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Abstract

Autoencoders are a deep learning model for repre-
sentation learning. When trained to minimize the
distance between the data and its reconstruction,
linear autoencoders (LAEs) learn the subspace
spanned by the top principal directions but can-
not learn the principal directions themselves. In
this paper, we prove that L2-regularized LAEs are
symmetric at all critical points and learn the princi-
pal directions as the left singular vectors of the de-
coder. We smoothly parameterize the critical man-
ifold and relate the minima to the MAP estimate
of probabilistic PCA. We illustrate these results
empirically and consider implications for PCA
algorithms, computational neuroscience, and the
algebraic topology of learning.

1. Introduction
Consider a data set consisting of points x1, . . . , xn in Rm.
Let X ∈ Rm×n be the data matrix with columns xi. We
will assume throughout that k ≤ min{m,n} and that the
singular values of X are positive and distinct.

An autoencoder consists of an encoder f : Rm → Rk and
decoder g : Rk → Rm; the latter maps the latent representa-
tion f(xi) to the reconstruction x̂i = g(f(xi)) (Goodfellow
et al., 2016). The full network is trained to minimize re-
construction error, typically the squared Euclidean distance
between the dataset X and its reconstruction X̂ (or equiva-
lently, the Frobenius norm of X− X̂). When the activations
of the network are the identity, the model class reduces to
that of one encoder layer W1 ∈ Rk×m and one decoder
layer W2 ∈ Rm×k. We refer to this model as a linear
autoencoder (LAE) with loss function defined by
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L(W1,W2) = ||X −W2W1X||2F .

Parameterizing L by the product W = W2W1, the Eckart-
Young Theorem (Eckart & Young, 1936) states that the opti-
mal W orthogonally projects X onto the subspace spanned
by its top k principal directions1.

Without regularization, LAEs learn this subspace but cannot
learn the principal directions themselves due to the symme-
try of L under the action of the group GLk(R) of invertible
k × k matrices defined by (W1,W2) 7→ (GW1,W2G

−1):

X − (W2G
−1)(GW1)X = X −W2W1X. (1)

Indeed, L achieves its minimum value on a smooth sub-
manifold of Rk×m × Rm×k diffeomorphic to GLk(R); the
learned latent representation is only defined up to defor-
mation by invertible linear maps; and the k-dimensional
eigenspace of W with eigenvalue one has no preferred ba-
sis.

In light of the above, the genesis of this work was our
surprise at the theorem2 and empirical observation in Plaut
(2018) that the principal directions of X are recovered from
a trained LAE as the left singular vectors of the decoder (or
as the right singular vectors of the encoder). We realized by
looking at the code that training was done with the common
practice of L2-regularization:

Lσ(W1,W2) = L(W1,W2) + λ
(
||W1||2F + ||W2||2F

)
.

In this paper, we prove that LAEs with L2-regularization do
in fact learn the principal directions in this way, while shrink-
ing eigenvalues in the manner of probabilistic PCA (Tipping
& Bishop, 1999). The key idea is that regularization reduces
the symmetry group from GLk(R) to the orthogonal group
Ok(R), which preserves the structure of SVD. We further
prove that the encoder and decoder are transposes at all

1The principal directions of X are the eigenvectors of the
m × m covariance of X in descending order by eigenvalue, or
equivalently the left singular vectors of the mean-centered X in
descending order by (squared) singular values.

2The theorem was retracted following our correspondance.
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critical points, with implications for whether the brain could
plausibly implement error backpropagation.

1.1. Related work

Building on the original work of Eckart & Young (1936) on
low-rank matrix approximation, Izenman (1975) demon-
strated a connection between a rank-reduced regression
model similar to an LAE and PCA. Bourlard & Kamp (1988)
characterized the minima of an unregularized LAE; Baldi &
Hornik (1989) extended this analysis to all critical points.

Several studies of the effect of regularization on LAEs have
emerged of late. The rank-reduced regression model was
extended in Mukherjee & Zhu (2011) to the study of rank-
reduced ridge regression. A similar extension of the LAE
model was given in Josse & Wager (2016). An in depth
analysis of the linear denoising autoencoder was given in
Pretorius et al. (2018) and most recently, Mianjy et al. (2018)
explored the effect of dropout regularization on the minima
of an LAE.

While L2-regularization is a foundational technique in sta-
tistical learning, its effect on autoencoder models has not
been fully characterized. Recent work of Mehta et al.
(2018) on L2-regularized deep linear networks applies tech-
niques from algebraic geometry to highlight how algebraic
symmetries result in “flat” critical manifolds and how L2-
regularization breaks these symmetries to produce isolated
critical points. We instead apply elementary linear alge-
bra, with intuition from algebraic topology, to completely
resolve dynamics in the special case of LAEs.

1.2. Our contributions

The contributions of our paper are as follows.

• In Section 2 we consider LAEs with (i) no regulariza-
tion, (ii) L2-regularization of the composition of the
encoder and decoder, and (iii) L2-regularization of the
encoder and decoder separately as in Lσ. We build
intuition by analyzing the scalar case, consider the rela-
tionship between regularization and orthogonality, and
deduce that the encoder and decoder are transposes at
all critical points of Lσ .

• In Section 3, we realize all three LAE models as gener-
ative processes, most notably relating the minimum of
Lσ and the MAP estimate of probabilistic PCA.

• In Section 4, we characterize all three loss landscapes.
To build intuition, we first leave the overparameterized
world of coordinate representations to think geomet-
rically about the squared distance from a plane to a
point cloud. We expand on this topological viewpoint
in Appendix E.

• In Section 5, we illustrate these results empirically,

with all code and several talks available on GitHub3.
• In Section 6, we discuss implications for eigendecom-

position algorithms, computational neuroscience, and
deep learning.

The connections we draw between regularization and orthog-
onality, LAEs and probabilistic PCA, and the topology of
Grassmannians are novel and provide a deeper understand-
ing of the loss landscapes of regularized linear autoencoders.

2. Regularized LAEs
In the Appendix A, we provide a self-contained derivation of
the fact that an LAE with bias parameters is equivalent to an
LAE without bias parameters trained on mean-centered data
(Bourlard & Kamp, 1988). So without loss of generality,
we assume X is mean centered and consider the following
three LAE loss functions for fixed λ > 0:

L(W1,W2) = ||X −W2W1X||2F
Lπ(W1,W2) = L(W1,W2) + λ||W2W1||2F
Lσ(W1,W2) = L(W1,W2) + λ(||W1||2F + ||W2||2F )

We call these the unregularized, product, and sum losses,
respectively.

The product and sum losses mirror the loss functions of a lin-
ear denoising autoencoder (DAE) (Vincent et al., 2010) and
linear contractive autoencoder (CAE) (Rifai et al., 2011)
respectively. See Appendix C for details.

2.1. Visualizing LAE loss landscapes

We can visualize these loss functions directly in the case
n = m = k = 1, as shown in Figure 1. In fact, working
out the critical points in this scalar case led us to conjecture
the general result in Section 4. We invite the reader to enjoy
deriving the following results and experimenting with these
loss landscapes using our online visualization tool.

For all three losses, the origin w1 = w2 = 0 is the unique
rank-0 critical point. For L and Lπ, the origin is always a
saddle point, while for Lσ the origin is either a saddle point
or global minimum depending of the value of λ.

For L, the global minima are rank-1 and consist of the
hyperbola4

w2w1 = 1.

For Lπ, the global minima are rank-1 and consist of this
hyperbola shrunk toward the origin as in ridge regression,

w2w1 = (1 + λx−2)−1.

For Lσ the critical points depend on the scale of λ relative
to x2. For λ < x2, the origin is a saddle point and the global

3github.com/danielkunin/Regularized-Linear-Autoencoders
4Identified with the components of GL1(R) ∼= R\{0}.

https://github.com/danielkunin/Regularized-Linear-Autoencoders
https://danielkunin.github.io/Regularized-Linear-Autoencoders/
https://github.com/danielkunin/Regularized-Linear-Autoencoders
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(a) Unregularized (b) Product (λ = 2) (c) Sum (λ = 2) (d) Sum (λ = 4)

Figure 1. Scalar loss landscapes with x2 = 4. Yellow points are saddles and red curves and points are global minima.

minima are the two isolated rank-1 critical points5 cut out
by the equations

w2w1 = 1− λx−2, w1 = w2.

As λ increases toward x2, these minima move toward the
origin, which remains a saddle point. As λ exceeds x2, the
origin becomes the unique global minimum. This loss of in-
formation was our first hint at the connection to probabilistic
PCA formalized in Theorem 3.1.

2.2. Regularization and orthogonality

Adding L2-regularization to the encoder and decoder sepa-
rately reduces the symmetries of the loss from GLk(R) to
the orthogonal group Ok(R). Two additional facts about the
relationship between regularization and orthogonality have
guided our intuition:

(a) Orthogonal matrices are the determinant ±1 matrices
of minimal Frobenius norm6,

arg min
A

||A||2F s.t. det(A)2 = 1.

(b) Orthogonal matrices are the inverse matrices of mini-
mum total squared Frobenius norm,

arg min
A,B

||A||2F + ||B||2F s.t. AB = I,

and in particular A = Bᵀ at all minima.

Both facts follow from the inequality of arithmetic and
geometric means after casting the problems in terms of
squared singular values7. While it was not immediately
clear to us that the transpose relationship in (b) also holds
at the minima of Lσ, in fact, all critical points of an L2-
regularized linear autoencoder are symmetric:

5Identified with the components of O1(R) ∼= {±1}.
6Geometrically: the unit-volume parallelotope of minimal total

squared side length is the unit hypercube.
7The squared Frobenius norm is their sum and the squared

determinate is their product.

Theorem 2.1 (Transpose Theorem). All critical points of
Lσ satisfy W1 = W ᵀ

2 .

Our proof uses elementary properties of positive definite
matrices as reviewed in Appendix B. Note that without
regularization, all critical points are psuedoinverses, W1 =
W+

2 , as is clear in the scalar case and derived in Section 4.

Proof. Critical points of Lσ satisfy:

∂Lσ
∂W1

= 2W ᵀ
2 (W2W1 − I)XXᵀ + 2λW1 = 0,

∂Lσ
∂W2

= 2(W2W1 − I)XXᵀW ᵀ
1 + 2λW2 = 0.

We first prove that the matrix

C = (I −W2W1)XXᵀ

is positive semi-definite8. Rearranging ∂Lσ
∂W2

W ᵀ
2 gives

XXᵀ(W2W1)ᵀ = (W2W1)XXᵀ(W2W1)ᵀ + λW2W
ᵀ
2 .

Both terms on the right are positive semi-definite, so their
sum on the left is as well and therefore

XXᵀ(W2W1)ᵀ � (W2W1)XXᵀ(W2W1)ᵀ.

Cancelling (W2W1)ᵀ via Lemma B.1 gives C � 0.

We now show the difference A = W1 −W ᵀ
2 is zero. Rear-

ranging terms using the symmetry of C gives

0 =
∂Lσ
∂W1

− ∂Lσ
∂W2

ᵀ

= 2A(C + λI).

Since C � 0 and λ > 0 imply C + λI � 0, we conclude
from

A(C + λI)AT = 0

that A = 0.
8Intuitively, we expect this property so long as W2W1 shrinks

the principal directions of X , so that I −W2W1 does as well.



Loss Landscapes of Regularized Linear Autoencoders

3. Bayesian Models
In this section, we identify Bayesian counterparts of our
three loss functions and derive a novel connection between
(regularized) LAEs and (probabilistic) PCA. This connec-
tion enables the application of any LAE training method to
Bayesian MAP estimation of the corresponding model.

Consider the rank-k (self-)regression model

xi = W2W1xi + εi = Wxi + εi

where W1 and W2 act through their product W and εi ∼
Nm(0, 1).

• L is rank-k regression. The prior on W is the uniform
distribution on Rm×m restricted to rank-k matrices9.

• Lπ is rank-k ridge regression. The prior on W is
Nm×m(0, λ−1) restricted to rank-k matrices.

• Lσ is the model withW1 andW ᵀ
2 independently drawn

from Nk×m(0, λ−1).

Theorem 4.2 shows that the minima of Lσ, or equivalently
the MAP of the Bayesian model, are such that W2 is the
orthogonal projection onto the top k principal directions
followed by compression in direction i via multiplication
by the factor (1− λσ−2i )

1
2 for σ2

i > λ and zero otherwise.
Notably, for principal directions with eigenvalues dominated
by λ, all information is lost no matter the number of data
points. The same phenomenon occurs for pPCA with respect
to eigenvalues dominated by the variance of the noise, σ2.
Let’s consider these Bayesian models side by side, with
W0 ∈ Rm×k the parameter of pPCA10:

Bayesian Lσ pPCA

W1,W
ᵀ
2 ∼ Nk×m(0, λ−1)

εi ∼ Nm(0, 1)

xi = W2W1xi + εi

zi ∼ Nk(0, 1)

εi ∼ Nm(0, σ2)

xi = W0zi + εi

Comparing the critical points of Lσ in Theorem 4.2,

WT
1 = W2 = UI(I` − λΣ−2I )

1
2Oᵀ, (2)

and pPCA (Tipping & Bishop, 1999),

W0 = UIΣI(I` − σ2Σ−2I )
1
2Oᵀ, (3)

where O ∈ Rk×` has orthonormal columns, we see that
λ corresponds to σ2 (rather than the precision σ−2) in the
sense that principal directions with eigenvalues dominated
by either are collapsed to zero. The critical points only differ
in the factor by which the the remaining principal directions
are shrunk. More precisely:

9Note that rank-(k-1) matrices are a measure zero subset of
rank-k matrices.

10See Chapter 12.2 of Bishop (2006) for background on pPCA.

Theorem 3.1 (pPCA Theorem). With σ2 = λ, the critical
points of

L0
σ(W1,W2) = Lσ(W1(XXᵀ)−

1
2 , (XXᵀ)−

1
2W2)

coincide with the critical points of pPCA.

Proof. Multiplying the expression for W2 in (2) on the left
by (XXᵀ)

1
2 gives the expression for W0 in (3).

Interestingly, the generative model for L0
σ differs from that

of pPCA. For example, in the scalar case L0
σ(w1, w2) is

x2
(
1− x−2w2w1

)2
+ λx−2(w2

1 + w2
2)

whereas the negative log likelihood of pPCA is

1

2

(
ln(2π) + ln(w2

0 + σ2) + x2(w2
0 + σ2)−1

)
.

4. Loss Landscapes
Having contextualized LAE models in a Bayesian frame-
work, we now turn to understanding their loss landscapes.
Symmetries such as (1) exist because the model is expressed
in an “overparameterized” coordinate form rooted in clas-
sical linear algebra. This results in “flat” critical manifolds
rather than a finite number of critical points. In Section
4.1, we remove all symmetries by expressing the loss geo-
metrically over a topological domain. This results in

(
m
k

)
critical points, and in particular a unique minimum. This
intuition will pay off in Sections 4.2 and 4.3, where we fully
characterize the critical manifolds and local curvatures of
all three LAE loss landscapes.

4.1. Critical points

We now consider reconstruction loss over the domain of k-
dimensional planes through the origin in Rm. This space has
the structure of a k(m− k)-dimensional smooth, compact
manifold called the Grassmannian of k-planes in Rm and
denoted Grk(Rm) (Hatcher, 2002). We’ll build intuition
with a few simple examples.

• Gr1(R2) is the space of lines through the origin in
the plane, which may be smoothly parameterized by a
counterclockwise angle of rotation of the x-axis mod-
ulo the half turn that maps a line to itself.

• Gr1(R3) is the space of lines through the origin in 3-
space, also known as the real projective plane. We can
visualize Gr1(R3) as the northern hemisphere of the
2-sphere with equator glued by the antipodal map.

• Gr2(R3) is identified with Gr1(R3) by mapping a
plane to its 1-dimensional orthogonal complement.

A point cloud X in Rm determines a smooth function

LX : Grk(Rm)→ R
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(a) Lines in the plane.

(b) Lines in space.

Figure 2. Left: Principal directions of a point cloud X . Middle:
LX as height function on the manifold of lines through the origin.
Right: Negative gradient flow of LX .

whose value on a k-plane is the sum of square distances
from the points to the plane. Figure 2 depicts LX as a height
function for Gr1(R2) and Gr1(R3). Note that the min and
max in (a) are the principal directions u1 and u2, while the
min, saddle, and max in (b) are the principal directions u1,
u2, and u3. At right, we depict the negative gradient flow
−∇LX on each space, with (b) represented as a disk with
glued boundary. In (a), u1 may descend to u2 by rotating
clockwise or counterclockwise11. In (b), u1 may descend to
u2 or u3 by rotating in either of two directions in the plane
they span, and u2 may similarly descend to u3.

The following theorem requires our assumption that the
singular values of X are distinct.

Theorem 4.1 (Grassmannian Theorem). LX is a smooth
function with

(
m
k

)
critical points given by all rank-k princi-

pal subspaces. In local coordinates near the critical point
with principal directions i1 < . . . < ik, LX takes the form
of a standard non-degenerate saddle with

dI =

k∑
j=1

(ij − j). (4)

descending directions.

The latter formula counts the total number of pairs i < j
with i ∈ I and j /∈ I. These correspond to directions to
flow along −∇LX by rotating one principal direction ui to
another uj of higher eigenvalue, fixing the rest.

In Appendix E, we prove a stronger form of the Grassman-

11Formally, we mean there are two gradient trajectories (modulo
time translation) that converge to u1 and u2 in each time direction
asymptotically, namely the left and right halves of the circle.

nian Theorem by combining Theorem 4.2, a commutative
diagram (10) relating LX and L, and techniques from alge-
braic topology.

4.2. Critical manifolds

Translating the Grassmannian Theorem back to the coordi-
nate representation Rk×m×Rm×k introduces two additional
phenomena we saw in the scalar case in Section 2.1.

• Each critical point on Grk(Rm) corresponds to a man-
ifold GLk(R) or Ok(R) of rank-k critical points.

• Critical manifolds appear with rank less than k. In
particular, (0, 0) is a critical point for all three losses.

Now let’s now combine our topological and scalar intuition
to understand the the loss landscapes of LAEs in all dimen-
sions and for all three losses.

Theorem 4.2 requires our assumption12 that X has distinct
singular values σ1 > · · · > σm > 0. Let u1, . . . , um
denote the corresponding left singular vectors (or principal
directions) of X . For an index set I ⊂ {1, . . . ,m} we
define:

• ` = |I| and increasing indices i1 < · · · < i`,
• ΣI = diag(σi1 , . . . , σi`) ∈ R`×`,
• UI ∈ Rm×` consisting of columns i1, . . . , i` of U ,
• FI , the open submanifold of Rk×` whose points are

matrices G with independent columns13,
• VI , the closed submanifold of Rk×` whose points are

matrices O with orthonormal columns14.

Theorem 4.2 (Landscape Theorem). For each loss, the
critical points form a smooth submanifold of Rk×m×Rm×k.

For L and Lπ, this submanifold is diffeomorphic to the
disjoint union of FI over all I ⊂ {1, . . . ,m} of size at
most k.

For Lσ, this submanifold is diffeomorphic to the disjoint
union of VI over all I ⊂ {1, . . . ,m0} of size at most k,
where m0 is the largest index such that σ2

m0
> λ.

These diffeomorphisms mapG ∈ FI orO ∈ VI to a critical
point (W1,W2) as follows:

W2 W1

L UIG
+ GUᵀ

I
Lπ UI(I` + λΣ−2I )−

1
2G+ G(I` + λΣ−2I )−

1
2Uᵀ
I

Lσ UI(I` − λΣ−2I )
1
2Oᵀ O(I` − λΣ−2I )

1
2Uᵀ
I

The proof of the Landscape Theorem 4.2 follows quickly

12For the sum loss, we also assume λ is distinct from all σ2
i .

13Also known as the manifold of l-frames in Rk.
14Also known as the Stiefel manifold Vl(Rk).
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from the Transpose Theorem 2.1 and Proposition 4.3.
Proposition 4.3. Let D,S ∈ Rm×m be diagonal matrices
such that S is invertible and the diagonal of D2S−2D2 has
distinct non-zero elements. Then the critical points of

L∗(Q1, Q2) = tr(Q2Q1S
2Qᵀ

1Q
ᵀ
2 − 2Q2Q1D

2)

are smoothly parameterized as the disjoint union of FI over
all I ⊂ {1, . . . ,m} of size at most k. The diffeomorphism
maps G ∈ FI to a critical point (Q1, Q2) as follows15:

Q2 Q1

L∗ DIS
−1
I IIG

+ GIᵀIDIS
−1
I

Proof of Theorem 4.2. Given the singular value decompo-
sition X = UΣV ᵀ, let Q1 = W1U and Q2 = UᵀW2. By
invariance of the Frobenius norm under the smooth action
of the orthogonal group, we may instead parameterize the
critical points of the following loss functions and then pull
the result back to W1 = Q1U

ᵀ and W2 = UQ2:

L(Q1, Q2) = ||Σ−Q2Q1Σ||2F
Lπ(Q1, Q2) = L(Q1, Q2) + λ||Q2Q1||2F
Lσ(Q1, Q2) = L(Q1, Q2) + λ(||Q1||2F + ||Q2||2F )

L expands to

tr(Q2Q1Σ2Qᵀ
1Q

ᵀ
2 − 2Q2Q1Σ2 + Σ2).

By Proposition 4.3 with S = Σ and D = Σ, the critical
points have the form

Q2 Q1

L IIG
+ GIᵀI

Lπ expands to

tr(Q2Q1(Σ2 + λI)Qᵀ
1Q

ᵀ
2 − 2Q2Q1Σ2 + Σ2).

By Proposition 4.3 with S = (Σ2 + λI)
1
2 and D = Σ, the

critical points have the form

Q2 Q1

Lπ II(I` + λΣ−2I )−
1
2G+ G(I` + λΣ−2I )−

1
2 IᵀI

By Lemma A.1 with A = Q2 and B = Q1, Lσ expands to
the sum of two functions:

L1(Q1, Q2) = tr(Q2Q1Σ2Qᵀ
1Q

ᵀ
2 − 2Q2Q1(Σ2 − λI) + Σ2)

L2(Q1, Q2) = λ||Q1 −Qᵀ
2 ||2F .

15Here DI and SI are defined like ΣI . II is defined like UI .

So at a critical point,∇L1(Q1, Q2) = −∇L2(Q1, Q2) and
Q1 = Qᵀ

2 by the Transpose Theorem 2.1. The latter also
implies ∇L2(Q1, Q2) = 0. So the critical points of Lσ
coincide with the critical points of L1 such that Q1 = Qᵀ

2 .

By Proposition 4.3 with S = Σ andD = (Σ2−λI)
1
2 , these

critical points have the form

Q2 Q1

Lσ II(I` − λΣ−2I )
1
2Oᵀ O(I` − λΣ−2I )

1
2 IᵀI

In particular, real solutions do not exist for σ2
i < λ.

4.3. Local curvature

By Theorem 4.2, the critical landscape is a disjoint union
of smooth manifolds, each at some height. We now prove
that the Hessian is non-degenerate in the normal directions
to the critical landscape. As discussed in Appendix E, such
functions are called Morse-Bott and studied extensively in
differential and algebraic topology.

Theorem 4.4 (Curvature Theorem). In local coordinates
near any point on the critical manifold indexed by I, all
three losses take the form of a standard degenerate saddle
with dI + (k − `)(m− `) descending directions.

• L and Lπ have k` flat directions.
• Lσ has k`−

(
`+1
2

)
flat directions.

The remaining directions are ascending.

Proof. In addition to the descending directions of LX , there
are (k − `)(m− `) more that correspond to scaling one of
k−` remaining slots inG orO toward one ofm−` available
principal directions16. For L and Lπ, the ascending direc-
tions are the k(m−k)−dI ascending directions of LX ; for
Lσ, an additional

(
`+1
2

)
ascending directions preserve the

reconstruction term while increasing the regularization term
by decreasing orthogonality. The remaining (flat) directions
are tangent to the critical manifold, itself diffeomorphic to
the manifold of (orthonormal) l-frames in Rk.

5. Empirical Illustration
In this section, we illustrate the Landscape Theorem 4.2 by
training an LAE on synthetic data and visualizing properties
of the learned weight matrices. See Appendix D.1 for ex-
periments on real data. Corollary 4.4 implies that gradient
descent and its extensions will reach a global minimum,
regardless of the initialization, if trained for a sufficient
number of epochs with a small enough learning rate (Zhu

16In Figure 1c, these two gradient trajectories descend from the
yellow saddle at 0 to the two red minima at ±u1.
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Figure 3. Distance between W1 and W ᵀ
2 during training.

(a) Unregularized (b) Product (c) Sum

Figure 4. Heat map of the matrix
[
U V∗

]ᵀ [
U U∗

]
. Black and

white correspond to −1 and 1, respectively.

et al., 2018).

5.1. Synthetic data

In the following experiments, we set k = λ = 10 and fix
a data set X ∈ R20×20 with singular values σi = i and
random left and right singular vectors under Haar measure.
We train the LAE for each loss using the Adam optimizer for
4000 epochs with random normal initialization, full batch,
and learning rate 0.05.

Figure 3 tracks the squared distance between W1 and W ᵀ
2

during training. Indeed, only the the sum loss pulls the
encoder and (transposed) decoder together as claimed in the
Transpose Theorem 2.1.

Let W∗ be the product W2W1 after training and fix the
singular value decompositions

X = UΣV ᵀ, W∗ = U∗Σ∗V
ᵀ
∗ .

For each loss, the heat map of[
UᵀU UᵀU∗
V ᵀ
∗ U V ᵀ

∗ U∗

]
in Figure 4 is consistent with W∗ approximating a global
minimum defined by the Landscape Theorem. Namely, the
lower right quadrant shows U∗ ≈ V∗ for each loss and the
upper right and lower left quadrants show U ≈ U∗ and
U ≈ V∗ up to column sign for the product and sum losses,
but not for the unregularized loss. That is, for the product
and sum losses, the left singular vectors of X are obtained
as the right and left singular vectors of W∗.

The Landscape Theorem also gives explicit formulae for the
eigenvalues of W∗ at convergence. Letting σ2

i and τ2i be

(a) Unregularized (b) Product

(c) Sum

Figure 5. Illustration of the relationship between the eigenvalues
of the weight matrix (τ2) and data matrix (σ2) for various values
of λ. Points are the empirical and lines are theoretical.

the ith largest eigenvalues of XXᵀ and W∗, respectively, in
Figure 5 we plot the points

(
σ2
i , τ

2
i

)
for many values of λ.

We superimpose a curve for each value of λ defined by the
theoretical relationship between σ2

i and τ2i in the Landscape
Theorem. The (literal) alignment of theory and practice is
visually perfect.

6. Implications
6.1. PCA algorithms

The Landscape Theorem for Lσ implies those principal
directions of X with eigenvalues greater than λ coincide
with the top left singular vectors of the trained decoder.
Hence we can perform PCA by training a regularized LAE
and computing SVD of the decoder. For example, full-batch
gradient descent corresponds to the following algorithm,
which is guaranteed to converge to a (global) minimum for
sufficiently small learning rate by the Curvature Theorem.
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Algorithm 1 LAE–PCA

input X ∈ Rm×n; k ≤ m; λ, α > 0
initialize W1,W

ᵀ
2 ∈ Rk×m

while not converged
W1 −= α (W ᵀ

2 (W2W1 − I)XXᵀ + λW1)
W2 −= α ((W2W1 − I)XXᵀW ᵀ

1 + λW2)
U,Σ, = SVD(W2)
return U, λ(I − Σ2)−1

Note the SVD step is trivial because the decoder is only
m × k dimensional with k � n. Hence optimizing this
formulation of PCA reduces to optimizing the training of
a regularized LAE. We have so far explored several simple
ideas for optimizing performance17:

• First order. The Transpose Theorem suggests “tying”
W1 = W ᵀ

2 a priori. In fact, for λ = 0 and k = 1,
the gradient update for Lσ with tied weights is equiv-
alent to Oja’s rule for how neurons in the brain adapt
synaptic strength (Oja, 1982). See Appendix A for a
derivation.

• Second order. The loss is convex in each parameter
fixing the other, so W1 and W2 may be updated ex-
actly per iteration by solving a system of m or k linear
equations respectively.

While many other methods have been proposed for recover-
ing principal components with neural networks, they all re-
quire specialized algorithms for iteratively updating weights,
similar to classical numerical SVD approaches Warmuth &
Kuzmin (2007); Feng et al. (2013b;a). By contrast, reducing
PCA to a small SVD problem by training a regularized LAE
more closely parallels randomized SVD (Halko et al., 2011).
We hope others will join us in investigating how far one can
push the performance of LAE-PCA.

6.2. Neural alignment

In gradient descent via backpropagation, the weight matrix
before a layer is updated by an error signal that is propagated
by the transposed weight matrix after the layer. In the brain,
there is no known physical mechanism to reuse feedforward
connections for feedback or to enforce weight symmetry be-
tween distinct forward and backward connections. The latter
issue is known as the weight transport problem (Grossberg,
1987) and regarded as central to the implausibility of back-
propagation in the brain. Recently Lillicrap et al. (2016)
showed that forward weights can sufficiently align to fixed,
random feedback weights to support learning in shallow
networks, but Bartunov et al. (2018) demonstrated that this
feedback alignment and other biologically-plausible archi-

17NumPy implementations and benchmarks of these ideas are
available on GitHub.

tectures break down for deep networks.

We are now investigating two approaches to weight transport
inspired by the results herein. First, the Transpose Theorem
2.1 suggests that weight symmetry emerges dynamically
when feedback weights are updated to optimize forward-
backward reconstruction between consecutive layers with
weight decay. This information alignment algorithm bal-
ances task prediction, information transmission, and energy
efficiency. Second, Lemma A.1 expresses weight symmetry
as balancing weight decay and self-amplification, lending
greater biological plausibility to symmetric alignment. We
have verified that both information and (not surprisingly)
symmetric alignment indeed align weights and are competi-
tive with backprop when trained on MNIST and CIFAR10.
In parallel, Akrout et al. (2019) has independently shown
that similar forms of local dynamic alignment scale to Ima-
geNet.

6.3. Morse homology

In Appendix E we expand from the algebraic topology of
learning PCA to that of learning by gradient descent in gen-
eral. For example, we explain how Morse homology pro-
vides a principled foundation for the empirical observation
of low-lying valley passages between minima in Garipov
et al. (2018). We are hopeful that this perspective will yield
insights for efficient training and improved robustness and
interpretation of consensus representations and ensemble
predictions, for non-convex models arising in matrix factor-
ization and deep learning.

7. Conclusion
In 1989, Baldi & Hornik (1989) characterized the loss land-
scape of an LAE. In 2018, Zhou & Liang (2018) charac-
terized the loss landscape of an autoencoder with ReLU
activations on a single hidden layer. This paper fills out and
ties together the rich space of research on linear networks
over the last forty years by deriving from first principles a
unified characterization of the loss landscapes of LAEs with
and without regularization, while introducing a rigorous
topological lens. By considering a simple but fundamen-
tal model with respect to regularization, orthogonality, and
Morse homology, this work also suggests new principles
and algorithms for learning.

https://github.com/danielkunin/Regularized-Linear-Autoencoders
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