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Abstract

We give faster approximation algorithms for well-
studied variants of Binary Matrix Factorization
(BMF), where we are given a binary m X n matrix
A and would like to find binary rank-k matrices
U, V to minimize the Frobenius norm of U-V — A.

In the first setting, U - V denotes multi-
plication over Z, and we give a constant-
factor approximation algorithm that runs in
20(k? log *)poly(mn) time, improving upon the
previous min(22", 2")poly(mn) time. Our tech-
niques generalize to minimizing |U - V — A||,
for p > 1, in 20" log k) poly (mn) time.
For p = 1, this has a graph-theoretic con-
sequence, namely, a 20**)poly(mn)-time al-
gorithm to approximate a graph as a union
of disjoint bicliques. In the second setting,
U -V is over GF(2), and we give a bicrite-
ria constant-factor approximation algorithm that
runs in 2O(k3)poly(mn) time to find binary rank-
O(k log m) matrices U, V whose cost is as good
as the best rank-k approximation, improving upon

min(22k mn, min(m, n)ko(l) poly(mn)) time.

1. Introduction

In the low rank approximation problem, we are given an
m x n matrix A and would like to approximate A as U - V,
where U is m x k and V is k x n. Here k is the rank param-
eter, which is typically a small integer. Approximating A by
U-V has a number of advantages, e.g., it takes only (m+n)k
parameters to store U and V' versus mn parameters to store
the original A, and for an arbitrary n-dimensional column
vector z, one can compute U - Vz in (m + n)k time as
opposed to mn time to compute Ax. A natural notion of ap-
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proximation is Frobenius norm error, where one seeks to find
U and V so as to minimize || A— UV||%; the latter is defined
tobe 337" >0 (Aij— (Ui, Vi j))?, where U; . denotes
the ith row of U and V, ; the jth column of V. There are a
number of other notions of error studied, such as entrywise-
fyeror A= UV = X7 S0 [ Ay — (Ui, Vi),
studied in Song et al. (2017). More generally, entrywise-
by error [A=UV|[p =377, Z?:1 [Aij = (Ui, Vi) IP
and other M -Estimator loss functions have been recently
studied (Chierichetti et al., 2017; Song et al., 2018).

In many applications data is binary or categorical rather than
real-valued. For example, in the UCI repository, nearly half
of the data sets are categorical. In the Binary Matrix Factor-
ization (BMF) problem, the input matrix A € {0,1}™*" is
binary, and we would like to factorize it into binary matrices
U € {0,1}m*k v € {0, 1}**". There are many formula-
tions of this problem, depending on what the inner product
(Ui «, Vs, j> should mean, and we will focus on two variants.

The first is the standard inner product over the integers. For
this notion, it is helpful to think of A as being the incidence
matrix of a bipartite graph with m vertices on the left, n
vertices on the right, and an edge existing from the jth left
vertex to the j'th right vertex if and only if A; j; = 1. Then,
noting that U - V = 3% U, ;Vi , is the sum of k rank-1
matrices, each being the outer product of a column of U
and the corresponding row of V/, the entries of U, ;V; . are
exactly the edges in a bipartite clique (biclique) between the
vertices j on the left for which U; ; = 1 and the vertices
j' on the right for which Vj, ; = 1. Thus, in this problem
we seek to represent A as a multi-set union of bicliques.
Determining the minimal & for which there is zero error
is the Bipartite Clique Partition problem, studied in Orlin
(1977); Fleischner et al. (2007); Chalermsook et al. (2014);
Chandran et al. (2016); Neumann (2018). We also present a
novel application of this notion of inner product to OLED
displays, which is a central motivation for this work.

Another natural notion of inner product is when (U; ., Vi ;)
is taken over the binary field GF(2), where arithmetic oper-
ations are defined modulo 2. This latter model has been ap-
plied to Independent Component Analysis (ICA) over string
data, and has attracted attention from the signal process-
ing community (Yeredor, 2011; Gutch et al., 2012; Painsky
et al., 2015). It serves as an important tool in dimension
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reduction for high-dimensional data with binary attributes
(Koyutiirk & Grama, 2003; Shen et al., 2009; Jiang et al.,
2014). There are also numerous heuristics proposed for
this problem (Shen et al., 2009; Fu et al., 2010; Jiang et al.,
2014; Koyutiirk & Grama, 2003). The model is also studied
in column subset selection (Dan et al., 2015).

There is yet another model known as the Boolean model,
or Boolean Factor Analysis, for which (U; ., Vi ;) =
V(Ui e A Vg j), ie., the OR of ANDs of the corresponding
entries of U; , and V, ;. This has found applications in data
mining such as latent variable analysis, topic models, as-
sociation rule mining, and database tiling (Seppénen et al.,
2003; §ingliar & Hauskrecht, 2006; Belohlavek & Vychodil,
2010). This also appears under other names in the literature,
such as the Discrete Basis Problem (Miettinen et al., 2006)
or Minimal Noise Role Mining Problem (Vaidya et al., 2007;
Lu et al., 2012; Mitra et al., 2016).

In recent independent work of Ban et al. (2019) and Fomin
et al. (2018), a generic randomized algorithm was proposed
for solving BMF under many different notions of inner prod-
uct, including GF(2) low rank approximation and Boolean
Factor Analysis. For the Bipartite Clique Partition problem,
these results only apply to minimizing |U -V — A||o, where
for a matrix B, || B||o denotes the number of non-zero en-
tries of B. Ban et al. (2019) show that one can obtain a
constant-factor approximation to BMF in 227 mp1+o())
time, while Fomin et al. (2018) give an improved running
time of 22 mn. Both works observe that the Bipartite
Clique Covering problem coincides with the Boolean Factor
Analysis problem. Moreover, Chandran et al. (2016) show
this problem requires min(22mk> , 2”9(”) time under the
Exponential Time Hypothesis (ETH), a standard complexity
assumption. Consequently, if one considers algorithms for
classes of BMF that includes Boolean Factor Analysis, one

Q(1)

: 2k .
needs to spend mln(22S * on ) time.

While these results are tight for Boolean Factor Analysis,
they leave open the possibility of doing much better for the
other well-studied variants of BMF, such as the Bipartite
Clique Partition or GF(2) low-rank approximation prob-
lems. The doubly-exponential running time required of the
algorithms in Ban et al. (2019); Fomin et al. (2018) can be
quite restrictive. Moreover, it is unclear how to improve the
running time of these algorithms in practice, as the doubly
exponential times come from guessing and enumerating all
possibilities of 2% samples in an unknown optimal cluster-
ing.

1.1. Our contributions

We give the first constant-factor approximation algorithms
for BMF, where the inner product is the standard inner
product over the integers, i.e., the Bipartite Clique Partition

problem, in singly-exponential time. More precisely, for
a certain absolute constant C' > 1, we show how to find
U €{0,1}™** and V € {0, 1}**™ for which
|U-V-Ab <C min |U"-V' = Alp.
U’G{O,l}ka,V’G{O,l}kxn
Our algorithm runs in 20(K* 1o F)poly (mn) time for p €
[1,2], and in 20?1 og k) o1y (mn) time for p > 2.

It was known how to solve the exact version of this problem
where A = U - V in 200:) . poly(mn) time (Chandran
et al., 2016). But nothing was known about the approximate
version of this problem for any error measure. Here we
obtain 2P°Y(*)poly(mn) time algorithms with entry-wise
£p-error for any constant p > 1, significantly generalizing
algorithms for the exact version. Moreover, since the exact
version of the problem is a special case of the approximate
version with relative error, and any exact algorithm requires
292(%) time (Chandran et al., 2016) assuming ETH, it follows
that our algorithms are optimal up to the precise poly (k)
factor in the exponent assuming ETH.

For p = 1, our error measure has a natural combinatorial
interpretation. Namely, suppose we are given an unweighted
bipartite graph G with m vertices on the left and n vertices
on the right. Suppose we wish to approximate GG by the mul-
tiset union H of k bicliques so as to minimize the number
of edges in the symmetric difference, i.e., to find H with
|[E(G)AE(H)| < C min |E(G)AE(H")|,
a disjoint union
H' of k cliques
where C' > 1 is a constant approximation factor. While
there are algorithms to decide if G can be expressed as the
disjoint union of k bicliques in 20(k?) . poly(mn) time, sur-
prisingly, no algorithms were known for its approximate
version. We give the first constant-factor approximation

algorithm that runs in 20 1°2 ) poly (mn) time.

We also give the fastest known bicriteria constant-factor ap-
proximation when the multiplication U - V' is over the finite
field GF(2). We achieve 2°**)poly(mn) time to output
binary rank O(klogm) matrices U and V' whose cost is
as good as the best rank-%k approximation. This improves
the previous min(22"mn, min(m, n)°®¥*)poly(mn))
time. Here the first term in the minimum follows from both
Ban et al. (2019) and Fomin et al. (2018), while the second
term follows from Ban et al. (2019). We note that the algo-
rithms of Ban et al. (2019) and Fomin et al. (2018) are able
to provide (1 + €)-approximations, whereas our algorithms
only provide fixed constant-factor approximations. Also, in
the case of GF(2) low-rank approximation, our algorithms
are bicriteria. However, we stress that our algorithms are ex-
ponentially faster than theirs, making them polynomial time
even for k as large as 1@ for p € [1,2] and log*™M)
for constant p > 2. In contrast, their algorithms are already
super-polynomial time for any k = w(loglogn).
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1.2. A motivation and an application

The motivation behind this work was a driving scheme to
make passive displays brighter so they can compete against
their more expensive active counterparts. Passive OLED
displays render an image by illuminating one row at a time.
The rows are illuminated in rapid succession, and the human
eye integrates this sequence into an image. The apparent
brightness of an image is therefore inversely proportional to
the number of rows in passive OLED. To make the image
brighter, active displays add a memory layer to each pixel
allowing them to stay illuminated for the duration of the
image so that apparent brightness does not depend on the
height of the display. But this additional layer dramatically
increases cost. We have observed that passive displays have
the often neglected electrical ability to illuminate many rows
simultaneously, as long as the image being shown is a rank-1
matrix. Row-by-row rendering is just one way to represent
an image as the sum of rank-1 matrices, each rank-1 image
having at most one non-zero row. The apparent brightness
of a given pixel is proportional to the amount of time that
pixel is illuminated under this sequence, which is inversely
proportional to the rank of the decomposition. BMF seeks a
lower rank decomposition than the row-by-row decomposi-
tion, therefore pixels are illuminated for longer time in the
sequence shown to the viewer. The binary constraints on the
decomposition allows us to use simple voltage drivers on
the rows and columns of the display instead of an expensive
bank of video-rate digital to analog-to-digital converters.

2. Technical overview

All the algorithms we offer adhere to the following schema:

Input: A € {0,1}™>"™ and an integer k (the desired rank
of the decomposition).

Output: U € {0,1}™** V € {0,1}**" that approx-
imately minimize ||A — U - V||; the specifics differ de-
pending on the norm || - || and whether - is over integers
or GF(2).

1. Compute I(A), a matrix that approximates A using 2"
distinct rows.

2. Guess a binary sketching matrix .S and the matrix SU*
(The matrix U* is the ideal minimizer of the factorization
problem to solve.)

3. Compute V', the minimizer of | SU*V — SI(A)| by
enumerating its columns one at a time.

4. Repeat steps 2 and 3 with different guesses to find the
best V.

5. Compute U’, the minimizer of |[UV’ — A|| by enumerat-
ing its rows one at a time.

6. Output (U, V").

Here is a simple idea that almost works, inspired by Razen-
shteyn et al. (2016); Ban et al. (2019). It is known that

there is a distribution on O(k) x m matrices S such
that with constant probability, (i) for any m X k matrix
U, |SUz|2 = O(]|JUx||2) simultaneously for all vectors
x, and (i) for any fixed m x n matrix A, [|[SA||r =
O(1)||Al|r. Consider the hypothetical optimization prob-
lem miny ¢ (g 13xxn [|[U*V — Al|p, where (U*,V*) is the
minimizer of ||U - V — A||%. We cannot quite solve this
optimization problem since we do not know U*, but we
can replace it with the hypothetical optimization problem
miny ¢ o 13rxn [[SU*V — SA||p. To solve this problem, in
addition to drawing .S, one could “guess” SU*, after which
we can solve for each column of V’ independently in 2*
time by enumerating all possibilities of the column and com-
puting the one with minimal cost. Having found V', we
can then solve the problem ming ¢ g 1ymxx [UV' — A p
by solving for each row of U independently in 2* time, giv-
ing 2¥m total time. The problem with this simple scheme
is that the entries of SU* can be O(logm) bit integers
even if U* is a binary matrix, which means there would be
m®**) matrices SU* to enumerate. This already exceeds
the 20(** 105 %) time bound we desire.

We consider a refinement where we draw matrices S of
dimension O(k log k) x m that enjoy properties (i) and (ii)
above, with the key difference that S samples a subset of
O(klog k) rows of U* according to their leverage scores,
and rescales these rows. We write S = DT, where T is
a row selection matrix, and D is a diagonal matrix which
w.l.o.g. can be assumed to have all entries being powers
of 2 between 1 and poly(m). There are only 20 (k* log k)
possibilities of 7' - U* since U* is itself binary. Moreover,
one can guess D in (log®*1°*) 1)-time and this amount

of time turns out to be less than 20(+* log F)poly (mn).

We have explained how to guess SU* without sampling all
possible S, but to solve for V', we also need to estimate S A.
S A only has O(klog k)-dimensional columns, and there-
fore there are only 20 (*1°2%) pogsibilities for each column
of T'A. However, T'A has n columns, and so enumerating all
T A would require 20"k 108 k) guesses. Alternatively, since
T samples O(k log k) rows and there are only m possible
rows, we could enumerate all m©(*1°2¥) rows to sample to
form both TU™* and T A, at which point guessing D would
be inexpensive. However, this m©(*1°%) time is still pro-
hibitive.

A critical observation now is that if A only had 2% dis-
tinct rows, there would only be 20(* 108 %) possibilities for
the matrix T'A. Since there are only 20(k* log k) possibil-
ities for U* and (log®*1°%) 1) possibilities for D, we
could then formulate each possibility of the optimization
problem miny ¢ 1o 13xxn [[SU*V — SA||F, solve each one
in O(2Fn) time by solving for each column of V' by try-
ing all 2% possibilities, and choose the best solution we
found. In general, of course, A does not not have 2k dis-
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tinct rows. So our scheme considers the m rows of A as
points in R™ and runs a constant-factor 2*-means approx-
imation algorithm on these points; such algorithms run in
20(F)poly(mn) time. Suppose the means are dy, . . . , dok,
and let 7(A) be an m X n cluster indicator matrix, i.e., if
the center d; serves the jth row A; of A, then the jth row
of I(A) is equal to d;. Moreover, one can assume that /(A)
is in fact binary by replacing each d; with the closest row
of A; this only changes the cost by a constant factor by
the triangle inequality. Notice that for any binary matrix
V, |U*V — AJ|% is at least the 2*-means cost of A since
U*V has at most 2¥ distinct rows since it is a rank-k binary
matrix. Hence, if we instead solve the optimization problem
miny ¢ g 13rxn [|[U*V — I(A)||F, and then back-solve for
U as before, then by applying the triangle inequality we will
have that the U’'V’ we find will be an O(1)-approximation
to the original matrix A. But now I(A) is a binary matrix
with only 2% distinct rows, and we can do this efficiently!

This schema can approximately minimize ||[U - V — A]|
up to a constant factor, where the matrix product U - V' is
performed over the integers. In that situation, .S samples
O(klog k) rows. To compute the matrix I(A), we run a
2*_means algorithm on the rows of A to identify 2* distinct
rows of A, and replace each row of A with one of the means
thus identified.

This same schema can minimize ||U - V — A|P. In that
case, S selects rows using the so-called £,,-Lewis weights
(Cohen & Peng, 2015) instead of the leverage scores to
form an O(k!P/21198#) x m sampling matrix. Moreover,
one can replace the 2¥-means algorithm with a constant-
factor approximation algorithm for finding 2% centers so
as to minimize sums of pth powers of £,-distances. Such
an algorithm is implied by the results in Charikar et al.
(2002) for the 2*-median problem, since they only need an
approximate triangle inequality, which holds for pth powers
of distances.

The schema also applies to minimizing |U - V — A|| p when
the product U - V' is matrix multiplication over GF(2). To
compute I(A), we use an O(1)-approximate 2¥-means clus-
tering algorithm. Note that since the entries of U - V and
A are now binary, |U -V — I(A)||% is the number of dis-
agreements of U - V and I(A). Thus it suffices to use
an {y-sketch .S from the streaming literature; however for
us it is important for the multiplication S - U to be per-
formed over GF(2) so that we have associativity, namely,
that S(U-V') = (SU)- V. Unfortunately this does not seem
to be possible, but what is instead possible is to write .S as
a sequence of 1 + log, m matrices S°, S*,..., Slo2m ¢
{0,1}9)xm 5o that the sketched optimization problem
now becomes L 371527 27| . (UV — I(A))||2, where
now each multiplication by S° is indeed over GF(2). Note
that we crucially need the integer weights 2° to be outside

of the matrix product, as there is no GF(2) analog of them.
While this works and gives the first 2P°%Y (*)poly (mn)-time
algorithm for obtaining a constant-factor approximation to
this problem, the weights ultimately cause our output to be
a rank-O(k log m) rather than a rank-% approximation.

3. BMF with Frobenius norm error

We first show how our techniques can find U € {0, 1}™**

and V € {0, 1}**™ for which
[U-V-Alp<C- UV =AllF,

min
U’e{0,1}mxk V'e{0,1}kxn

where C' > 1 is a constant, and for a matrix B € R™*"™,
1/2

I|B|lr = (Z?:l > Bﬁj) is its Frobenius norm. We

call this the k-BMF with Frobenius norm error.

Our algorithm uses an approximation algorithm for the k-
means problem as a black box. For a given set of points P C
R?, in the k-means problem, the goal is to find a partition of
P into k clusters (C1, . .., C}) with corresponding centers
(c1,...,ck) that minimize the sum of the squared distances
of all points in P to their corresponding center, i.e.,

k
argmin Z Z [Ee

(C1 ..... C'k),(cl ..... Ck,) i=1 QTGCi

where || - || is the Euclidean distance; let OPT}, be the
mininum value.

Theorem 1 (Kanungo et al. (2004)) Given a set P of n
points in R%, for any k and any constant € > 0, there is a
randomized algorithm running in poly (nd) time which, with
probability 1 — - outputs (Cy, ..., Cy), and (cy, . .., cx,)
Jfor which

3N e — el < (9+ €)OPT.

i=1x2eC;

Suppose we are given an instance A € {0,1}™*" of the
k-BMF problem with Frobenius norm error. We first run the
algorithm of Theorem 1 on the rows of A with parameter
2F and constant € > 0. Le., we treat the m rows of A
as our pointset P of m points in R". By Theorem 1, we
output (C1,...,Cor) and (cq,...,cox) thatis a (9 + €)-
approximation to OPT,«. Note that the centers ¢y, . .
need not be binary, so we first transform them. For each C},
let d; be the point 2 in C; for which ||z — ¢;]|| is minimized.
We need the following inequality for squared distances:

.y Cok

Fact 2 For every three points z,y, z € R",

lz = 2* < 2(l= — ylI* + Ily — 2II)-
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Using Fact 2, the choice of d;, and the guarantee on ¢;,

2k

2k
DD lle—dilP<2) Y (e —cill® + lle — dil?)

i=1zeC; i=1zeC;

2k
< 43 S e —cl® < (36+ O(e))OPTy.

i=2 ze€C;

The row cluster indicator matrix I(A) can be constructed as
follows: for each rows of A, if the row is in C};, then replace
it with the point d;. Notice that

11(A) = Allf < (36 + O(€))OP Ty, (D)

Like I(A), for any matrices U € {0,1}"** and V €
{0, 1}#*", the matrix U - V has at most 2* distinct rows.

Consequently,
|U-V = Al% > OPTax. (2)

Now suppose for a value C' > 1, we could find U €
{0,1}™*k and V' € {0, 1}**" for which

10V = IA)E < C g, |07V = (A )

where U’ € {0,1}™** V' € {0,1}¥*" here and below.
Then for this choice of U and V' we would have:

Fact 2
IU-V =A< 201UV —=I(A)F+11(4) - AllR)

3) _
< 2AC pin, UV — I(A)3+ | T(A) - Al})

Fact 2 . y ’ 2 2
2(C 5{11‘1/1/2(HU V= Allg+|A=-1(A)]%))

+2[|1(A) — A%

A
IN=

4C min |U"- V' — A||%
u',\v'

H(4C + 2)(36 + O(€))OPTas
(2)

1. Simultaneously for all vectors x € R¥,
|DUrz|3 = (1 3) - [|U]3,

2. |DBr|% < 4| B|%,
3. The entries of D are powers of 2 and between 1 and
poly(m).
Here for a matrix C, C'p denotes the r X k submatrix of C
consisting of the rows in T..

Remark 4 The bounds in Theorem 3 can be deduced from
standard properties of leverage scores. It is known that if
one samples O(k log k) rows of U according to the leverage
scores of U, and forms a sampling and rescaling matrix D,
where the jth row of D is equal to 1/,/p; if we sample
row ¢ with probability p; in the jth repetition, then the first
property holds. In fact, such probabilities can be rounded to
powers of 2 since it suffices for the probabilities to be over-
estimates to the actual values, and this rounding at most
doubles the size of T'. Also, with high probability we do
not choose any ¢ for which p; < 1/0(mk log k), implying
the third property. For the second property, it suffices to
observe that for any matrix B, E[|DBr|%] = || B||%. and
then apply a Markov bound.

There are at most 20(+* 198 %) distinct subsets of O(k log k)
rows of I(A), so we try all such subsets T' of rows. We
also try all possibilities of the corresponding D, and by
Remark 4, there are only O(logm)©*1°8%) total guesses,
which is 20(klogkloglogm) g logm < 2k this is
still 20(-*108%) time: otherwise logm > 2*, and so
O(lOg m)O(klog k) _— 210g2 log m log log log m < m. Con-
sequently, there are at most 20(k? log ¥)poly(mn) unique
combinations of 7" and D.

For each guess of T" and D, we next guess DUy. Since
U* is a binary matrix, and we know D, this is just

4C min [U"- V' — Al|% + (4C + 2)| A — I(A)||% 20+ 1og k) guesses. We know DI(A)z, and so can solve

for argmin,, || DUV — DI(A)r|/%. To do so, we can solve
for each column of V independently, in 2* time, by trying
all possibilities. Thus, the total time is 2*poly(mn). Given
V', we then solve argming, ||[UV — I(A)||%, which we can
again do by solving for each row of U independently. The

: 2
< 40+ (AC+2)(36 + 0(e))) o, IU"- V" = Al total time is 2Fpoly(mn). We output the U, V minimizing

Hence, for constant C' and e, this particular U and V' would
provide a constant-factor approximation.

It remains to find U and V satisfying (3) for a constant
C > 1. To do so, we use the following result on leverage
score sampling.

Theorem 3 (e.g., Woodruff (2014)) For any m x k matrix
U and m x n matrix B, there exists a subset T of r =
O(klog k) rows and an r x r diagonal matrix D with entries
between 1 and O(m) for which

|[UV — I(A)||% over all possible guesses that we find.

Consider the right guess, so that |[DUsyll3 = (1 &
1/2)||U*y||3 for all vectors y, and also, by Theorem 3, we
can assume that for the matrix B = U*V* — I (A), we have
|DBr||r < 2||B||#. Here U*V* is the optimal solution.

The cost of the U and V' that we find is upper bounded by
the cost for the right guess of D and .S, and in this case is:

UV —I(A)|r < UV -I(A)]r



Faster Algorithms for Binary Matrix Factorization

< UV UV p+ UV —I(A)|r
< B/2)IDUV = DUV ||r + |UTVT = I(A)|[r
< (3/2)[|IDUV — DI(A)r||r

+B/2DI(A)r = DUTV|[r + |UTVT = I(A)][F
< (3/2)|DUrV* = DI(A)sl|r

+(3/2)|DUTV™ = DI(A)s|lp + IlUTV" = I(A)]
< 2-B2)UTVT = I(A)|lp + 4TV = I(A)|r

= TUTVE =LA,

where the first inequality follows since our choice of U was

optimal for the given V that we found, the second inequality
is the triangle inequality, the third inequality follows from
Property 1 of Theorem 3, the fourth inequality is the triangle
inequality, the fifth inequality follows from our choice of V'
which was optimal with respect to DU} and DI(A)r, and
the sixth inequality follows from Property 2 of Theorem 3.
Thus, we have found U and V satisfying (3) for a constant
C > 1, which completes the proof. We summarize our
results with the following theorem.

Theorem 5 There is a constant C > 1, and an algo-
rithm running in 20(k” log K)poly(mn) time, which given
an m x n binary matrix A, finds U € {0,1}m*xF
and V. € {0,1}*" for which UV — A||% < C -
minge(o,13mxk v/e{0,1}kxn v’ — AH%«“

4. Generalization to p-norm error

We next show how to solve the p-norm version of k-BMF,
where we seek U € {0,1}™** and V' € {0, 1}**" so that

|U-v-AlL < C- jU"- v - Al

min

U/E{O,l}ka,V'E{O,l}kX"
where C > 1 is an absolute constant, and for a matrix
n n . . .
B e R™", ||B|[E = 32, > 25— |Bij|" is its entrywise
p-norm. For p = 1, this coincides with covering a bipartite
graph with bicliques to minimize the symmetric difference
in the multiset union of the edge sets.

To compute I(A) we use approximation algorithms for the
metric k-median problem as a black box, appropriately gen-
eralized to sums of pth powers of distances. The goal of this
problem is to partition a set of points P C R? into k clusters
(C1,...,C%) with corresponding centers (¢, .. ., cx) that
minimize the sum of distances of all points in P to their
corresponding center, namely, the quantity

k
argmin Z Z lz — cillps

(C1,-,Ck)s(ens50k) 121 g,

where ||z — c;[[5 = S0 |25 — e 4P

There are polynomial time approximation algorithms for
this problem for general metrics, and the following suffices.

Theorem 6 (Charikar et al. (2002)) Given a set P of n
points in R, for any value of k, there is an algorithm
running in poly(nd) time which outputs (C4, ..., Cy) and
(c1y...,ck) for which

k
Z Z |z —cillp < KkpOPTy,

i=1 z€C;

|F where K, > 1 is an absolute constant depending only on p.

The algorithm and the proof follow mostly along the lines
of the Frobenius norm version but now we use Theorem 6
instead of k-means and Lewis weight sampling (Cohen &
Peng, 2015) instead of leverage score sampling. We leave
the details to the Supplementary Material.

Theorem 7 There is a constant C > 1, and an algo-
kle/2ien log k) poly(mn) time, which
}mxk

rithm running in 2°¢
given an m X n binary matrix A, finds U € {0,1
and V€ {0,1}**" for which |UV — Ay < C -
minU’E{O,l}"”Xk,V/G{O,l}kx'" U/V/ - A”g

5. BMF over GF(2)

For multiplication over GF(2), our algorithm is bicriteria. It
outputs U, V of rank O(k log m) in 2O(k3)poly(mn) time,
and achieves a constant-factor approximation compared to
the best rank-k approximation. This improves previous
min(22°, min(m, n)*)poly(mn) time for bicriteria algo-
rithms.

We again first run the algorithm of Theorem 1 to find the
matrix /(A). The algorithm does not depend on the notion
of multiplication, since any U - V will still have at most 2%
distinct rows.

After finding 1(A), as before it suffices to find a constant
C >1and U € {0,1}™** V € {0,1}**™ for which (3)
holds. The main difference is that we can no longer use
Theorem 3, and instead need the following result. Note that
the first property is lopsided, i.e., we can only guarantee we
do not “shrink” vectors, though we may “dilate” them:

Theorem 8 There is a distribution on 1 + log, m matrices
S0 81 ..., S8 each in {0,1}°F)*™ with the follow-
ing properties: with probability at least 9/10 over the choice
of SO, 81, ... S.2™ for any matrix U € {0,1}™** and
matrix B € {0,1}7"*",

1. Simultaneously for all vectors x € {0,1}F,
X" 208 Unl3 > s - U3, and

1 ¥ 9 .
2. 5 355" 118 BlE < 100]|B]I%,
where matrix multiplications are over GF(2).

Proof: The proof is inspired from estimating algorithms
for £y, for example Kane et al. (2010). Choose each row of
each S? independently from the following distribution: in-
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dependently include each coordinate of {1,2, ..., m} with
probability 2% and on each included coordinate, choose
it to be independent and uniformly random in {0, 1}. Non-
included coordinates are set to 0.

Consider a vector of the form y = Ux. Let Y = supp(y) be
the set of coordinates of y which are equal to 1. Consider a
row 2 of S% and let Z = supp(z). Conditioned on |[Y N Z| >
0, the probability that (z,y) = 1 is exactly 1/2, where
multiplication is over GF(2). If |Y N Z| = 0, then this
probability is 0. Hence,

E[(z,y)] =

On the one hand, we have (1— (1 — 2_i)‘Y|) > 1 —
e—|Y\/2" > ‘Y‘/2Z _ |Y|2/22i+1.

Suppose that 2¢ < |Y'|. By a Chernoff bound, we have that
with probability 1 —272%, || Siy||3 > k/100, where we have
chosen the constant factor in the O(k) number of rows of
S’ to be sufficiently large. Letting i* be maximal for which
21 < Y], we have

%Pr[|YﬁZ|>O}:%(1—(1—2‘

10g2m ok 1
- 21 i > 21*7>72i*
Z I8 Uzlls > 2 155 > 155
> = U
e

and now the first part of the theorem follows by a union
bound over the 2* different possible values of x.

Before proving the second part of the theorem, we first
fix a vector y = Uz, and bound E[+ Ziogf*fl 21|97 -

Ux||3]. Consider an i for which 2¢ > |Y|. We have
(1—(1—2"9N) < |Y|/2°. Hence,
1 log, m logzm

E[ > 2st-Ual3] Z 20 L <93
1=1*+1 i=1*+1

Note also that £ >0 27(15%- Uz||2 < 22 -k < 2[|Uz|[3,

and so this bound also holds in expectatlon. Consequently,
1 mo o i
E[; X220 20187 - Uxl3] < 4| U3,

Returning to the second part of the theorem, it is enough
to apply this expectation bound, linearity of expectation
across the n columns of B, and a Markov bound to conclude
that also with probability 1 — 1/25, £ 371%™ ||$iB||2. <
100] B2

By a union bound, both parts of the theorem hold simulta-
neously with probability at least 9/10. |

Details appear in the Supplementary Material.

Theorem 9 There is a gonstant C > 1, and an al-
gorithm running in 2°% )poly(mn) time and succeed-
ing with probability 1 — 1/(mn), which given an m x

z‘)m).

n binary matrix A, finds U € {0,1}m*Oklogm) guq
V o€ {0,1}0Fleem)xn for which UV — Al < C -
ming e (o,1ymxk vrefo,1yixn ||[U'V' — Al where all mul-
tiplications are performed over GF(2).

6. Experiments

In this section we present simple experimental results for
our algorithm for £-BMF in the Frobenius norm error. The
purpose of these experiments is to demonstrate the practical
applicability of our algorithm to real-world data, especially
for images, which primarily motivated our work.

The datasets we use are the standard MNIST database of
handwritten digits (yann.lecun.com/exdb/mnist/)
and the ORL databases of black-and-white
faces (www.cl.cam.ac.uk/research/dtg/
attarchive/facedatabase.html). For MNIST,
we consider 60,000 images in the training set. Each image
is 28 x 28 and we normalize it to be binary, i.e., each
entry in the matrix is in {0, 1}. For ORL, we consider the
400 images in the dataset, where each image is 112 x 92;
since the images are grayscale, we threshold the matrix
to be binary using a value of 0.33. Our goal is to run
various algorithms for k-BMF on each matrix and measure
the Frobenius norm and the time taken to compute the
factorization, for various values of k.

Baseline and algorithm. For the baseline, we use an im-
plementation of an algorithm by Zhang et al. (2007). This
algorithm works by extending the standard Non-negative
Matrix Factorization (NMF) to the BMF case. The al-
gorithm works in an alternating minimization style and
uses gradient descent to compute the optimum in each
step of the iteration. By its very iterative nature, the fac-
tors obtained by this algorithm are guaranteed to be bi-
nary only in the limit. We run this baseline for 10,000
iterations and round the entries of the factors to be in
{0,1}. (The results are mostly unchanged even without
this rounding.) We use an implementation of this algo-
rithm that is available as part of the Python package pymf
(github.com/ChrisSchinnerl/pymf3).

For our algorithm, we use the k-means based approach de-
scribed in Section 3. However, since our goal is to get a
practical algorithm, we essentially stop at (1), i.e., we do
not use enumeration and leverage score sampling to find
the best factorization. We apply k-means to the rows of
the matrix and replace each non-center row by its closest
center. As we argued in Section 3, this step already has prov-
able (but weak) guarantees. For solving k-means we use
the vanilla k-means, available as part of scikit-learn
(scikit—-learn.orgq) in Python. Since this implemen-
tation can return Steiner points, we use nearest-neighbors to
replace each Steiner point by its closest input point.
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Figure 1. Example output of the baseline and our algorithm on a 700 x 490 black-and-white image. The top row shows the output for
various values of k for the baseline; the bottom row shows the output of our algorithm. The Frobenius norm error is also shown for each k.

In the experiments, our goal is to measure the average Frobe-
nius error and the running time, as a function of k.

k Baseline Our algorithm
Error Time (ms) | Error Time (ms)
MNIST
2 | 952 30.05 8.03 24.99
3 8.53 31.26 6.75 29.47
5 9.41 36.26 5.03 39.03
10 | 14.59 44.18 2.52 68.02
ORL
5 | 39.54 67.49 27.28 73.99
10 | 54.08 93.73 22.17 115.82
20 | 66.84 140.46 17.22 204.54
30 | 71.83 284.28 13.85 307.49
50 | 76.58 412.92 8.22 500.76

Table 1. Results of our algorithm on MNIST and ORL compared to
the baseline (Zhang et al., 2007), as function of k. Here, the error
is the average Frobenius norm error and the time is the average
time taken to compute the factorization.

Results. Table 1 shows the results of the baseline and our
algorithm for the MNIST and ORL. As we see, our algorithm
obtains much smaller Frobenius norm error compared to
the baseline, especially for large k. It is interesting to note
the “non-monotone” behavior of the NMF-based baseline;

this seems to have been the case even in some earlier work.

In terms of running times, our algorithm is only marginally
worse compared to the baseline even for large k.

Figure 1 shows the sample output of the baseline and our

algorithm for an image, for different k. The non-monotone
behavior of the baseline (with respect to k) is clear. In addi-
tion to having a smaller error, our algorithm also produces
an image that is visually more faithful to the original.

7. Conclusions

In this paper we studied the classic BMF problem for dif-
ferent error measures. We obtained a new, faster, algorithm
with provable performance guarantees, improving upon the
previous algorithms substantially. In fact, we introduced
a general program that let us obtain a family of results on
this topic, including ones on approximately decomposing a
bipartite graph into bicliques and approximating BMF over
the finite field GF(2). Our experiments indicate that a prac-
tical version of our algorithm performs better on black-and-
white images when compared to recent but more heuristic
NMF-based approaches to BMF. These heuristics lack any
performance guarantees whereas our algorithms, including
the practical versions, have approximation guarantees.

Interesting future work includes further improving our algo-
rithms from a practical viewpoint and making the leverage
sampling and enumeration steps efficient. Using our approx-
imate biclique algorithm to find near-dense communities in
bipartite graphs is also a promising research direction.
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