, we restart the procedure. Since the convergence rate (23) applies for the first stage with a constant step size, the
number of iterations to ensure the condition E[F (x̂k)− F ∗] ≤ 24ηρQσ̃

2 is upper bounded by K with

K = O

((
n+

LQ
µ

)
log

(
F (x0)− F ∗

ε

))
.

Then, we restart the optimization procedure, assuming from now on that E[F (x0)− F ∗] ≤ 24ηρQσ̃
2, with decreasing step

sizes ηk = min
(

2
µ(k+2) , η

)
, Then, since δk = µηk ≤ 1

5n , we have that τk = δk for all k, and Theorem 2 gives us—note
that here Γk = Θk—

E [F (x̂k)− F ∗] ≤ Γk

(
F (x0)− F ∗ + 6T0 + 18ρQσ̃

2
k∑
t=1

ηtδt
Γt

)
with Γk =

k∏
t=1

(1− δt).

Then, as noted in the proof of Corollary 4, we have 6T0 ≤ 7(F (x0)− F ∗). Then, after taking the expectation with respect
to the output of the first stage,

E [F (x̂k)− F ∗] ≤ Γk

(
8E[F (x0)− F ∗] + 18ρQσ̃

2
k∑
t=1

ηtδt
Γt

)

≤ Γk

(
192ρQησ̃

2 + 18ρQσ̃
2

k∑
t=1

ηtδt
Γt

)
.

Denote now by k0 the largest index such that 2
µ(k0+2) ≥ η and thus k0 = d2/(µη)− 2e. Then, according to Lemma C.4, for

k ≥ k0,

E [F (x̂k)− F ∗] ≤ Γk

(
192ρQησ̃

2 + 18ρQησ̃
2
k0−1∑
t=1

δt
Γt

+ 18ρQσ̃
2

k∑
t=k0

2δt
µΓt(t+ 2)

)

≤ k0(k0 + 1)

(k + 1)(k + 2)

(
Γk0−1192ρQησ̃

2 + 18ηρQσ̃
2Γk0−1

k0−1∑
t=1

δt
Γt

)
+ 36ρQσ̃

2
k∑

t=k0

δtΓk
µΓt(t+ 2)

≤ k0(k0 + 1)

(k + 1)(k + 2)
192ηρQσ̃

2 + 36ρQσ̃
2

k∑
t=k0

(t+ 1)(t+ 2)

µ(k + 1)(k + 2)(t+ 2)2

≤ k0η

k + 2
192ρQσ̃

2 +
36ρQσ̃

2

µ(k + 2)
= O

(
ρQσ̃

2

µk

)
,

which gives the desired complexity.
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D.7. Proof of Theorem 3

Proof. First, the minimizer vk of the quadratic surrogate dk may be written as

vk =
(1− δk)γk–1

γk
vk–1 +

µδk
γk

yk–1 −
δk
γk
g̃k

= yk–1 +
(1− δk)γk–1

γk
(vk–1 − yk–1)− δk

γk
g̃k.

Then, we characterize the quantity d∗k:

d∗k = dk(yk–1)− γk
2
‖vk − yk–1‖2

= (1− δk)dk–1(yk–1) + δklk(yk–1)− γk
2
‖vk − yk–1‖2

= (1− δk)
(
d∗k–1 +

γk–1

2
‖yk–1 − vk–1‖2

)
+ δklk(yk–1)− γk

2
‖vk − yk–1‖2

= (1− δk)d∗k–1 +

(
γk–1(1− δk)(γk − (1− δk)γk–1)

2γk

)
‖yk–1 − vk–1‖2 + δklk(yk–1)

− δ2
k

2γk
‖g̃k‖2 +

δk(1− δk)γk–1

γk
g̃>k (vk–1 − yk–1)

≥ (1− δk)d∗k–1 + δklk(yk–1)− δ2
k

2γk
‖g̃k‖2 +

δk(1− δk)γk–1

γk
g̃>k (vk–1 − yk–1).

Assuming by induction that E[d∗k–1] ≥ E[F (xk–1)]− ξk–1 for some ξk–1 ≥ 0, we have after taking expectation

E[d∗k] ≥ (1− δk)(E[F (xk–1)]− ξk–1) + δkE[lk(yk–1)]− δ2
k

2γk
E‖g̃k‖2 +

δk(1− δk)γk–1

γk
E[g̃>k (vk–1 − yk–1)].

Then, note that E[F (xk–1)] ≥ E[lk(xk–1)] ≥ E[lk(yk–1)] + E[g̃>k (xk–1 − yk–1)], and

E[d∗k] ≥ E[lk(yk–1)]− (1− δk)ξk–1 −
δ2
k

2γk
E‖g̃k‖2 + (1− δk)E

[
g̃>k

(
δkγk–1

γk
(vk–1 − yk–1) + (xk–1 − yk–1)

)]
.

By Lemma 1, we can show that the last term is equal to zero, and we are left with

E[d∗k] ≥ E[lk(yk–1)]− (1− δk)ξk–1 −
δ2
k

2γk
E‖g̃k‖2.

We may then use Lemma 2, which gives us

E[d∗k] ≥ E[F (xk)]− (1− δk)ξk–1 − ηkσ2
k +

(
ηk −

Lη2
k

2
− δ2

k

2γk

)
E‖g̃k‖2

≥ E[F (xk)]− ξk with ξk = (1− δk)ξk–1 + ηkσ
2
k,

where we used the fact that ηk ≤ 1/L and δk =
√
γkηk.

It remains to choose d∗0 = F (x0) and ξ0 = 0 to initialize the induction at k = 0 and we conclude that

E
[
F (xk)− F ∗ +

γk
2
‖vk − x∗‖2

]
≤ E[dk(x∗)− F ∗] + ξk ≤ Γk(d0(x∗)− F ∗) + ξk,

which gives us the desired result when noticing that ξk = Γk
∑k
t=1

ηtσ
2
t

Γt
.
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D.8. Proof of Lemma 1

Proof. Let us assume that the relation yk–1 = θk–1xk–1 + (1 − θk–1)vk–1 holds and let us show that it also holds for yk.
Since the estimate sequences dk are quadratic functions, we have

vk = (1− δk)
γk–1

γk
vk–1 +

µδk
γk

yk–1 −
δk
γk

(gk + ψ′(xk))

= (1− δk)
γk–1

γk
vk–1 +

µδk
γk

yk–1 −
δk
γkηk

(yk–1 − xk)

= (1− δk)
γk–1

γk(1− θk–1)
(yk–1 − θk–1xk–1) +

µδk
γk

yk–1 −
δk
γkηk

(yk–1 − xk)

= (1− δk)
γk–1

γk(1− θk–1)
(yk–1 − θk–1xk–1) +

µδk
γk

yk–1 −
1

δk
(yk–1 − xk)

=

(
(1− δk)γk–1

γk(1− θk–1)
+
µδk
γk
− 1

δk

)
yk–1 −

(1− δk)γk–1θk–1

γk(1− θk–1)
xk–1 +

1

δk
xk

=

(
1 +

(1− δk)γk–1θk–1

γk(1− θk–1)
− 1

δk

)
yk–1 −

(1− δk)γk–1θk–1

γk(1− θk–1)
xk–1 +

1

δk
xk.

Then note that 1− θk–1 = δkγk–1
γk–1+δkµ

and thus, γk–1θk–1
γk(1−θk–1) = 1

δk
, and

vk = xk–1 +
1

δk
(xk − xk–1).

Then, we note that xk − xk–1 = δk
1−δk (vk − xk) and we are left with

yk = xk + βk(xk − xk–1) =
βkδk

1− δk
vk +

(
1− βkδk

1− δk

)
xk.

Then, it is easy to show that

βk =
(1− δk)δk+1γk

δk(γk+1 + δk+1γk)
=

(1− δk)δk+1γk
δk(γk + δk+1µ)

=
(1− δk)(1− θk)

δk
,

which allows us to conclude that yk = θkxk + (1− θk)vk since the relation holds trivially for k = 0.

D.9. Proof of Lemma 2

Proof.

E[F (xk)] = E[f(xk) + ψ(xk)]

≤ E
[
f(yk–1) +∇f(yk–1)>(xk − yk–1) +

L

2
‖xk − yk–1‖2 + ψ(xk)

]
= E

[
f(yk–1) + g>k (xk − yk–1) +

L

2
‖xk − yk–1‖2 + ψ(xk)

]
+ E

[
(∇f(yk–1)− gk)>(xk − yk–1)

]
= E

[
f(yk–1) + g>k (xk − yk–1) +

L

2
‖xk − yk–1‖2 + ψ(xk)

]
+ E

[
(∇f(yk–1)− gk)>xk

]
= E

[
f(yk–1) + g>k (xk − yk–1) +

L

2
‖xk − yk–1‖2 + ψ(xk)

]
+ E

[
(∇f(yk–1)− gk)>(xk − wk–1)

]
≤ E

[
f(yk–1) + g>k (xk − yk–1) +

L

2
‖xk − yk–1‖2 + ψ(xk)

]
+ E [‖∇f(yk–1)− gk‖‖xk − wk–1‖]

≤ E
[
f(yk–1) + g>k (xk − yk–1) +

L

2
‖xk − yk–1‖2 + ψ(xk)

]
+ E

[
ηk‖∇f(yk–1)− gk‖2

]
= E

[
lk(yk–1) + g̃>k (xk − yk–1) +

L

2
‖xk − yk–1‖2

]
+ ηkσ

2
k,

≤ E [lk(yk–1)] +

(
Lη2

k

2
− ηk

)
E
[
‖g̃k‖2

]
+ ηkσ

2
k,
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where wk–1 = Proxηkψ[yk–1 − ηk∇f(yk–1)]. The first inequality is due to the L-smoothness of f (Lemma C.1); then, the
next three relations exploit the fact that E[(∇f(yk–1) − gk)>z = 0 for all z that is deterministic (which is the case for
yk–1 and wk–1); the second inequality uses the non-expansiveness of the proximal operator. Then, we use the fact that
xk = yk–1 − ηkg̃k.

D.10. Proof of Corollary 6

Proof. The proof is similar to that of Corollary 2 for unaccelerated SGD. The first stage with constant step-
size requires O

(√
L
µ log

(
F (x0)−F∗

ε

))
iterations. Then, we restart the optimization procedure, and assume that

E
[
F (x0)− F ∗ + µ

2 ‖x
∗ − x0‖2

]
≤ 2σ2
√
µL

. With the choice of parameters, we have γk = µ and δk =
√
γkηk =

min
(√

µ
L ,

2
k+2

)
. We may then apply Theorem 3 where the value of Γk is given by Lemma C.4. This yields for

k ≥ k0 =
⌈
2
√

L
µ − 2

⌉
,

E[F (xk)− F ∗] ≤ Γk

(
E
[
F (x0)− F ∗ +

µ

2
‖x0 − x∗‖2

]
+ σ2

k∑
t=1

ηt
Γt

)

≤ Γk

(
2σ2

√
µL

+
σ2

L

k0−1∑
t=1

1

Γt
+ σ2

k∑
t=k0

4

Γtµ(t+ 2)2

)

=
k0(k0 + 1)

(k + 1)(k + 2)

(
Γk0−1

2σ2

√
µL

+
σ2

L
Γk0−1

k0−1∑
t=1

1

Γt

)
+ σ2

k∑
t=k0

4Γk
Γtµ(t+ 2)2

=
k0(k0 + 1)

(k + 1)(k + 2)

(
Γk0−1

2σ2

√
µL

+ (1− Γk0−1)
σ2

√
µL

)
+ σ2

k∑
t=k0

4Γk
Γtµ(t+ 2)2

≤ k0(k0 + 1)

(k + 1)(k + 2)

2σ2

√
µL

+ σ2 1

(k + 1)(k + 2)

(
k∑

t=k0+1

4(t+ 1)(t+ 2)

µ(t+ 2)2

)

≤ k0

(k + 1)(k + 2)

4σ2

µ
+

4σ2

µ(k + 2)
≤ 8σ2

µ(k + 2)
,

where we use Lemmas C.4 and C.5. This leads to the desired iteration complexity.

D.11. Proof of Proposition 4

Proof.

σ2
k = E

∥∥∥∥ 1

qikn

(
∇̃fik(yk–1)− ∇̃fik(x̃k–1)

)
+ ∇̃f(x̃k–1)−∇f(yk–1)

∥∥∥∥2

= E
∥∥∥∥ 1

qikn
(∇fik(yk–1) + ζk − ζ ′k −∇fik(x̃k–1)) +∇f(x̃k–1) + ζ̄k–1 −∇f(yk–1)

∥∥∥∥2

,

≤ E
∥∥∥∥ 1

qikn
(∇fik(yk–1)−∇fik(x̃k–1)) +∇f(x̃k–1) + ζ̄k–1 −∇f(yk–1)

∥∥∥∥2

+ 2ρQσ̃
2,

where ζk and ζ ′k are perturbations drawn at iteration k, and ζ̄k–1 was drawn last time x̃k–1 was updated. Then, by noticing
that for any deterministic quantity Y and random variable X , we have E[‖X − E[X]− Y ‖2] ≤ E[‖X‖2] + ‖Y ‖2, taking
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expectation with respect to the index ik ∼ Q and conditioning on Fk–1, we have

σ2
k ≤ E

∥∥∥∥ 1

qikn
(∇fik(yk–1)−∇fik(x̃k–1))

∥∥∥∥2

+ E[‖ζ̄k–1‖2] + 2ρQσ̃
2

≤ 1

n

n∑
i=1

1

qin
E ‖∇fi(yk–1)−∇fi(x̃k–1)‖2 + 3ρQσ̃

2

≤ 1

n

n∑
i=1

2Li
qin

E
[
fi(x̃k–1)− fi(yk–1)−∇fi(yk–1)>(x̃k–1 − yk–1)

]
+ 3ρQσ̃

2

≤ 1

n

n∑
i=1

2LQE
[
fi(x̃k–1)− fi(yk–1)−∇fi(yk–1)>(x̃k–1 − yk–1)

]
+ 3ρQσ̃

2

= 2LQE
[
f(x̃k–1)− f(yk–1)−∇f(yk–1)>(x̃k–1 − yk–1)

]
+ 3ρQσ̃

2

= 2LQE
[
f(x̃k–1)− f(yk–1)− g>k (x̃k–1 − yk–1)

]
+ 3ρQσ̃

2,

(24)

where the second inequality uses the upper-bound E[‖ζ̄‖2] = σ2

n ≤ ρQσ
2, and the third one uses Theorem 2.1.5 in (Nesterov,

2004).

D.12. Proof of Lemma 3

Proof. We can show that Lemma 2 still holds and thus,

E[F (xk)] ≤ E [lk(yk–1)] +

(
Lη2

k

2
− ηk

)
E
[
‖g̃k‖2

]
+ ηkσ

2
k.

≤ E
[
lk(yk–1) + akf(x̃k–1)− akf(yk–1) + akg

>
k (yk–1 − x̃k–1)

]
+ E

[(
Lη2

k

2
− ηk

)
‖g̃k‖2

]
+ 3ρQηkσ̃

2,

Note also that

lk(yk–1) + f(x̃k–1)− f(yk–1) = ψ(xk) + ψ′(xk)>(yk–1 − xk) + f(x̃k–1)

≤ ψ(x̃k–1)− ψ′(xk)>(x̃k–1 − xk) + ψ′(xk)>(yk–1 − xk) + f(x̃k–1)

= F (x̃k–1) + ψ′(xk)>(yk–1 − x̃k–1).

Therefore, by noting that lk(yk–1) + akf(x̃k–1)− akf(yk–1) ≤ (1− ak)lk(yk–1) + akF (x̃k–1) + akψ
′(xk)>(yk–1 − x̃k–1),

we obtain the desired result.

D.13. Proof of Theorem 4

Proof. Following similar steps as in the proof of Theorem 3, we have

d∗k ≥ (1− δk)d∗k–1 + δklk(yk–1)− δ2
k

2γk
‖g̃k‖2 +

δk(1− δk)γk–1

γk
g̃>k (vk–1 − yk–1).

Assume now by induction that E[d∗k–1] ≥ E[F (x̃k–1)] − ξk–1 for some ξk–1 ≥ 0 and note that δk ≤ 1−ak
n since ak =

2LQηk ≤ 2
3 and δk =

√
5ηkγk

3n ≤ 1
3n ≤

1−ak
n . Then,

E[d∗k] ≥ (1− δk)(E[F (x̃k–1)]− ξk–1) + δkE[lk(yk–1)]− δ2
k

2γk
E[‖g̃k‖2] + E

[
g̃>k

(
δk(1− δk)γk–1

γk
(vk–1 − yk–1)

)]
≥
(

1− 1− ak
n

)
E[F (x̃k–1)] +

(
1− ak
n

− δk
)
E[F (x̃k–1)] + δkE[lk(yk–1)]− δ2

k

2γk
E[‖g̃k‖2]

+ E
[
g̃>k

(
δk(1− δk)γk–1

γk
(vk–1 − yk–1)

)]
− (1− δk)ξk–1.
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Note that

E[F (x̃k–1)] ≥ E[lk(x̃k–1)] ≥ E[lk(yk–1)] + E[g̃>k (x̃k–1 − yk–1)].

Then,

E[d∗k] ≥
(

1− 1− ak
n

)
E[F (x̃k–1)] +

1− ak
n

E[lk(yk–1)]− δ2
k

2γk
E[‖g̃k‖2]

+ E
[
g̃>k

(
δk(1− δk)γk–1

γk
(vk–1 − yk–1) +

(
1− ak
n

− δk
)

(x̃k–1 − yk–1)

)]
− (1− δk)ξk–1.

We may now use Lemma 3, which gives us

E[d∗k] ≥
(

1− 1

n

)
E[F (x̃k–1)] +

1

n
E[F (xk)] +

(
1

n

(
ηk −

Lη2
k

2

)
− δ2

k

2γk

)
E[‖g̃k‖2]

+ E
[
g̃>k

(
δk(1− δk)γk–1

γk
(vk–1 − yk–1) +

(
1

n
− δk

)
(x̃k–1 − yk–1)

)]
− ξk, (25)

with ξk = (1− δk)ξk–1 +
3ρQηkσ̃

2

n . Then, since δk =
√

5ηkγk
3n and ηk ≤ 1

3LQ
≤ 1

3L ,

1

n

(
ηk −

Lη2
k

2

)
− δ2

k

2γk
≥ 5ηk

6n
− δ2

k

2γk
= 0,

and the term in (25) involving ‖g̃k‖2 may disappear. Similarly, we have

δk(1− δk)γk–1

δk(1− δk)γk–1 + γk/n− δkγk
=
δkγk − δ2

kµ

γk/n− δ2
kµ

=
3nδ3

k/5ηk − δ2
kµ

3δ2
k/5ηk − δ2

kµ
=

3n− 5µηk
3− 5µηk

= θk,

and the term in (25) that is linear in g̃k may disappear as well. Then, we are left with E[d∗k] ≥ E[F (x̃k)]− ξk. Initializing the
induction requires choosing ξ0 = 0 and d∗0 = F (x0). Ultimately, we note that E[dk(x∗)−F ∗] ≤ (1− δk)E[dk–1(x∗)−F ∗]
for all k ≥ 1, and

E
[
F (x̃k)− F ∗+ γk

2
‖x∗ − vk‖2

]
≤ E[dk(x∗)− F ∗] + ξk ≤ Γk

(
F (x0)− F ∗+ γ0

2
‖x∗−x0‖2

)
+ ξk,

and we obtain the desired result.

D.14. Proof of Corollary 8

Proof. The proof is similar to that of Corollary 6 for accelerated SGD. The first stage with constant step-size η re-

quires O
((
n+

√
nLQ

µ

)
log
(
F (x0)−F∗

ε

))
iterations. Then, we restart the optimization procedure, and assume that

E [F (x0)− F ∗] ≤ B with B = 3ρQσ̃
2
√
η/µn.

With the choice of parameters, we have γk = µ and δk =
√

5µηk
3n = min

(√
5µη
3n ,

2
k+2

)
. We may then apply Theorem 4
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where the value of Γk is given by Lemma C.4. This yields for k ≥ k0 =
⌈√

12n
5µη − 2

⌉
,

E[F (xk)− F ∗] ≤ Γk

(
E
[
F (x0)− F ∗ +

µ

2
‖x0 − x∗‖2

]
+

3ρQσ̃
2

n

k∑
t=1

ηt
Γt

)

≤ Γk

(
2B +

3ρQσ̃
2η

n

k0−1∑
t=1

1

Γt
+

3ρQσ̃
2

n

k∑
t=k0

12n

5Γtµ(t+ 2)2

)

=
k0(k0 + 1)

(k + 1)(k + 2)

(
Γk0−12B +

3ρQσ̃
2η

n
Γk0−1

k0−1∑
t=1

1

Γt

)
+

36ρQσ̃
2

5µ

k∑
t=k0

Γk
Γt(t+ 2)2

=
k0(k0 + 1)

(k + 1)(k + 2)

(
Γk0−12B + (1− Γk0−1)

3ρQσ̃
2η

nδk0

)
+

36ρQσ̃
2

5µ

k∑
t=k0

Γk
Γt(t+ 2)2

≤ 2k0(k0 + 1)B

(k + 1)(k + 2)
+

8ρQσ̃
2

µ(k + 1)(k + 2)

(
k∑

t=k0+1

(t+ 1)(t+ 2)

(t+ 2)2

)

≤ 2k0B

k + 2
+

8ρQσ̃
2

µ(k + 2)
,

where we use Lemmas C.4 and C.5. Then, note that k0B ≤ 6ρQσ̃
2/µ and we obtain the right iteration complexity.


