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A. Deferred Proofs
Proof of Proposition 4.3. Setting the gradient to zero:
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Let Q = Q2Q1. Multiplying (5) on the right by D−2 and
on the left by D−2S2Qᵀ

1 gives

D−2S2QᵀQS2D−2 = D−2S2Qᵀ,

which implies D−2S2Qᵀ is symmetric and idempotent.
Multiplying (6) on the right by Qᵀ

2 gives

QS2Qᵀ = D2Qᵀ,

which can be rewritten as
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) (
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)
.

Since the left-hand side is symmetric,D−2S2Qᵀ is diagonal
and idempotent by Lemma A.2 with A = D−2S2Qᵀ and
B = D2S−2D2. Lemma A.3 with the sameA implies there
exists an index set I of size ` with 0 ≤ ` ≤ k such that
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Consider the smooth map (Q1, Q2) 7→ (I, G) with

G = Q1SID
−1
I II

from the critical submanifold of Rk×m×Rm×k to the man-
ifold of pairs (I, G) with G full-rank. Note

G+ = IᵀISID
−1
I Q2

by (7). Commuting diagonal matrices to rearrange terms
in (5) and (6), we obtain a smooth inverse map from pairs
(I, G) to critical points:
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Equating bias parameters and mean centering. Consider
the loss function

Lβ(W1,W2, b1, b2) = ||X−W2(W1X+b1e
ᵀ
n)+b2e

ᵀ
n||2F ,

where b1 ∈ Rk and b2 ∈ Rm are bias vectors and en ∈ Rn
is the vector of ones. With b = W2b1 + b2, Lb becomes

||X −W2W1X − beᵀn||2F . (8)

At a critical point,

∂Lβ
∂b

= 2(X −W2W1X − beᵀn)en = 0,

which implies
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1

n
Xen −W2W1

1

n
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Substituting into (8), Lb reduces to

||X̄ −W2W1X̄||2F

with X̄ = X − 1
nXene

ᵀ
n. Thus, at the optimal bias pa-

rameters, Lβ with X is equivalent to L with X mean-
centered.

Lemma A.1. Let A ∈ Rm×k and B ∈ Rk×m, then

||A||2F + ||B||2F = ||A−Bᵀ||2F + 2tr(AB)

Proof.

||A−Bᵀ||2F = tr((A−Bᵀ)ᵀ(A−Bᵀ))

= tr(AᵀA−AᵀBᵀ −BA+BᵀB)

= ||A||2F + ||B||2F − 2tr(AB)

Lemma A.2. Let A,B ∈ Rm×m with B diagonal with dis-
tinct diagonal elements. If AB = BA then A is diagonal.

Proof. Expand the difference of (i, j) elements:

(AB)ij − (BA)ij = aijbjj − biiaij
= aij(bjj − bii) = 0.

So for i 6= j, bii 6= bjj implies aij = 0.

Lemma A.3. If A ∈ Rm×m is diagonal and idempotent
then aii ∈ {0, 1}.

Proof. 0 = (AA−A)ii = a2ii − aii = aii(aii − 1).

Relationship between Oja’s rule and LAE-PCA. The up-
date step used in Oja’s rule is

∇w = α(xy − wy2),

where α is a fixed learning rate, x,w ∈ Rm and y = xᵀw.
Substituting y into this update and factoring out xxᵀw on
the right gives,

∇w = α(1− wwᵀ)xxᵀw,

which is the (negative) gradient for an unregularized LAE
with tied weights in the k = 1 case.
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B. Positive (semi-)definite matrices
We review positive definite and semi-definite matrices as
needed to prove the Transpose Theorem (2.1).
Definition B.1. A real, symmetric matrixA is positive semi-
definite, denoted A � 0, if xᵀAx ≥ 0 for all vectors x. A is
positive definite, denoted A � 0, if the inequality is strict.

The Loewner partial ordering of positive semi-definite ma-
trices defines A � B if A−B � 0.
Lemma B.1. The following properties hold.

1. If λ > 0 then λI � 0.

2. If A � 0 then BABᵀ � 0 for all B.

3. If A � 0 and B � 0 then A+B � 0.

4. If A � 0 and B � 0 then A+B � 0.

5. If A � 0 and ABᵀ � BABᵀ then A � BA.

6. If B � 0 and AᵀBA = 0 then A = 0.

Proof. Property 5 follows from Properties 1 and 2 and

A−BA = (B − I)A(B − I)ᵀ + (ABᵀ −BABᵀ).

The other properties are standard exercises; see Appendix C
of (van den Bos, 2007) for a full treatment.

C. Denoising and contractive autoencoders
Here we connect regularized LAEs to the linear case of
denoising (DAE) and contrastive (CAE) autoencoders.

A linear DAE receives a corrupted data matrix X̃ and is
trained to reconstruct X by minimizing

LDAE(W1,W2) = ||X −W2W1X̃||2F .

As shown in Pretorius et al. (2018), if X̃ = X + ε is the
corrupting process, where ε ∈ Rm×n is a noise matrix with
elements sampled iid from a distribution with mean zero
and variance s2, then

E [LDAE] =
1

2n

n∑
i=1

||xi−W2W1xi||2+
s2

2
tr(W2W1W

ᵀ
1W

ᵀ
2 ).

With λ = ns2, we have

E [LDAE] =
1

2n
Lπ.

The loss function of a linear CAE includes a penalty on the
derivative of the encoder:

LCAE(W1,W2) = L(W1,W2) + γ||Jf (x)||2F .

As shown in Rifai et al. (2011), if the encoder and decoder
are tied by requiring W1 = W ᵀ

2 , then LCAE equals Lσ with
λ = γ

2 :
LCAE(W1) = Lσ(W1,W

ᵀ
1 ).

(a) Unregularized (b) Product (c) Sum

Figure 6. Image of the unit circle (green) under A (blue), B (or-
ange), and AB (green) from (9). Non-orthogonal transformations
deform the circle to an ellipse; orthogonal transformations preserve
the circle.

D. Further empirical exploration
The Landscape Theorem also gives explicit forms for the
trained encoder W1∗ and decoder W2∗ such that the matri-
ces

A = Σ
− 1

2
∗ UᵀW2∗ and B = W1∗UΣ

− 1
2
∗ (9)

satisfy AB = Ik for all losses and are each orthogonal for
the sum loss. In Figure 6, we illustrate these properties
by applying the linear transformations A, B, and AB to
the unit circle S1 ⊂ R2. Non-orthogonal transformations
deform the circle to an ellipse, whereas orthogonal trans-
formations (including the identity) preserve the unit circle.
This experiment used the same setup described in 5.1 with
k = 2.

D.1. MNIST

In the following experiment, the data setX ∈ R784×10000 is
the test set of the MNIST handwritten digit database (LeCun
& Cortes). We train an LAE with k = 9 and λ = 10 for
each loss, again using the Adam optimizer for 100 epochs
with random normal initialization, batch size of 32, and
learning rate 0.05.

Figure 7 further illustrates the Landscape Theorem 4.2 by
reshaping the left singular vectors of the trained decoder
W2∗ and the top k principal direction of X into 28 × 28
greyscale images. Indeed, only the decoder from the LAE
trained on the sum loss has left singular vectors that match
the principal directions up to sign.

As described in Section 3, for an LAE trained on the sum
loss, the latent representation is, up to orthogonal transfor-
mation, the principal component embedding compressed
along each principal direction. We illustrate this in Figure 8
by comparing the k = 2 representation to that of PCA.

E. Morse homology of the real Grassmannian
This section embraces the language and techniques of dif-
ferential and algebraic topology to dive into the topology
underlying LAEs. To complement Wikipedia, the following
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(a) Unregularized (b) Product

(c) Sum (d) PCA

Figure 7. Left singular vectors of the decoder from an LAE trained
on unregularized, product, and sum losses and the principal direc-
tions of MNIST reshaped into images.

(a) Sum (b) PCA

Figure 8. Latent representations of MNIST learned by an LAE
with sum loss and by PCA. Colors represent class label.

resources cover the italicized terminology in depth: (Milnor,
1963; Hatcher, 2002; Banyaga & Hurtubise, 2004).

Let M be a smooth, compact manifold. In this section, we
prove the Grassmannian Theorem through the lens of Morse
theory, a subfield of differential and algebraic topology that
relates the topology of M to smooth functions f : M → R.

A critical point of f is non-degenerate if the eigenvalues
of the Hessian are non-zero. A Morse function is a smooth
function all of whose critical points are non-degenerate.
Morse functions are generic and stable; see Section 4.2 of
Bloom (2004) for precise statements.

The Morse index d of a critical point is the number of neg-
ative eigenvalues of the Hessian. At each index-d non-
degenerate critical point, one can choose a local coordinate
system under which the function takes the form

−x21 − . . .− x2d + x2d+1 + . . .+ x2m.

Hence d = 0 and d = m correspond to parabolic minima
and maxima, respectively, which all other values of d cor-

respond to saddles with, in local coordinates, d orthogonal
descending directions andm−d orthogonal ascending direc-
tions. For example, the red, blue, and green critical points
in Figure 2 have Morse indices 0, 1, and 2, respectively.

The Morse inequalities state that any Morse function on
M must have at least as many index-d critical points as
the Betti number bd, i.e. the rank of the singular homology
group Hd(M ;Z). This follows from a realization, called
Morse homology, of singular homology as the homology of
a chain complex generated in dimension d by the index-d
critical points. The boundary map ∂ counts negative gradi-
ent trajectories between critical points of adjacent index. A
Morse function is perfect if this signed count is always zero,
in which case ∂ vanishes. A Morse function is F2-perfect if
this count is always even, in which case ∂ vanishes over the
field of two elements.

Not all smooth manifolds admit perfect Morse functions.
For example, the projective plane RP2 ∼= Gr1(R3) cannot
since H1(RP2;Z) ∼= F2 implies that ∂ is non-zero. The
Poincaré homology sphere is a famous example of a mani-
fold without a perfect Morse over Z or any field18.

The Grassmannian Grk(Rm) provides a coordinate-free
representation of the space of rank-k orthogonal projections,
a submanifold of Rm×m. Through the identification of a
projection with its image, Grk(Rm) is endowed with the
structure of a smooth, compact Riemannian manifold of
dimension k(m− k).

Theorem E.1. LX is an F2-perfect Morse function. Its
critical points are the rank-k principal subspaces.

Proof. Consider the commutative diagram

Vk(Rm) Grk(Rm)

Rk×m × Rm×k R

π:O 7→Im(OOᵀ)

ι:O 7→(Oᵀ,O) LX

L

(10)

where Vk(Rm) is the Stiefel manifold of m × k matrices
with orthonormal columns. Since ι is an immersion, by
Theorem 4.2 the critical points of L ◦ ι = LX ◦ π are all
k-frames spanning principal subspaces of X . Since π is a
submersion, the critical points of LX are the image of this
subset under π as claimed.

Each critical point (that is, rank-k principle subspace) is
non-degenerate because each of the included k principal

18This is because if a homology 3-sphere admits a perfect Morse
function, then it consists of a 3-cell attached to a 0-cell, and is there-
fore the 3-sphere. Similarly, the smooth 4-dimensional Poincaré
conjecture holds if and only if every smooth 4-sphere admits a per-
fect Morse function. This conjecture, whose resolution continues
to drive the field, states that there is only one smooth structure on
the topological 4-sphere.
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directions may be rotated toward any of the excluded m− k
principal directions in the plane they span, fixing all other
principal directions; this accounts for all k(m− k) dimen-
sions. Flowing from higher to lower eigenvalues, these rota-
tions are precisely the −∇LX trajectories between adjacent
index critical points. Since there are exactly two directions
in which to rotate, we conclude that LX is F2-perfect.

While this paper may be the first to directly construct an
F2-perfect Morse function on the real Grassmannian, the
existence of some F2-perfect Morse function is straight-
forward to deduce from the extensive literature on perfect
Morse functions on complex Grassmanians (Hansen, 2012;
Duan, 2004). Our simple and intuitive function is akin to
that recently established for the special orthogonal group
(Solgun, 2016).

Note that LX is invariant to replacingX = UΣV ᵀ with UΣ
and therefore doubles by replacing X with the 2m points
bounding the axes of the principal ellipsoid of the covariance
of X . Rotating by Uᵀ, one need only consider the data set

{(±σ2
1 , 0, . . . , 0), (0,±σ2

2 , . . . , 0), . . . , (0, 0, . . . ,±σ2
m)}

to appreciate the symmetries, dynamics, and critical values
of the gradient flow in general.

We encourage the reader to check the Morse index formula
(4) in the case of Gr2(R4) in the table below. The symme-
tries of the table reflect the duality between a plane and its
orthogonal complement in R4.

d u1 u2 u3 u4

4 • •
3 • •
2 • •
2 • •
1 • •
0 • •

Theorem 2 implies that LX endows Grk(Rm) with the
structure of a CW complex; each index-d critical point P
is the maximum of a d-dimensional cell consisting of all
points that asymptotically flow up to P . This decomposition
coincides with the classical, minimal CW construction of
Grassmannians in terms of Schubert cells. Over Z, pairs
of rotations have the same sign when flowing from even
to odd dimension, and opposite signs when flowing from
odd to even dimension, due to the oddness and evenness of
the antipodal map on the boundary sphere, respectively. In
this way, Morse homology for LX realizes the same chain
complex as CW homology on the Schubert cell structure of
the real Grassmannian.

E.1. Morse homology and deep learning

We have seen how the rich topology of the real Grassman-
nian forces any generic smooth function to have at least

(
m
k

)
critical points. More interestingly from the perspective of
deep learning, Morse homology also explains why simple
topology forces critical points of any generic smooth func-
tion to “geometrically cancel” through gradient trajectories.
As an intuitive example, consider a generic smooth function
f : R→ R that is strictly decreasing for x < a and strictly
increasing for x > b for some a < b. Then on [a, b], f
wiggles up and down, alternating between local minima
and maxima, with pairwise gradient cancellation leaving a
single minimum.

More generally, for a generic smooth loss function over the
connected parameter space Rp, diverging strictly to infinity
outside of a compact subset, each pair of minima is linked
by a path of gradient trajectories between minima and index-
1 saddles19. In fact, since Rp is contractible, we can flow
upward along gradient trajectories from one minimum to all
minima through index-1 saddles, from those index-1 saddles
to other index-1 saddles through index-2 saddles, and so on
until the resulting chain complex is contractible. Note there
may exist additional critical points forming null-homotopic
chain complexes.

The contractible complex containing the minima is espe-
cially interesting in light of Choromanska et al. (2015). For
large non-linear networks under a simple generative model
of data, the authors use random matrix theory20 to prove that
critical points are layered according to index: local minima
occur at a similar height as the global minimum, index-1
saddles in a layer just above the layer of minima, and so on.
Hence Morse homology provides a principled foundation
for the empirical observation of low-lying valley passages
between minima used in Fast Geometric Ensembling (FGE)
(Garipov et al., 2018).

In FGE, after descending to one minimum, the learning rate
is cycled to traverse such passages and find more minima.
While the resulting ensemble prediction achieves state-of-
the-art performance, these nearby minima may correspond
to models with correlated error. With this in mind, we are
exploring whether ensemble prediction is improved using
less correlated minima, and whether many such minima
may be found with logarithmic effort by recursively bifur-
cating gradient descent near saddles to descend alongside
the Morse complex described above.

19For example, in Figure 1(c), the red minima are each con-
nected to the yellow saddle by one gradient trajectory.

20From this perspective, the LAE is a toy model that more
directly bridges loss landscapes and random matrix theory; the
heights of critical points are sums of eigenvalues.


