
Faster Algorithms for Binary Matrix Factorization
(Supplementary Material)

Ravi Kumar 1 Rina Panigrahy 1 Ali Rahimi 1 David P. Woodruff 2

1. Proof of Theorem 7
Remark 1 Theorem 6 follows from the extension of the
algorithm for p = 1 described in the Introduction of
Charikar et al. (2002) to the setting with a relaxed trian-
gle inequality, and using the relaxed triangle inequality
‖x− z‖pp ≤ 2p−1(‖x− y‖pp + ‖y − z‖pp) for pth powers of
p-norms for any points x, y, and z.

Suppose we are given an instance A ∈ {0, 1}m×n of the
Bipartite Clique Partition problem with parameter k, and a
real number p ≥ 1. We first run the algorithm of Theorem
6 on the rows of A with parameter 2k. That is, we treat
the m rows of A as our pointset P of m points in Rn. By
the guarantee of Theorem 6, we output (C1, . . . , C2k) and
(c1, . . . , c2k) for which

2k∑
i=1

∑
x∈Ci

‖x− ci‖pp ≤ κpOPT2k .

The centers c1, . . . , c2k need not be binary, so we first trans-
form them. For eachCi, let di be the point x inCi for which
‖x− ci‖p is minimized.

We have,

2k∑
i=1

∑
x∈Ci

‖x− di‖pp

≤ 2p−1
2k∑
i=1

∑
x∈Ci

(‖x− ci‖pp + ‖ci − di‖pp)

≤ 2p
2k∑
i=2

∑
x∈Ci

‖x− ci‖pp ≤ 2pκpOPT2k ,

where the first inequality is the approximate triangle inequal-
ity for pth powers, the second inequality uses our choice of

1Google, 1600 Amphitheater Parkway, Mountain View, CA,
US. 2CMU, 5000 Forbes Ave, Pittsburgh, PA, US. Part of this
work was done while the author was visiting Google, and part
while visiting the Simons Institute for the Theory of Computing.
Correspondence to: David Woodruff <dwoodruf@cs.cmu.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

di, and the final inequality uses our guarantee on the ci.

We can define a row cluster indicator matrix I(A) as follows:
for each row of A, if the row is in Ci, then we replace it
with the point di.

Notice that

‖I(A)−A‖pp ≤ κpOPT2k , (1)

and further that I(A) is binary and has at most 2k distinct
rows. Further, note that for any matrices U ∈ {0, 1}m×k
and V ∈ {0, 1}k×n, the matrix U ·V has at most 2k distinct
rows. Consequently,

‖U · V −A‖pp ≤ OPT2k . (2)

Now suppose for a value C ≥ 1, we could find U ∈
{0, 1}m×k and V ∈ {0, 1}k×n for which

‖U · V − I(A)‖pp ≤ C · min
U ′,V ′

‖U ′ · V ′ − I(A)‖pp, (3)

where U ′ ∈ {0, 1}m×k, V ′ ∈ {0, 1}k×n here and below.
Then for this choice of U and V we would have:

‖U · V −A‖pp ≤ 2p−1(‖U · V − I(A)‖pp + ‖I(A)−A‖pp)

≤ 2p−1(C min
U ′,V ′

‖U ′ · V ′ − I(A)‖pp + ‖I(A)−A‖pp)

≤ 2p−1(C min
U ′,V ′

2p−1(‖U ′ · V ′ −A‖pp + ‖A− I(A)‖pp))

+2p−1‖I(A)−A‖pp
≤ 22p−2C min

U ′,V ′
‖U ′ · V ′ −A‖pp

+(22p−2C + 2p−1)‖A− I(A)‖pp
≤ 22p−2C min

U ′,V ′
‖U ′ · V ′ −A‖pp

+(22p−2C + 2p−1)κpOPT2k

≤ (22p−2C + (22p−2C + 2p−1)κp) min
U ′,V ′

‖U ′ · V ′ −A‖1,

where the first inequality is the approximate triangle inequal-
ity, the second inequality uses (3), the third inequality is
the approximate triangle inequality, the fourth inequality
rearranges terms, the fifth inequality uses (1), and the last
inequality uses (2). Hence, for constant C and p, this partic-
ularU and V would provide a constant factor approximation
to the Bipartite Clique Partition problem.



Faster Algorithms for Binary Matrix Factorization

Remark 2 It is tempting to try to force I(A) to have a small
number of distinct columns in addition to a small number
of distinct rows, but this in general may not be possible.
Indeed, after finding I(A) with at most 2k distinct rows, if
one then runs the algorithm of Theorem 6 on I(A) to obtain
another matrix with at most 2k distinct columns, then the
number of distinct rows could be much larger than 2k.

It remains to find U and V satisfying (3) for a constant
C ≥ 1. To do so, we will use recent advances in linear
algebra, in particular the following theorem concerning so-
called Lewis weight sampling.

Theorem 3 (Theorem 7.1 of Cohen & Peng (2015)) For
any m × k matrix U and m × n matrix B, there exists a
subset S of r = O(kdp/2e log k) rows and r × r diagonal
matrix D with entries between 1 and poly(m) for which

1. Simultaneously for all vectors x ∈ Rk,

‖DUSx‖pp = (1± 1/2)‖Ux‖pp,

2. ‖DBS‖pp ≤ 4‖B‖pp,

3. and the entries of D are powers of 2 and between 1
and poly(m).

Here for a matrix C, CS denotes the r × k submatrix of C
consisting of the rows in S.

Remark 4 Although Lewis weight sampling in Theorem
3 is not usually stated in this form, it can be deduced from
standard properties of Lewis weights. Namely, it is known
that if one samples O(kdp/2e log k) rows of U according to
the Lewis weights of U , and forms a sampling and rescaling
matrix D, where the jth row of D is equal to 1/pi if we
sample row i with probability pi in the jth repetition, then
the first property holds. In fact, such probabilities can be
rounded to powers of 2 since it suffices for the probabilities
to be over-estimates to the actual values, and this rounding
just increases the size of S by a factor of 2. Also, clearly all
entries ofD are at least 1. Also, with high probability we do
not choose any i for which pi ≤ 1/Θ(mk log k), implying
the third property. For the second property, it suffices to
observe that for any matrix B, E[‖DBS‖pp] = ‖B‖pp, and
to apply a Markov bound.

The algorithm first “guesses” S and D. There are
at most 2k distinct rows of I(A). The number of
distinct subsets of O(kdp/2e log k) rows is at most
2O(kdp/2e+1 log k), so we try all such subsets S of rows.
We also guess all possibilities of the corresponding D,
and by Remark 4, there are only O(logm)O(kdp/2e log k)

total guesses, which is 2O(kdp/2e log k log logm). If

logm ≤ 2k, this is still 2O(kdp/2e+1 log k) time; oth-
erwise logm > 2k, and so O(logm)O(kdp/2e) log k =

2O(log2 logm) log log logm ≤ m. Consequently, the time is
always at most 2O(kdp/2e+1 log k)poly(mn).

For each guess of S and D, we next guess DU∗S . Since
U∗ is a binary matrix, and we know D, this is just
2O(kdp/2e+1 log k) guesses. We know DI(A)S , and so can
solve for argminV ‖DU∗SV −DI(A)S‖pp. To do so, we can
solve for each column of V independently, in 2k time, by
trying all possibilities. Thus, the total time is 2kpoly(mn).
Given V , we then solve argminU‖UV − I(A)‖pp, which we
can again do by solving for each row of U independently.
The total time is 2kpoly(mn). We output the U and V
which minimize ‖UV − I(A)‖pp over all possible guesses
that we find.

Consider the right guess, so that ‖DU∗Sy‖pp = (1 ±
1/2)‖U∗y‖pp for all vectors y, and also, by Theorem 3, we
can assume that for the matrix B = U∗V ∗− I(A), we have
‖DBS‖pp ≤ 2‖B‖pp. Here U∗V ∗ is the optimal solution.

The cost of the U and V that we find is upper bounded by
the cost for the right guess of D and S, and in this case it is:

‖UV − I(A)‖pp ≤ ‖U∗V − I(A)‖pp
≤ 2p−1(‖U∗V − U∗V ∗‖pp + ‖U∗V ∗ − I(A)‖pp)

≤ 2p−1((3/2)‖DU∗SV −DU∗SV ∗‖pp + ‖U∗V ∗ − I(A)‖pp)

≤ 2p−1((3/2)2p−1‖DU∗SV −DI(A)S‖pp
+(3/2)2p−1‖DI(A)S −DU∗SV ∗‖pp
+‖U∗V ∗ − I(A)‖pp)

≤ (3/2)22p−2‖DU∗SV ∗ −DI(A)S‖pp
+(3/2)22p−2‖DI(A)S −DU∗SV ∗‖pp
+2p−1‖U∗V ∗ − I(A)‖pp

≤ 4 · 2 · (3/2)22p−2‖U∗V ∗ − I(A)‖pp
+2p−1‖U∗V ∗ − I(A)‖pp

= (1222p−2 + 2p−1)‖U∗V ∗ − I(A)‖pp,

where the first inequality follows since our choice of U
was optimal for the given V that we found, the second
inequality is the approximate triangle inequality, the third
inequality follows from Property 1 of Theorem 3, the fourth
inequality is the approximate triangle inequality, the fifth
inequality follows from our choice of V which was optimal
with respect to DU∗S and DI(A)S , and the sixth inequality
follows from Property 2 of Theorem 3.

Thus, we have found U and V satisfying (3) for a constant
C ≥ 1 (depending on p), which completes the proof.



Faster Algorithms for Binary Matrix Factorization

2. Proof of Theorem 9
We can now describe our algorithm. First note that I(A)
only has 2k distinct rows. We partition the rows of I(A) into
r = O(logm) groups G1, G2, . . . , Gr, where Gi consists
of the subset of distinct rows of I(A) which have a number
of occurrences in the range [2i−1, 2i) in I(A). Consider:

min
U1,...,Ur∈{0,1}m×k,V 1,...,V r∈{0,1}k×n

r∑
i=1

2i‖U iV i −Gi‖2F . (4)

If we solve (4), then we can define V to be the concatena-
tion of rows of V 1, . . . , V r, and then each row of U will
consist of 0s together with a row of U i, in the appropriate
place for exactly one U i, depending on which group Gi

the current row of I(A) we are trying to fit is in. Thus,
by solving (4), we obtain a rank O(k logm) bicriteria so-
lution U ∈ {0, 1}m×O(k logm) and V ∈ {0, 1}O(k logm)×n

to our original problem, which will be an overall constant
factor approximation. Note also to solve (4), we can solve
each problem minUi∈{0,1}m×k,V i∈{0,1}k×n ‖U iV i−Gi‖2F
independently, for each i = 1, . . . , r. If we solve a sin-
gle such problem with probability 9/10, we can repeat it
O(log(nm)) times and choose the best solution found to
solve each such problem with probability 1 − 1/(mn), at
which point we can assume we solve all problems simulta-
neously, by a union bound.

To solve the ith such problem, crucially Gi has at most 2k

distinct rows. Therefore, we can apply Theorem 8 with
the log2m of that theorem equal to k. Our algorithm thus
samples S0, S1, . . . , Sk from the distribution given in the
proof of Theorem 8, and with probability at least 9/10, each
of the two properties of Theorem 8 hold, where here we
choose X0 to (V ∗)i, the optimal solution to the ith problem,
and choose B to be (U∗)i(V ∗)i −A, where (U∗)i(V i)i is
the optimal solution to the i-th problem.

The algorithm does not know (U∗)i so it guesses Sj(U∗)i

for j = 0, 1, . . . , k. Note that for each j, this is a binary
O(k)× k matrix (recall that multiplication is over GF(2)),
and so there are 2O(k2) guesses per j, and 2O(k3) guesses
in total across all j. Let S(U∗)i be the matrix obtained
by stacking the rows of Sj(U∗)i on top of each other, for
j = 0, 1, . . . , k. Let D be the fixed diagonal matrix with

diagonal entries
(

2i

k

)1/2
on the ith block, so that by the

guarantees of Theorem 8, for our correct guess (and with
probability at least 9/10 over the choice of S0, . . . , Sk):

1. Simultaneously for all vectors x ∈ {0, 1}k,
‖D[S(U∗)ix]‖22 ≥ 1

200 · ‖U
∗x‖22, and

2. ‖D[S(U∗)i(V ∗)i]−D[SA]‖2F ≤ 100‖(U∗)i(V ∗)i−
A‖2F ,

where S is the matrix obtained by stating the rows of Sj on
top of each other. It is important to note that the multipli-
cation by D is done over the reals, which is why we have
used the [·] notation, though other multiplications are done
over GF(2).

In the algorithm, given S(U∗)i, we solve
minV i ‖D[S(U∗)iV i − SA]‖2F by solving for each
column of V i one at a time. Each column is found by
trying all 2k possibilities, giving 2kpoly(mn) time in total
to find V i. Given V i, we then solve minUi ‖U iV i −A‖2F
by solving for each row of U i one at a time. In total this
takes 2kpoly(mn) time.

The cost of the solution we find is upper bounded by the
cost for the right guess of S(U∗)i, which is:

‖U iV i − I(A)‖F ≤ ‖(U∗)iV i − I(A)‖F
≤ ‖(U∗)iV i − (U∗)i(V ∗)i‖F + ‖(U∗)i(V ∗)i − I(A)‖F
≤ 200‖D[S(U∗)i(V i − (V ∗)i)‖F + ‖(U∗)i(V ∗)i − I(A)‖F
≤ 200‖D[S(U∗)iV i −D[SI(A)]‖F

+200‖D[SI(A)]−D[S(U∗)i(V ∗)i]‖F
+ ‖(U∗)i(V ∗)i − I(A)‖F

≤ 200‖D[S(U∗)i(V ∗)i −D[SI(A)]‖F
+200‖D[SI(A)]−D[S(U∗)i(V ∗)i]‖F
+ ‖(U∗)i(V ∗)i − I(A)‖F

= 400‖D[S(U∗)i(V ∗)i −D[SI(A)]‖F
+‖(U∗)i(V ∗)i − I(A)‖F

≤ 40000‖(U∗)i(V ∗)i − I(A)‖F
+‖(U∗)i(V ∗)i − I(A)‖F

= 40001‖(U∗)i(V ∗)i − I(A)‖F ,

where the first inequality follows since our choice of U i

was optimal for the given V i that we found, the second
inequality is the triangle inequality, the third inequality fol-
lows from Property 1 of Theorem 8, the fourth inequality is
the triangle inequality, the fifth inequality follows from our
choice of V i which was optimal with respect to D[S(U∗)i]
and D[SI(A)], the first equality combines terms, the last
inequality follows from Property 2 of Theorem 8, and the
final equality combines terms.

Combining the above for each i, we have found U and V
satisfying (3) for a constant C ≥ 1, which completes the
proof.

References
Charikar, M., Guha, S., Tardos, É., and Shmoys, D. B. A

constant-factor approximation algorithm for the k-median prob-
lem. JCSS, 65(1):129–149, 2002.

Cohen, M. B. and Peng, R. lp row sampling by Lewis weights. In
STOC, pp. 183–192, 2015.


