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A Notations

All vectors/matrices are written in bold font a/ A; indexed values are written as a;, A;;. Zeros or ones vectors
are defined as 0 or 1, and i-th canonical basis vector defined as e;. The indices for vectors/matrices all start
from 0 and is taking modulo-n, thus a vector of length n should has its indices labeled as {0,1,...,n — 1}.
We write [n] = {0,...,n — 1}. We often use captial italic symbols I, J for subsets of [n]. We abuse notation
slightly and write [-p] = {n —p+1,...,n—1,0}and [+p] = {n—p+1,...,n = 1,0,1,...,p — 1}. Index
sets can be labels for vectors; a; € Rl denotes tbe restriction of the vector a to coordinates I. Also, we use
check symbol for reversal operator on index set I = —I and vectors @; = a_;.

We let Pc denote the projection operator associated with a compact set C. The zero-filling operator
¢r : R — R™ injects the input vector to higher dimensional Euclidean space, via (t;2); = ®7-1(;) fori € I
and 0 otherwise. Its adjoint operator ¢} can be understood as subset selection operator which picks up entries
of coordinates I. A common zero-filling operator through out this paper ¢ is abbreviation of ¢, which is
often being addressed as zero-padding operator and its adjoint ¢* as truncation operator.

The convolution operator are all circular with modulo-n: (a * x); = > jein] @iTi—js also, the convolution
operator works on index set: I * J = supp (17 * 1;). Similarly, the shift operator s;[-] : R?» — R™ is circular
with modulo-n without specification: (s[a]); = (¢[,ja);—¢. Notice that here a can be shorter p < n. Let
C, € R"*™ denote a circulant matrix (with modulo-n) for vector a, whose j-th column is the cyclic shift of a
by j: Cae; = sj[a]. It satisfies for any b € R",

Cyob=axb. (A1)

The correlation between a and b can be also written in similar form of convolution operator which reverse one

vector before convolution. Define two correlation matrices C and C, as Cle; = sjlal and C. e; = s_jlal.
The two operators will satisfy

Cib=taxb, Cab=axb. (A2)

B Geometry of ¢, in Shift Space

Underlying our main geometric and algorithmic results is a relationship between the geometry of the function
¢, and the symmetries of the deconvolution problem. In this section, we present Theorem B.1, which is a more
general result of the main geometric theorem Theorem 3.1. We describe this relationship at a more technical
level, by interpreting the gradient and hessian of the function ¢, in terms of the shifts sy[ao] and stating a
key lemma which asserts that a certain neighborhood of the union of subspaces ¥4¢,, can be decomposed
into regions of negative curvature, strong gradient, and strong convexity near the target solutions +s,[ao].



B.1 Shifts and Correlations

The set 44y, is a union of subspaces. Any point a in one of these subspaces Sy is a superposition of shifts of
ap:

a= Z aysglag). (B.1)

ler

This representation can be extended to a general point a € SP~! by writing

a="Y amsidag] + Y assiag). (B.2)

ler (¢T

The vector a can be viewed as the coefficients of a decomposition of a into different shifts of ag. This
representation is not unique. For a close to S, we can choose a particular o for which o, is small, a notion
that we will formalize below.

For convenience, we introduce a closely related vector 3 € R", whose entries are the inner products
between a and the shifts of ag: 8¢ = (a, s¢[ap]). Since the columns of C,,,, are the shifts of ag, we can write

B=C,ta (B.3)
=C, uCqa=: Ma. (BA4)

The matrix M is the Gram matrix of the truncated shifts: M;; = (¢*s;[ao], t*s;j[ao]). When p is small, the
off-diagonal elements of M are small. In particular, on S; we may take o, = 0, and 8 ~ «, in the sense
that 8; =~ a; and the entries of 3, are small. For detailed elaboration, see Appendix E.

B.2 Shifts and the Calculus of ¢,

Our main geometric claims pertain to the function ¢,, which is based on a smooth sparsity surrogate
p(:) = ||-||;. In this section, we sketch the main ideas of the proof as if p(-) = || - ||1, by relating the geometry
of the function ¢, to the vectors «, 3 introduced above. Working with ¢,: simplifies the exposition; it is
also faithful to the structure of our proof, which relates the derivatives of the smooth function ¢, to similar
quantities associated with the nonsmooth function 1.

The function ¢ has a relatively simple closed form:

pr(a) = =[S\ [Fxalls. (B.5)

Here, S, is the soft thresholding operator, which is defined for scalars t as Sy [t] = sign(t) max {|t| — A, 0}, and is
extended to vectors by applying it elementwise. The operator Sy[x] shrinks the elements of & towards zero.
Small elements become identically zero, resulting in a sparse vector.

Gradient: Sparsifying the Correlations 3

Our goal is to understand the local minimizers of the function ¢, over the sphere. The function ¢ is
differentiable. Clearly, any point a at which its gradient (over the sphere) is nonzero cannot be a local
minimizer. We first give an expression for the gradient of ;1 over Euclidean space R?, and then extend it to
the sphere SP~!. Using y = a * x( and calculus gives

~~

Vop(a) = —t"CqyCafySi [\C/EOCZOLCL}
= ~4"Cay CayS1 [ Ca, B
= —1"Co,Xx[8], (B.6)
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Figure 1: Gradient Sparsifies Correlations. Left: the soft thresholding operator Sy [3] shrinks the entries
of 3 towards zero, making it sparser. Middle left: the negative gradient —V,: is a superposition of shifts
se[ao], with coefficients x¢[3] ~ Sx[B]¢. Because of this, gradient descent sparsifies 3. Middle right: 3(a)
before, and 3(a™) after, one projected gradient step a* = Py,—1[a — t - grad[p,1](a)]. Notice that the
small entries of 3 are shrunk towards zero. Right: the gradient grad|¢,1](a) is large whenever it is easy
to sparsify 3; in particular, when the largest entry 3oy > B1) > 0.

where we have simplified the notation by introducing an operator x : R" — R" as x[3] = CaySa [\C’/woﬁ} .

This representation exhibits the (negative) gradient as a superposition of shifts of a, with coefficients given
by the entries of x[3]:

—Vn(a) =Y x[Bli sela). (B.7)
14

The operator x appears complicated. However, its effect is relatively simple: when x is a long random vector,
x|8] acts like a soft thresholding operator on the vector 3. That is,

1 Be — A, Be> A
— x[Ble=q Bet+ A Be<—A . (B.8)
no .

0, otherwise

We show this rigorously below, in the proof of our main theorems. Here, we support this claim pictorially, by
plotting the ¢-th entry x[3], as B, varies — see Figure 1 (middle left) and compare to Figure 1 (left). Because
X|[B] suppresses small entries of 3, the strongest contributions to —V 1 in (B.7) will come from shifts s¢[a]
with large B;. In particular, the Euclidean gradient is large whenever there is a single preferred shift s;[aq), i.e., the
largest entry of B is significantly larger than the second largest entry.

The (Euclidean) gradient V¢, measures the slope of ;1 over R”. We are interested in the slope of ¢,
over the sphere SP~!, which is measured by the Riemannian gradient

grad[pp](a) = P,1 Vo (a)
=P il selao) (B.9)
¢

The Riemannian gradient simply projects the Euclidean gradient onto the tangent space a* to SP~! at a. The
Riemannian gradient is large whenever

(i) Negative gradient points to one particular shift: there is a single preferred shift s;[ag] so that the
Euclidean gradient is large and

(ii) a is not too close to any shift: it is possible to move in the tangent space in the direction of this shift.!
Since the tangent space consists of those vectors orthogonal to a, this is possible whenever s;[a] is not
too aligned with a, i.e., a is not too close to s¢[ag].

1...50 the projection of the Euclidean gradient onto the tangent space does not vanish.



Our technical lemma quantifies this situation in terms of the ordered entries of 3. Write |Bpy| > |B(1)| > ...,
with corresponding shifts s [ac], s(1)[ao], . ... There is a strong gradient whenever |3 | is significantly
larger than |3(1)| and |3(;)| is not too small compared to \: in particular, when 1 |3(o)| > |8(1)| > Mog%.
In this situation, gradient descent drives a toward s [ac], reducing |3(y)], ..., and making the vector 3
sparser. We establish the technical claim that the (Euclidean) gradient of @1 sparsifies vectors in shift space
in Appendix F.

Hessian: Negative Curvature Breaks Symmetry

When there is no single preferred shift, i.e., when |31)| is close to | 3|, the gradient can be small. Similarly,
when a is very close to +5(g)[ag], the gradient can be small. In either of these situations, we need to study
the curvature of the function ¢ to determine whether there are local minimizers.

Strictly speaking, the function ¢, is not twice differentiable, due to the nonsmoothness of the soft
thresholding operator Sy [t] at ¢ = £ ). Indeed, ¢, is nonsmooth at any point a for which some entry of § x a
has magnitude A. At other points a, ¢, is twice differentiable, and its Hessian is given by

V3 (a) = —L*C’aO\C'/wOPI\C/mUC’:;OI,7 (B.10)

with I = supp (S by [\éybaD. We (formally) extend this expression to every a € R", terming 62(,0@1 the
pseudo-Hessian of ¢g. For appropriately chosen smooth sparsity surrogate p, we will see that the (true)
Hessian of the smooth function VZy,, is close to %23041, and so %29051 yields useful information about the
curvature of ¢,.

As with the gradient, the Hessian is complicated, but becomes simpler when the sample size is large. The
following approximation

V2 A—>Y s 5 (9
(@ == Y wasdaol (g x9) B11)

can be obtained from (B.7) noting that %X@ Bl =235 [ao]aiﬁjxg [3], that aiﬁjxg [B] = 0 for j # ¢, and that

L oxdBl {0 Bl < A (B.12)

nd 9B L [Be| > A

Again, we corroborate this approximation pictorially — see Figure 2.

From this approximation, we can see that the quadratic form v*V?p.1 v takes on a large negative value
whenever v is a shift s,[ag] corresponding to some |3;| > A, or whenever v is a linear combination of such
shifts. In particular, if for some j, |B(o)l, Byl - -, B¢ > N then op will exhibit negative curvature in any
direction v € span(sg)[ao], s(1y[ac], . . -, s¢;jy[ao])-

The (Euclidean) Hessian measures the curvature of the function ¢, over R"™. The Riemannian Hessian

Hess|pp](a) = Py < V20 (a) + (=Veyp(a),a)-1 > P,.. (B.13)

Curvature of 1 Curvature of the sphere

measures the curvature of ¢y over the sphere. The projection P,. restricts its action to directions v L a
that are tangent to the sphere. The additional term (—V i (a), a) accounts for the curvature of the sphere.
This term is always positive. The net effect is that directions of strong negative curvature of ¢, over R"
become directions of moderate negative curvature over the sphere. Directions of nearly zero curvature over
R™ become directions of positive curvature over the sphere. This has three implications for the geometry of
@ over the sphere:
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Figure 2: Hessian Breaks Symmetry. Left: contribution of —s;[ao]s;[ao]” to the Euclidean hessian.
If |Bi] > X the Euclidean hessian exhibits a strong negative component in the s;[ao] direction. The
Riemmanian hessian exhibits negative curvature in directions spanned by s;[a] with corresponding
|Bi] > A and positive curvature in directions spanned by s;[ao] with |3;| < A. Middle: this creates
negative curvature along the subspace S and positive curvature orthogonal to this subspace. Right: our
analysis shows that there is always a direction of negative curvature when B(1) > 2 830); conversely when
By < Athere is positive curvature in every feasible direction and the function is strongly convex.

(i) Negative curvature in symmetry breaking directions: If |3y, [B(1)], .- -,
1Bjy| > A, wp will exhibit negative curvature in any tangent direction v L a which is in the linear span

span(s(g)[aol, s(1ylao), - - -, 5¢)[@o])
of the corresponding shifts of a,.

(ii) Positive curvature in directions away from S.: The Euclidean Hessian
quadratic form v* V20 v takes on relatively small values in directions orthogonal to the subspace S-.
The Riemannian Hessian is positive in these directions, creating positive curvature orthogonal to the
subspace S.

(iii) Strong convexity around minimizers: Around a minimizer s¢[ao], only a single entry 3 is large. Any
tangent direction v L a is nearly orthogonal to the subspace span(s¢[ag]), and hence is a direction
of positive (Riemmanian) curvature. The objective function ¢, is strongly convex around the target
solutions £s[a].

Figure 2 visualizes these regions of negative and positive curvature, and the technical claim of positiv-
ity /negativity of curvature in shift space is presented in detail in Appendix G.

B.3 Any Local Minimizer is a Near Shift

We close this section by stating a key theorem, which makes the above discussion precise. We will show that
a certain neighborhood of any subspace S, can be covered by regions of negative curvature, large gradient,
and regions of strong convexity containing target solutions +s,[ao]|. Furthermore, at the boundary of this
neighborhood, the negative gradient points back—retracts—toward the subspace S, due to the (directional)
convexity of ¢, away from the subspace.

To formally state the result, we need a way of measuring how close a is to the subspace S;. For technical
reasons, it turns out to be convenient to do this in terms of the coefficients v in the representation

a= Zawg[ao] + Z oy sprfag). (B.14)
leT vere

If a € S, we can take o with o, = 0. We can view the energy ||o;<||2 as a measure of the distance from a
to Sr. A technical wrinkle arises, because the representation (B.14) is not unique. We resolve this issue by



choosing the « that minimizes ||a,< ||, writing:

do(a,Sy) = inf {||are

o Dpousilag] = a}. (B.15)

The distance d, (a, S;) is zero for a € S;. Our analysis controls the geometric properties of ¢, over the set of
a for which d, (a, S;) is not too large. Similar to (??), we define an object which contains all points that are
close to some S, in the above sense:

i = | {a:da(a,S:) <7} (B.16)
|T|<46po

The aforementioned geometric properties hold over this set:

Theorem B.1 (Three subregions). Suppose that y = ag * xo where ag € SPo~1 is u-shift coherent and xy ~; ; a.
BG(0) € R" satisfying
c c 1
0 e (B.17)

po’ Pov/E+ /P log®po

for some constants ¢’,c¢ > 0. Set A = 0.1/+/pob in @, where p(x) = a2 + 62. There exist numerical constants
C,c", " c1-c4 > 0 such that if § < pfl/;\;;n and n > Cp30~2log po, then with probability at least 1 — ¢’ /n, for
every a € ¥, , we have:

o (Negative curvature): If |B1y| > v1 |Bo)|, then

Amin (Hess[p,](a)) < —cindA; (B.18)

o (Large gradient): If vy |Bo)| > |B(1)| = v2(0)A, then

leradlg,)(a)ll, > c2nf 2= (B.19)
o (Convex near shifts): If va(0)X > |B(1)|, then
Hess[p,)(a) = csnbP,.; (B.20)

o (Retraction to subspace): If 3 < dn(a,S;) < v, then for every a satisfying a = 1*Caq,a, there exists ¢
satisfying grad|p,](a) = ¢t*C4q, ¢, such that

(Crevrre) 2 eallGrely llovrelly: (B21)
o (Local minimizers): If a is a local minimizer,
min_[la — o s¢[ag]l, < 2max{u,py'}, (B.22)
Le[+p]
oce{£1}
c-pol 0,
where vy = 3, v3(0) = W and v = <2 yio\g/iéfl\/ m \/%,
Proof. See Appendix L5. u

The retraction property elaborated in (B.21) implies that the negative gradient at a points in a direction
that decreases d, (a, S-). This is a consequence of positive curvature away from S;. It essentially implies
that the gradient is monotone in a.-- space: choose any a € S, N SP~!, write « to be its coefficient, and let ¢
be the coefficient of grad[p,](a). Then arc = 0, {- ~ 0 and B

(Cre —Q-rc, Qre — Qrc) X (Cre — 0, Are — 0) = (Cre, Qre) > 0.

Our main geometric claim Theorem 3.1 is a direct consequence of Theorem B.1. Moreover, it suggests
that as long as we can minimize ¢, within the region X, , we will solve the SaS deconvolution problem.



C Provable Algorithm

In light of Theorem B.1, we introduced a two-part algorithm Algorithm 1, which first applies the curvilinear
descent method to find a local minimum of ¢, within ¥}, , followed by refinement algorithm that uses
alternating minimization to exactly recover the ground truth. This algorithm exactly solves SaS deconvolution
problem. In this section, we demonstrate Theorem C.1 and Theorem C.2, which are sufficient to prove Theorem
3.2 when jointly combined.

C.1 Minimization
There are three major issues in finding a local minimizer within ¥}, . We want ...
(i) Initialization. the initializer a(?) to reside within X 00
(ii) Negative curvature. the method to avoid stagnating near the saddle points of ¢,,

(iii) No exit. the descent method to remain inside X}, , .

In the following paragraphs, we describe how our proposed algorithm achieves the above desiderata.

Initialization within XX}, . Our data-driven initialization scheme produces a®), where

a'® = =Py 1V, (Psp—r [07°7 iy 54,1507 1])
= —Psp- 1V, Psp1 [Py (ag * )],
~ —Psp-1 Vo, [Py, (ao * To)] ,
is the normalized gradient vector from a chunk of data a=b .= Py,1(ao * o) with £y a normalized Bernoulli-
Gaussian random vector of length 2p, — 1. Since Vg, = V1, expand the gradient V1 and rewrite the
gradient V1 (a(~1)) in shift space, we get
Ve, (a V) & 1" Coy Cay S [Emcgop[m](ao x ao)]
=1"Cayx [ C;, Ppo)Caoo |
~ L*CGOX [50]
~ no - L*CGDS)\ [%()} s
where the approximation in the third equation is accurate if the truncated shifts are incoherent

max |(e2,silao), i, s5laol)| < p < 1. (C.1)

With this simple approximation, it comes clear that the coefficients (in shift space) of initializer a(®),
a® ~ Py-10"Cay Sy [, (C2)

approximate S [Zo], which resides near the subspace S, in which 7 contains the nonzero entries of
on{—po+1,...,po — 1}. With high probability, the number of non-zero entries is | 7| < 46p,, we therefore
conclude that our initializer a(®) satisfies

a®ex], . (C.3)
Furthermore, since & is normalized, the largest magnitude for entries of |Zy| is likely to be around 1/+/2po0.
To ensure that Sy [#,] does not annihilate all nonzero entries of Z, (otherwise our initializer a(?) will become
0), the ideal A should be slightly less then the largest magnitude of |Zy|. We suggest setting A in ¢, as

c

A= )
VDo

(C.4)
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for some ¢ € (0,1).

Many methods have been proposed to optimize functions whose saddle points exhibit strict negative
curvature, including the noisy gradient method [GHJY15], trust region methods [AMS09, SQW17] and
curvilinear search [WY13]. Any of the above methods can be adapted to minimize ¢,. In this paper, we use
curvilinear method with restricted stepsize to demonstrate how to analyze an optimization problem using the
geometric properties of ¢, over EZ&po —in particular, negative curvature in symmetry-breaking directions
and positive curvature away from S.

Curvilinear search uses an update strategy that combines the gradient g and a direction of negative
curvature v, which here we choose as an eigenvector of the hessian H with smallest eigenvalue, scaled such
that v*g > 0. In particular, we set

a® + Py [a —tg — t°v] (C5)
For small ¢,
pla™) ~p(a) +(9,8) + 36 HE. (C.6)

Since & converges to 0 only if a converges to the local minimizer (otherwise either gradient g is nonzero or
there is a negative curvature direction v), this iteration produces a local minimizer for ¢,, whose saddle
points near any S, has negative curvature, we just need to ensure all iterates stays near some such subspace.
We prove this by showing:

e When d,(a,S;) < v, curvilinear steps move a small distance away from the subspace:

|da (a+,S,.) —dg (a,S,.)| <3 (C.7)

e Whend,(a,S;) € [%, ﬂ , curvilinear steps retract toward subspace:

dy, (a*,S.r) <d4(a,8;). (C.8)

Together, we can prove that the iterates a*) converge to a minimizer, and
k
Ve=12,..., a®Mex], . (C.9)
We conclude this section with the following theorem:

Theorem C.1 (Convergence of retractive curvilinear search). Suppose signals aq, xq satisfy the conditions of
Theorem B.1, 0 > 10%¢/po (c > 1), and ay is p-truncated shift coherent max;z; | (v silac], ¢, s;lao])| < p. Write
g = grad[p,](a) and H = Hess[¢,|(a). When the smallest eigenvalue of H is strictly smaller than —n,, let v be the
unit eigenvector of smallest eigenvalue, scaled so v*g > 0; otherwise let v = 0. Define a sequence {a®)}, _ where

a®) equals (2?) and for k = 1,2,..., K;:
™) Py, [a(k) — g™ _ t2v(k)] (C.10)
with largest t € (0, %] satisfying Armijo steplength:
eo(at*) < gp(@®) = § (tlg®I3 + Ft'n [0 ®3) (€11)

then with probability at least 1 — 1/c, there exists some signed shift a = =ts;[ag] where i € [£pg] such that
|at® — de < p+1/pforall k > K, = poly(n,p). Here, n, = c'nOX for some ¢’ < ¢, in Theorem B.1.

Proof. See Appendix J.2. [



C.2 Local Refinement

In this section, we describe and analyze an algorithm which refines an estimate @ ~ ay of the kernel to exactly
recover (ag, o). Set

a®) — a, MO C(ph + logn)(u+ 1/p), IO supp(Sy [CLy]). (C12)

We alternatively minimize the Lasso objective with respect to a and x:

)« argmin %Ha(k) wx—yl|3+A®) Z |, (C13)
* igI®)

a*th) — Py, [argmin %Ha * (b1 yH%]a (C.14)

ARFD I T D supp (2FTY). (C.15)

One departure from standard alternating minimization procedures is our use of a continuation method,
which (i) decreases ) and (ii) maintains a running estimate I(*) of the support set. Our analysis will show
that a(®) converges to one of the signed shifts of a, at a linear rate, in the sense that

i k) _ 4. 19—k
aeﬂrynllél[ipg] ||a o - sefag]|], < C"27F. (C.16)

It should be clear that exact recovery is unlikely if ¢ contains many consecutive nonzero entries: in fact
in this situation, even non-blind deconvolution fails. Therefore to obtain exact recovery it is necessary to put
an upper bound on signal dimension n. Here, we introduce the notation ~; as an upper bound for number
of nonzero entries of x in a length-p window:

k1 = 6max {fp,logn}, (C.17)

where the indexing and addition should be interpreted modulo n. We will denote the support sets of true
sparse vector x, and recovered z(*) in the intermediate k-th steps as

I = supp(zo), 1% = supp(a™), (C.18)
then in the Bernoulli-Gaussian model, with high probability,

m?x‘lﬁ([p]—i—ﬁﬂ < K. (C.19)

The log n term reflects the fact that as n becomes enormous (exponential in p) eventually it becomes likely
that some length-p window of z is densely occupied. In our main theorem statement, we preclude this
possibility by putting an upper bound on signal length n with respect to window length p and shift coherence
1. We will assume

(n+1/p)- K7 <c (C.20)

for some numerical constant ¢ € (0,1).
Recall that (B.22) in Theorem B.1 provides that

la—aoll, < (k+1/p), (C.21)

which is sufficiently close to ag as long as (C.19) holds true. Here, we will elaborate this by showing a single
iteration of alternating minimization algorithm (C.13)-(C.15) is a contraction mapping for a toward a,.
To this end, at k-th iteration, write 7' = I¥), J = I(*+1) and o = sign (x(*)), then first observe that the
solution to the reweighted Lasso problem (C.13) can be written as
* * -1 *
") = 1) (L5CE 0 Camts) L5 (C ) Caoo — )\(k)PJ\TO'(kH)) : (C22)

a
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and the solution to least squares problem (C.14) will be
a™ D = (C% ) Cuernt) ' (£°Cliiusn Caprag) - (C.23)

Here, we are going to illustrate the relationship between a**1) —a, and a(*) —a, using simple approximations.
First, let us assume that a'¥) ~ ag, C} Cq, ~ I, and I ~ J ~ T. Then (C.22) gives

5D~ g, (C.24)
(iL‘(kJ'_l) — :BQ) ~ P[ (CZOCQO:BO — CZOCa(k):Bo)
~ P [c;;g Cpot(ag — a<’€>)} : (C.25)

which implies, while assuming C; C,, ~ nfI, that from (C.23):

(@* D —ay) ~ (nh)~* L C 1) Crgtag — 1" Clir) Cpnrny tag
~ (n0) ' ' Cy Cay(xo — ™)
~ (n0) ' Cy, Cay PCy Cuyt (a®) — ag). (C.26)

Now since Cj; P;Cy, ~ nf eqef;, this suggests that (nf) ! v*C} Cq, P1C}; Cy,t approximates a contraction
mapping with fixed point ao, as follows:

(nh)~* 'Ch Co, PIC, Cyyt = L"CyiepeCp it
A apay. (C.27)

Hence, if we can ensure all above approximation is sufficiently and increasingly accurate as the iterate
proceeds, the alternating minimization essentially is a power method which finds the leading eigenvector of
matrix agaj—and the solution to this algorithm is apparently aq. Indeed, we prove that the iterates produced
by this sequence of operations converge to the ground truth at a linear rate, as long as it is initialized
sufficiently nearby:

Theorem C.2 (Linear rate convergence of alternating minimization). Suppose y = ag * o where ag is y-
shift coherent and xo ~ BG(0), then there exists some constants C,c,c, such that if (u + 1/p) k3 < ¢, and
n > CO~2p?logn, then with probability at least 1 — c/n, for any starting point a®) and \(0), 1) such that

1@ —aoll, <u+1/p,  AO =5wkr(u+1/p),  I® =supp (Cioy), (C.28)
and fork =1,2,....:
z* Y argmin, Hla® sz — yl|3 + A® digrm |l (C29)
a* D « Py, [argming L|ax 2D — y|3], (C.30)
AE+D %)\(k)’ TR+ supp (w(k+1)) (C.31)
then
|a®*V) —ao, < (u+1/p)27F (C32)

forevery k =0,1,2,....

Proof. See Appendix K.3. u

Remark C.3. The estimates x\¥) also converges to the ground truth x at a linear rate.

10



D Basic bounds for Bernoulli-Gaussian vectors

In this section, we prove several lemmas pertaining to the sparse random vector &g ~; ;4. BG(6).

Lemma D.1 (Support of xo). Let xo ~ii.qa. BG(8) and Iy = supp(xo) C [n]. Suppose n > 1007, then for any
e € (0, &), with probability at least 1 — & we have

| To| — nf| < 2vnBloge?. (D.1)
And suppose n > C~2log p and 0, then with probability at least 1 — 2/n, we have
vie 2p]\ {0}, 3n0® <|Iyn(Io+t)| < 2nb° (D.2)
where C is a numerical constant.

Proof. Letxy = w - g ~iiq4. BG(0), notice that the support of the Bernoulli-Gaussian vector x is almost
surely equal to the support of the Bernoulli vector w. Applying Bernstein inequality Lemma N.4 with
(6%, R) = (1,1), then if nf > 10 we have

—4nflog?e!
P wi —nb| > 2vVnhloge | < 2ex ( <
kez[n] g & P 2n6 + 4v/nfhloge—1

For (D.2), let J; := Iy N (Ip + t). The cardinality of J; is an inner product between shifts of w:

|Jt| = Z WEWE—t, (D-3)
ke[n]

and define two subset J;; W J2 = J;, as follows:

{ Jo=JNKy, Ki:=[nn{0,....t—1,2t...,3t—1,...} (D.4)

ththﬂng, Ko = [n]ﬁ{t,...,?t—1,3t7...,4t—1,...}

Here, the size of sets K1, Ks has two-side bounds 0.4n < (n — 2p) /2 < |[Ko| < Ky < (n+2p) /2 < 0.6nm,
thus the size of sets J;1, Ji2 can be derived using Bernstein inequality Lemma N.4 with n > C0~2log p as

P| max |J; >n92}=}P’ max WEwy—¢ > nb?
LGPP]\{O}' ul2 Lelzp]\w} ,gl =

<2p-P [Z WEWE 1 > n@Q]
ke,

<2p-P [Z wrwi+1 — E Z WEWE+1 > nb? — 0.6n92]
ke, ke,

» — (0.4n62)

=P 5706002 + 2 - 0.4n62

<1fn, (D3)

> = exp (log(4p) — 0.08n92)

where the last two inequalities hold with C' > 10°. The lower bound can also derived as follows

P| min |J,|< n92/4} =P
te2p]\{0}

min Wrwp_t < nb?/4
te{zp]\{O}kgK:l Hee /]
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<2p-P [Z wrwia1 < n92/4]
ke,

< 2p P [Z WrWe41 — E Z WEWk+1 < 77,92/4 — 04’/192
kel kel

— (0.15n62)* )

2-0.6n62 + 2 - 0.15n6?
= exp (log(4p) — 0.001516%) < 1/n.

§4p-exp<

The bound for | J2| can derived similarly to (D.5)-(D.6). ]

Lemma D.2 (Norms of @g). Let @ ~i;.q. BG(6) € R". If n > 100", then for any e € (0, 15 ), with probability at
least 1 — ¢,

lzoll; — \/2/7m9‘ < 2vnfloge 1, ‘||:c0||§ — ne‘ < 3vVnfloge! (D.6)

Proof. To bound |z||,, using Bernstein inequality with (¢, R) = (6, 1) and with nf > 10 we have

2
ol — 4/ =n8
™

Similarly for ||z Hg, from Gaussian moments Lemma N.2, we know the 2-norm 3, E |zo; |* = 3n6 and
g-norm} ;. E |z0i] < (n6)(2g—1)!! < 1(3n6)29~2¢! for ¢ > 3. Let (0%, R) = (36, 2) in Bernstein inequality

form Lemma N.4, nf > 10 we have

P

1

_ —4nflog?e! )
> 2vnfloge | < 2ex < <eg
- s ] - P 2n6 +4v/nbloge=1 ) —

_9nf1oe2 e1
P HH:BOHE - né" > 3Vn910g5_1} < 2exp ( Inflog e )

2(3n0) + 12v/nfloge~1

completing the proof. [ |

Lemma D.3 (Norms of x( subvectors). Let &y ~iiq. BG(0) € R and n > 10, then with probability at least
1 — 3/n, we have

P 2 <290 4+6(/po+1 D.7
Uf[lz?f]}jﬂ ool < 2pf + ( Pl + ogn) (D.7)
JjE[n

and if ag is p-shift coherent and there exists a constance c,, such that both 0%p < c,, and pp?0 < c,,, then
M 3 3

max || Py [ag * zol||5 < pd + logn. (D.8)
U_Z[I{?]J]rj
JjEn

Proof. Use Bernstein inequality with (62, R) = (36,2) and ¢ = max {/pf,logn}, with union bound we
obtain:

2
36 0 + 1
P | max [[Pueoll 2 206+ 6 (v/p0+ logn) g%m«— <ﬁow)>

U _[2[17]]+j 6p0 + 12 (/pf + logn)
JE|IN
3612 2
< 2 1 _— | < —. D.
= eXp<Og” 6t2+12t> =0 (9)
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For the second inequality, first we know calculate the expectation

E | Py ao * zoll; = E [25C;, PyCayo]

p—1
= 0-tr (Cs, PuCa,) llaclls + 0+ [l"si[ao]l;
i=1
= pb. (D.10)

Then apply Henson Wright inequality Lemma N.6 with ||C}; Py Ca, ||i_, =|erCy, CaOLHi <p(1+ pp) and

also ||C;, PyCa, ||, = ||Ca0L||§ = 1+ pup, we can derive

oll

. log®n logn
P | max ||Pylag*x 22 0 +logn| < nex (—mln{ ,
U*“E]Tj” y lao + @o|2 > ph+log b ) S
J€En
log>n logn 1
< 1 — mi < - D.11
= eXp(Ogn mm{lzscﬂ’:a?c# =n (D11
when ¢, < 555. [

Lemma D.4 (Inner product between shifted x¢). Let xg ~ii.q. BG(0) € R™. There exists a numerical constant C
such that if n > CO~2log p and pflog® 0= > 1, with probability at least 1 — 4/n, the following two statements hold
simultaneously:

‘ima[é( | (si[xo], s5[x0]) < 64/nb?logn; (D.12)
i#j€l2p

and for x; = |xo ;| € R'} the vector of magnitudes of x,

ilx], si[z]) < 4nb?. D.13
ax (sile], sjla]) < 4n (D.13)

Proof. We will start from proving (D.13). Write = |g| o w where g / w are Gaussian/Bernoulli random
vectors respectively. Let Iy denote the support of w and ¢ = |j — i| with 0 < ¢ < p. Then (D.13) can be written
as summation of Gaussian r.v.s. on intersection of support set between shifts:

(silel,silel) = > lgellgn—| (D.14)
kelon(lo+t)
Define J; := Iy N (o +t) = Ji1 W Ji2 same as (D.4). Notice thatboth >, . ; gkl |gr—¢|and >, ;. (gk]|gr—i|

are sum of independent r.v.s.. We are left to consider the upper bound of > g;l |g;| where g, g’ are
independent Gaussian vectors. We condition on the following event

JEJti

€1 = {1 € 20\ {0}, n6?/4 < |Ju] | Jia] < 67}, (D.15)

which holds w.p. atleast 1 — 2/n from Lemma D.1. Since 3 . 1951 |g}| < ll9... 2 ||97,,
concentration Lemma N.3 and union bound to obtain

s We use Gaussian

P | ity 2 bl > 21| <208 llosally 90, | ~E sl I > ]

< 4P [llgull ~ Ellgsslly > VITual/3]
<dpexp (—(|J11] /9)/2) < 4dpexp (—n92/72) <1/n (D.16)
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where the last inequality is derived simply via assuming n = C6~2 log p for some C > 10, such that

C > 400 % (4C)Y° = Clogp > 400log((4C)"/°p)
— Clogp > 72log(4Cp°) > 721og(4Cp? log® p)
— nbh* > 72log(p - 4CH2log p) = T2log(4np).

Likewise for sum on set J;2, we collect all above result and conclude for every i # j € [2p],

(silel sileel) = Y lgnl |gh—i] + D lgullghe] <2 (0] + |Jeal) < 40>, (D.17)
keJu ke€J2

For (D.12) similarly condition on event £, using Bernstein inequality Lemma N.4 with (02, R) = (1,1):

—9nb?logn
P| max gig’| > 3v/nb2logn| < p-exp
te[2p]\{0} jEZJﬂ e 2|Ji1| + 6+/nb2logn

002
9nd logn) < 1 (D.18)
n

Sp-exp ( 3002

thus for every i # j € [2p],

[(si[xo], s5[s0])| < + < 64/n62logn. (D.19)

> ki

kediu

> gkgh

keJia

Finally, both (D.17),(D.19) holds simultaneously with probability at least
1-2/n—1/n—1/n=1—-4/n (D.20)

Lemma D.5 (Convolution of xg). Given y = x( * ag where xy ~ii.q. BG() € R"™ and ay € RP° is p-shift
coherent. Suppose n > CO~2log p for some numerical constant C > 0, with probability at least 1 — 7/n, we have the
following two statement simultaneously hold:

ICyell; < 3(1 + pp)nd (D.21)
and for all J C [n],
1Py Cye|ly < 141J| (1+ pp) (p6 + log n) (D.22)

Proof. Given any a € SP~!, write 3 = C, ta where |3] < 2p . Apply Hw0||§ < 2n0 from Lemma D.2 by
choosing ¢ = 1/n, also |(s;[xo], s;[x0])| < 64/n60%logn from Lemma D.4 we get:

ICyeall; =11CaoBlls < I1B15 Imolls + > 188 (silzal, s [@al)|
i#j€[£p]

2 2 2
< T + max Si|xol, S5l
1813 lwoll3 + 1817 masx _[(silwo], 5o
< 18Il - 200 + p||Bl3 - 6/n6%logn < 3|8]|5 no

where n = C0~2log p with C' > 10%, and the statement holds with probability at least 1 — 5/n.
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For the bound of || P; CyLa||§. Simply apply Lemma D.3 and utilize norm bound of ||3 ||§, with probability
atleast 1 — 2/n we have:

IPsCyeally =3 I{sifwol B)° < || | max [ Puoll3 185 < || - 14 (pf + log n) - I3
ieJ »
j€ln]

Finally apply Lemma E.4 and Gershgorin disc theorem obtain
. 2 . 2
1815 = ||Coeall; < [|Caotll; = Tmax (M) < 1+ pp. (D.23)

Remark D.6. When a is a basis vector ey, the result of Lemma D.5 gives upper bound of ||Cy, ||, < 3n8, whose
lower bound can be derived similarly with ||Cqy |y > %n@

E Vectors in shift space

In this section, we will establish a number of properties of the coefficient vectors o and correlation vector
B. Generally speaking, when a is close to the subspace S, then both vectors o, 3 have most of their energy
concentrated on the entries 7. In this section, we derive upper bounds on a,- and B, under various
assumptions.

In particular, we will introduce a relationship between the sparsity rate §, coherence . and size ||, which
we term the sparsity-coherence condition. In Lemma E.2 we prove that measuring the distance from a
to subspace S; in terms of ||ar<||2 gives a seminorm. We then use this distance to characterize a region
R(S-,7(cy)) around the subspace S;. Later, in Lemma E.4 we illustrate the relationship between a and 3,
where 8 = C; 11" Cy, . Finally in Lemma E.5 and Corollary E.6, controls the magnitude of a.- and B,
near S-.

Definition E.1 (Sparsity-coherence condition). Let ag € SPo~! with shift coherence yi. We say that (aq, 0, |7|)
satisfies the sparsity-coherence condition SCC(c,,) with constant c,,, if

1
log?6-1’

be |l o
p’ 4max{|7’\ ,\/}3}

where p = 3pg — 2.

u~max{\7'|2,p292} log?ot < %, (E.1)

Lemma E.2 (d, is a seminorm). For every solution subspace S, the function d.(-,S;) : RP — Ry defined as
do(a,S7) = inf {|la |y | a =1"Cq a}. (E.2)
is a seminorm, and for all a € S, do(a,S;) = 0.

Proof. Itisimmediate from definition that d(-, S;) is nonnegative and S, C {a : do(a,S;) = 0}. Subaddi-
tivity can be shown from simple norm inequalities and our definition of d,, for all a1, a; we have

da(al + GQ,S-,-) = inf {HaT“

=inf {||a1re + Qare|ly | @1 = 7 Copar, az =1"Cq 0z}

o | a1 +ax=1"Cq 0}

<inf{|laire|ly + [|azrelly | @1 = " Coar, @z =t"Coyan}
=inf {||aire]|y | @1 = " Coyon} +inf {||agre||, | a2 = " Cq iz}
= da(alas‘r) +da(a2;ST>-

Similarly the absolute homogeneity, for any c € R:

do(c-a,87) =inf{||alc|ly | c-a=1¢"Cqoa’} =inf {|jc- are|l, | @ = " Cq,ax}
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= e[ - inf {[lare[l, | @ = " Capa} = |c] - da(a, Sr),

which completes the proof that d,, is a seminorm. u

Definition E.3 (Widened subspace). For subspace S let
R(Sr,v(cu)) = {a esp! ‘ do(a,8;) < 7} (E.3)
denote its widening by -, in the seminorm d,.

Our analysis works with a specific choice of width ~(c,), which depends on the problem parameters
ao,0,|7| and a constant ¢, via

cu 11 1
cy) = min , , (E.4)
) = fog?g {\/m N w@ﬂ}

Lemma E.4 (Properties of C}; 1t*Cl,). Let M = C, 1t*Cq,, with ag € SP°~* p-shift coherent. The diagonal
entries of M satisfy

M; =1 i € [=po+1,po — 1] = [*£po],
0<M; <1 i € [—2po + 2, —po] U [po, 2po — 2], (E.5)
M;; =0 otherwise,

and the off-diagonal entries satisfy

|Mj| < p 0<li—j]<po, {i€[=po+1,po—1}U{je€[—po+1,p0—1]}
| M| <1 {i,5 € [=2po + 2, —pol} U {i, j € [po,2po — 2} . (E.6)
0 otherwise

Furthermore, let 7 C [£po], and 7¢ = [£2py — 1] \ 7. The singular values of submatrix v M v, can be bounded as:

1— |7 € omin (LEMey) < Omax (LEMer) < 14 p|7|

Omax (LreMtr) < pn/plT| (E.7)
Omax (Lj;-cML‘rC) S 1 + up

Proof. Recall the definition of ¢, which selects the entries {—po + 1, ..., 2py — 2}. The entrywise properties
of M can be derived by carefully counting the entries of the shifted support. The submatrix M on support
{—2po +2,...,2po — 2} has an upper bound to be characterized as follows:

I 0

L[*i2p071]ML[i2po,1]’§ [0...0] [M"'N] 1 [,U"'/i] [0...0} ] (E.8)
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Here, the center row /column vector is indexed at 0, the matrices J, I, 1 and 1, are square and of size (pg —1)?.
Among which, I is the identity matrix, 1 is the ones matrix whereas 1, has all off diagonal entries equal 1.
Also |J| has property |J;;| < 1 for all 4, j.

As for the singular values, notice that the first and second inequalities consider submatrix not containing
J since T C [£py]; thus the first inequality can be derived with Gershgorin disc theorem directly, and the
second inequality with the upper bound with its Frobenius norm:

Omax (b Mer) < pn/(2po = 1) 7] < p/p|7]- (E9)
Finally by recalling p = 3pg — 2 > 2po — 1. The last inequality is direct from bound of +*Cl,,:
Omax (Lre Mire) ||C;o“‘*CGOH2 HL Caocao"”2 = HL*C;OCG‘OLHQ < 1+pp (E.10)

where the third equality is derived via commutativity of convolution. |

Lemma E.5 (Shift space vectors in widened subspace). Let (ao, 9, |T|) satisfy the sparsity-coherence condition
SCC(cy). Then for every a € R(Sr,v(cu)), every acsatisfying a = 1*Cqyoand ||or<||, < v(cy) has

leerlly = 1] < ey (E.11)
moreover, 3 = C;;O La satisfies
2 C
1=3c, <|[|Brlla <1+ ‘7_“0# (E.12)
Cu
1Bl < Tl -1 (E.13)
C .
[Brelly < W min {\/577(%)} . (E.14)

Proof. Write —1/logf = 6., and v = 7(c,) for convenience. First, by using bounds on ~ in (E.4) and
1|T| < 1 we obtain:

L+pup < v(1+/ip) < cubhg/2

0920 1 920
1+u2pév(1+\/u2p)é “41g<\/m+\/ﬁ> _2\/1»‘% (E.15)

YopplT] < v p T

IN

Cu 0120g/4'

Let a = t*Cy,a with |+ ||, < . Utilize properties of ¢*Cq, from Lemma E.4 and p || < ¢, /4 and (E.15),
we have:

* 71 *
larlly = [ Captrlly ™ (lally = [[e*Cagorell,)
* —1 *
> [l Captrlly (1= [l Caplly lleerell,)
1 1—c,/2
> e (1= THm) > ——H > 1, (E.16)
Vit T+ cu/d g
and similarly, the upper bound can be derived as:
leerlly < U;uln (¢ Caotr) ([lally + [le"Cayarelly)
S Umln (L Caytr) (L4 [|t"Cay 5 lare|l5)
1 2
< = (1+7 \/1+u) L“/Sl—kcu. (E.17)
\/1_:“|T| T—cu/4
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The bound of || B ||Z can be simply obtained using || < ¢, /4 and v bound from (E.15) as:

¢, 0?
1813 < Ona (17Cant) < 1+ pulr] < 14 =2 (E.18)
2 * * 2
182112 > (omin (¢2Mer) ltrlly — Omax (b7 Mere) |leerelly)

2
> ((1—/L|T|)(1—Cu)—u p|‘r|~7) > 1—3c,. (E.19)
As for the upper bound of and |3, ., follow from (E.15), we have:
1Brell < e Mall + it Marelly, < uy/Telllarlly + I+ 17 lecrell

c,f2 (1+c¢ c 02
< © log( #) +7~\/m log (E.20)
47| vis

A

IN

the bound for ||3-<||, requires two inequalities, we know

1Brelly < llezeMar|ly + [[eze Maorelly < pv/plrfflaclly + (1 + pp) [|are]ly (E.21)
for the first inequality, use (u|‘r|2)3/4 (,up202)1/4 = u/pi|rP? < ¢, 07, /4 , definition of v and 6 |7| <
cubp,e /4 we have:
(E21) < LVPOITI” VO VIl VBTl
21) < ———(1+¢, +
Vo|r| Volr| Vo]
20#0120g+6#0130g+6#9120g < Cﬂalog’ (EZZ)
40 || Vo]
and similarly for the second inequality, use both conditions of 1, we have:
(E.21)
3/2
v /o]
. 1
= 9 Sttty
8l ,4/~Lf9|7'|3/2.max{‘/|7-| I up\/gm}
~ 0|7 0120g ’ ’
01T+ g mpf |7
9| | | |
< L (g max {ulrl® - B0, (o) ] /T
9|T| elog
3/2 Cu log C,UelQog
u/p0 T2 - ap || |+ o - )
2
Y cpelog C#olog Hlog < Cuelog'y
== E.23
—9|T|<4+4+4 = T £2)
|

which completes the proof.

Corollary E.6 ( |(Brc,xo r<)| is small). Given xy ~i;q. BG(8) in R" and |7|, ¢, such that (aq, 8, |T|) satisfies the
sparsity-coherence condition SCC(c,,). Write A = cx/+/|T| with some cx > 1/5, then if ¢, < 3,

Pl2ﬁ1$0i>ﬁ)]§29, ]P’[

1ETE
18

i L0q

> ﬁ)] <0|r|+20. (E.24)




Proof. We bound tail probability of the first result with Gaussian moments Lemma N.2 and Bernstein
inequality Lemma N.4. Via Holder’s inequality, >, .. E(8iz:)? = Ex{ || B[] < 6(q — 1) [|Bre 12 (1 Bre HZO_Q,

thus
—(1/10)?
P> Bizo >)\/101 §2eXp< 5 (4/10) ) (E.25)
iere 20 [|Brely + 2(A/10) [|Bre |l o
2 n2 2
Write 6oy = — 5,5, Lemma E.5 imples when ¢, < £, we have ¢ 1Bl < C‘“fllgg < oed” and ||Bre |, <
C“Gﬁ < 615’;’\, therefore,
—A2/100
E.25) <2
(E.25) < 2exp (2910g)\2/625 + 2(010g\/25) - (A/lO))
< 2exp (logh) < 20 (E.26)

The second tail bound is straight forward from the first tail bound as follows:

A
P [ Xi:ﬂﬂol‘ > 101 < P[|Bix,| + |Brexre| > A/10]
<Plzr #0] + Plzr = 0] - P[|Brcxre| > A/10]
<0|r|+26. (E.27)

Corollary E.7 (|{B\(0) To,r\(0)) | is small near shifts). Suppose that xo ~i;.a. BG(0) in R", and ||, ¢, such that
(ao, 8, |7|) satisfies the sparsity-coherence condition SCC(c,,), then if ¢, < 15, for any a such that |B()| < grs29=r,
we have
2
P | > Biwoi| > =] <2 (E.28)
ieT\(0)

Proof. For the last tail bound, write x = w o g. Wlog define 3, be the largest correlation 3, define random
variables s’ = < Br\{0}> a:.,.\{o}>. Firstly most of the entries of &, would be zero since via Bernstein inequality
with 6 |7| < 0.1:

P lz w; > log@‘ll <P [Z w; > 0|1+ 0.910g9_11

1ET PET

—0.9%log? 6!
< <9 E.29
= exp (2(9|T|+0.910g9—1/3)> = (E-29)

thus with probability at least 1 — 6, we can write s’ as a Gaussian r.v. with variation bounded as Es? <

N 2
E |y 08! 1 ﬁigi] = log 6~'3(,, then via Gaussian tail bound Lemma N.1:

0.4\
(1) 1ET
2
< exp (—1.2log671) + 0 < 20, E.30
< 7 xp ( gf7') +6< (E.30)

19



F Euclidean gradient as soft-thresholding in shift space

In this section, we will study the Euclidean gradient (B.6), by deriving bounds showing that the x operator
approximates a soft-thresholding function in shift space (Lemma F.2 and Corollary F.4). Furthermore, we
will show the operator x[3;] is monotone in |3;| from Lemma F.3. A figure of visualized x operator is shown
in Figure 3.

To understand the x operator, we shall first consider a simple case—when x is highly sparse. By definition
of B from (B.3) we can see that 3 has a short support of size at most 2p — 1, when x( has support entries
separated by at least 2p, the entries of vector x[3]; become sum of independent random variables as:

x18li = (s-il@ol S [20+ B] ) = (s-ilawo), S [Bisilaol) = Y. g;-Salg; - B
x( sep. j€supp(xo)
where (g;) ; c[n) are standard Gaussian r.v.s.
The following lemma describes the behavior of the summands in the above expression:

Lemma F.1 (Gaussian smoothed soft-thresholding). Let g ~ N(0,1). Then for every b, s € R and X\ > 0,

E, [gS,\ b-g+ s]} =b(1—erfy(\, 5)), (E1)
where
1 A+s 1 A—s
erfp(\, 8) = §erf (\/§|b|> + §erf (\/M) . (F.2)

Furthermore, for s = 0,b € [—1,1] and € € (0,1/4), letting o = sign(b) we have
oSy [b] < oE, [QSA [b- 9]} < oS lbl +e (E3)

where Vi () = 1/(2y/—loge) and v = \/2/m.

Proof. Wlog assume b > 0. Write f as the pdf of standard Gaussian distribution. With integral by parts:

/; ¢Edt = —f(t), /too ) = %erf <é> o

Integrating, we obtain

E[g& [b.g+s]} :/t o

= b

b2 — (A —s)t) f(t)dt + / (b2 + (A + s)t) f()dt,

Ats
t<—2fe

by writing L = A — s, the integral of first summand

/t>g (bt? — Lt) f(t)dt = b B — %erf <\/L§b> + %f <§>} —Lf <§>

ElgSa[b-g+5]] = 2 — Lert <AS) + g - gerf </\\/ng> =b(1 - erfy(), 5))



For b < 0, alternatively we have
E[gSa[=[b] g + 5] = ~ElgSallbl - g — 5] = —[bl(1 = exfy (A, —s)) = b(1 — exty(A, 5)),

To show (F.3), via definition of error function, for z > 0, we know:

_ $ 2
min< 1 —e¢, ligz <erf(z) = 2z e dt < = (F4)
1og(1/e) VT Jo ™

where the lower bound is derived by first knowing erf is increasing thus for all > /log(1/¢),
erf(z) > 1— e >1—¢o8c=1—¢
and from concavity of erf we have for 0 < « < /log(1/¢) =T,

erf(T)—erf(O)x+erf(0)> 1—¢

T—0 = V(o)

Lastly plug (F.4) into (F.1) and apply condition |b| < 1 and ¢ < 1/4 we have

2 A
b—\/>/\<b—bf
b=y 2h < = et ()

A1 —¢) A
gmax{b|s,|b 210g(1/5)} Smax{6,|b| Q\/W},

which completes the proof. u

erf(z) >

This lemma establishes when x is separated, then ) is soft thresholding operator on 3 with threshold about
A/2. This phenomenon extends beyond the separated case, as long as when x is sufficiently sparse (when
Definition E.1 holds). Recall that x : R™ — R"™ is defined as

X18] = CaySx [CB] (E5)

The following lemma bounds its expectation:

Lemma F.2 (Expectation of x(3)). Let xo ~iia. BG(0) and X\ > 0, then for every a € SP~! and every i € [n],
define the operator x as in (E.5), then

n_lEX[/B]i = eﬁl (1 - ]Esierfﬁi ()\, 81)) (F6)

where s; = 3,,; Bexoe. Suppose (ao, 0, |T|) satisfies the sparsity-coherence condition SCC(cy) and X = ex/+/|7|
for some ¢\ > 1/5 and o; = sign([3;), then there exists some numerical constant ¢ such that if c,, < € then for every
a € R(S-,7(cy)) and every i € [n], (F.6) has upper bound

-1 e -1 _J40%|7] |8 1Bi] <A
oin 'Ex[B]; < oin'Ex[B]; == {9 (Bl —mn/2) 1Bl > A (E7)
and lower bound

om” 'Ex[Bi > oin”'Ex[B]. =: 08, [|Bil], (F.8)

%

where vy = 1/ (2 loge—l), ve = £/2/T.
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Figure 3: A numerical example of Ex[3];. We provide figures for the expectation of x when entries of
xo are 2p-separated. Left: the yellow line is the function 3; — B; (1 — erfg, (), 0)) derived from (F.1), and
the blue/red lines are its upper/lower bound (F.3) utilized in the analysis respectively. Right: functions
of B; — Bi (1 — erfg, (A, 0)) with different ), the section of function of 3; > v2\ are close to linear.

This lemma shows the expectation of x[3]; acts like a shrinkage operation on |3;|: for large |3,|, it acts
like a soft thresholding operation, and for small |3;], it reduces |3;| by multiplying a very small number
40 |T| < 1. We rigorously prove this segmentation of x operator as follows:

Proof. First, since s;[xo] =4 s;[x0],
x|8li = ez‘\C’/mOSA [\émo,@} = <S_¢[CC()],S>\ [.’130 * B}>
=4 (5-jl0],Sx [si—slwo] * B] ) = x[s;-418]],

Thus wlog let us consider ¢ = 0 and write « as xy. The random variable x[3]o can be written sum of random
variables as:

x [Bly = <w,8>\ Boxo + Z,stfe[w] > = Z xS\ |Boxj + Zﬁij+l )
££0 j€[n] ££0

and a random variable Z;(3) is defined as

Z;j(B) = @;Sx | Bow; + Z Bexjte| (F.9)

Le[£p]\O

gives x[Blo = >_ ;¢ Z;(B) as sum of r.v.s. of same distribution and thus n~'Ex[B]o = EZy(B). Define a
random variable sp =, £0 Bex¢, which is independent of xy. From Lemma F.1, we can conclude

n 'Ex([Blo = Eay.s0T0SA [BoTo + so] = 080 (1 — Es,erfg, (), s0)) (F.10)
so that (F.6) holds for ¢ = 0, and hence for all .

1. (Upper bound of EZ) Wlog assume 3, > 0 and write Z = Z,. We derive the upper bound on EZ in two
pieces.
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(1). First, since Ex¢S) [0 - ¢ + s¢] = 0, we have

d
EZ(B) < Bo sup df]Emo,sofvon [Bxo + s0)
Bef0,80] 4B

d .
=080 sup -3 9 (Bg + so —sign(Bg + so) - A) du(g)dp(so)
B8€[0,B0] B |Bg+so|>A

=080 sup Ege, [071(8g+50/52})
B€[0,80]

2
<08 s By 0 (L5013} * Lo 1)

< 080 ((Eg®)""* Pl1Bog| > (9/10)° + P [|so| > A/10]) (F11)
We bound the tail probability of sy using Corollary E.6 where
Plso| > A/10] < P[>, Bizi| > A/10] < 0|7+ 20 < 30 |7|. (F.12)

On the other hand, the first term in (F.11) can be derived by pdf of Gaussian r.v. Lemma N.1 as:

13 28 _ s (1080 \P (a2
(E¢®)/* B [|Bog| > (97/10)] S\/E(Q)\\/%) o (oo

3 (Bo\"* 2

_ a2
Combine (E.26), (F.13), when By < 11\, we know e %% < el°8? < ¢ |7|. The first type of upper bound EZ is
derived as

VB €[0,:1), EZ(B) <08 <3uf/3 exp (-422) + 36 |T|) < 40%|7| Bo. (F.14)
0

(2). The second type of upper bound can be derived directly from Lemma F.1:
EZ(B) < Ex,Es,zoSx [Bozo + So| < Eay@oSx [Bozo] + Ex, [@o| Es, [s0]
<0 <3ygx[ﬁo}+€+\/2/77'ﬂ3\80|)7 (F.15)

where E |s| can be bounded with ||3]|, and 0 || < ¢,0)0s from Lemma E.5. When ¢,, < -

107

C 910 2c 010
Els| <[> Ea?87 <VO(|Brlly+ Brell,) < VO(1+¢,) + ‘Hg < ﬁg- (F.16)
4

v Oog . . .
Now choose e =0 < C‘if_ll"g, sothatv; = v = % in (F.15). Since ¢, < 5 we gain

EZ(8) <0 (Sm 0] + 705 \/Z M) <o (Sm 18o] + ”‘)

observe that

7| vl Vil
<o (% 0] + V?A) <6 (Sl + 33 ®17)

(3). Combine both (F.14) and (F.17), we can thus conclude that

46% | 7| By Bo < 1A
0 (,60 — %)\) ,60 > A

EZ(B) := EZ(B) < { . (F.18)
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2. (Lower bound of EZ) On the other hand, for the lower bound for EZ, use the fact that erfz(}, s) is concave
in s, we have

EZ(B) = EsyEx,xoSx [BoTo + S0

e o B (Amm) B (At
_QE“[[BO 2 ef(\/iw) 2 ef(mﬁoﬂ

A
Z 0 (,@0 - ﬁo -erf <>) 2 0 - S,,/)\ [,6()] =: EZ(ﬁ) (Flg)
V2|80l ’ .
The proof of By < 0is in the same vein. For cases of i # 0, since x[8]; =a x[s—i[3]]o, replace By with 3, we
obtain the desired result. ]

Another convenient fact of Ex[3]; is that it is monotone increasing w.r.t. |3;|. The monotonicity is clear in
Figure 3; it is demonstrated rigorously with the following lemma:

Lemma F.3 (Monotonicity of Ex(3)). Suppose xo ~ii.a. BG(0) in R", and ||, ¢, such that (ao, 0, |T|) satisfies
the sparsity-coherence condition SCC(c,,). Define X = cx/+/|7| in p where cx € [0, 1], then there exists some
numerical constant ¢ > 0, such that if ¢,, < €, the expectation |E[x[B]];| is monotone increasing in |3;|. In other words,

if 1Bil > |8 then
oilEx[Bli = o;Ex|[B]; (F.20)
where o; = sign(3;).

The proof first operate simple calculus and then followed by studying cases of |3;| — | 3;| when either it is
smaller are larger then A.

Proof. 1. (Monotonicity by gradient negativity) Wlog assume 3; > 3; > 0, and from Lemma F.2 we can
write (nf) 'Ex[8]; = B; (1 — Eg,erfg, (), s;)). Consider ¢ € [0,1] and define ¢(t) = tB3; — tB3;. Write the
random variable s;; =}, i Bexy. Define h as a function of ¢ such that

h(t) = Erysij [((1 - t)ﬁl + tﬂj) (1 - erf(l—t)ﬁri-tﬁj (A’ ((1 - t)lgj + tﬁi)x + Sij))]
= EZIJ,Sij [(/31 — f(t)) (1 — erfﬁi,g(t)()\, T - (,@j + E(t)) =+ Sij))] . (le)

Notice that Ex[8]; = h(0) and Ex[8]; = h(1) respectively, thus it suffices to prove h/(t) < 0 forall ¢ € [0, 1].
Write f as pdf of standard Gaussian r.v. where

Ats;j A—sij

B

f(2)dz + / f(2) dz.

0

erfg(A, si5) :/

0

and use chain rule:

W(t) =By, [(8; = B:) (1 —erfg, oty (\,x - (B + £(1)) + 515))

i d (At (B A1) +siy\ (At (B + 1)+ sy

(B: — (1)) dt( R ) f ( 8, — 10 )
d(A—z (B + 1) — s\, (A—x- (B +L1) — s

_(ﬁi_w))'dt( B — (1) )f( B (1) ﬂ

= (Bj = Bi)Ea s, [1 —erfg, oy (A, z - (B + L(t)) + si5)
At z(B + L)) + s (A (B L) + s
+( Bi—((t) ”) f( B — (1) )

ZX

+
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(o) (o)

ZX

2N Ax_
=B B0, |1 [ St [T 1) a4 ) + o - 9f(e )| (R2)
0 0
Consider the term only related to z,,, condition on cases that it is either positive or negative, observe that

Zx
Hy— = vasij|z>\+50 fO T f(z)dz Z)‘+f(z’\+)
Mgt 1= Exvsij‘zk+>0

Jo ™ fz)dz — zxy f2ny)

—Eusferco [~ o £z = 2, f(2n,)] <O

. 1 1 )
< min { 20 Tam Ba,sijlza, >0 2A4 }

where the negativity of the first equation can be observed by writing v = —z), and take derivative:
— Jo f(2)dz+v- f(v) =0 v=0
dv{ fo z)dz+v- f(o)} =—f(v)+ f(v)+v- f(v) <0 v>0"

and similarly for z)_:

<0

)

B = Baen oo |Jo 7 F(2)dz— 20 f(2n)
I f(z)dz —2n_f2a)

Smin{l

— 1
H—q = EI,SI‘]’\ZA,NJ 2 \/ﬂEx»sij|ZA,>0Z)‘f}

then combine every term to (F.22) using tower property and from assumption 3; — 3; < 0 we obtain

(F22) < (B; —Bi) (L =P [z, > 0] - ppy
—P [2)\7 > 0] Tyt E:p,s” [.%‘(f(Z)\+) - f(ZA,))])

< (/Bj_ﬁz) <l—min{]P)[Z>‘+ >O] ]E|Z>\+|}

2 Vo
Pz 0] E|z 0
—min{ [LQ> ], \}/QA?|}_\/§E|QI>’ (F.23)

where ¢ is standard Gaussian r.v..

2. (Cases of varying 3;,8;) Letcy < 1. Suppose 3; — {(t) < - L__ Recall that |8, > 1 — 3¢,. We are

Virl
going to show there is at least one of the entry 3, € {ﬁr}re,_# ; W{B; + £(t)} is greater than S/\Sil First, if
both i, j & T, the lower bound is immediate since 32 = || 3, H L 3°“ . On the other hand if at least one of
i, is in T and all other 3, entries are small where ||B- (; ;3 H - %, then we know via norm inequalities,
2 1-3c
(B:+ 8)" > B7 + 8] > 1Bxlly = (17 = 1) [ Brgian o = —17 (F24)
which implies if ¢,, < 155,
1—-3c 1 0.72
B =Bj + (1) = (Bi +By) — (Bi — (1)) = - > (F.25)

Vi I T VT

In this case, adopt result from Corollary E.6 such that P[|>" Bex,| > A/10] < 36 || < .01, we have

Ploa. > 0] =P[zx, >0] =1=Pz(8; +L(t) + sij < —A]
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<1-Plaz.B. < —110/10] - P[2(B; + £(t)) + 85; — T, B, < \/10]

croorle SR (o)

<1-0-P[0.72-g. < —1.1-0.25] - (1 — 3c,,)
< 1-0.350. (F.26)

On the other hand, when 3; — £(t) > 4\T both 2, , zx_ are upper bounded via || 6 < g5 such as:

A+ |2(B) +£(t) — 544
Bi — (1)

1/2
<1 7] (Bas,, 12085+ £0) — i)

E%Sij

Z/\,‘ = Ex,su Z/\+| < Ez,su

<1+44/|710|B8lly < 1+44/|T|6 <1+c# f\ |> <1.2. (F.27)
Combine (F.23), (F.26) we have
, oo, (1-035) ¢ \/5 S

W (t) < (B; — B:) <1 2.5 N W) < 0.036(8; — ) <0, (E28)

and combine (F.23), (F.27) and § < ¢, we have

) 1.2 0 2

W (t) < (Bj — Bi) ( V- T) <0.03(8; — B:) <0, (F.29)
which proves the monotonicity. [ |

When the signal length of y is sufficiently large, operator x will be enough close to its expected value.

Corollary F.4 (Finite sample deviation of x(3)). Suppose xy ~iiq. BG(8) in R", and k, c,, such that (ay, 0, k)
satisfies the sparsity-coherence condition SCC(c,,). Define A = cx/Vk in pp for some cx > 1/5, then there exists
some numerical constants C, ¢,€ > 0, such that if n > Cp°9~2logpand ¢y < G, then with probability at least 1 —3/n,
for every a € U+ <, R(S-,v(cy)) and every i € [n], we have:

|n'x[8]; — n T Ex[Bl| < 8/p*?, (F.30)

Proof. See Appendix L.1 [ |

G Euclidean Hessian as logic function in shift space

We can express the (pseudo) curvature (B.10) in direction v € SP~! in terms of the correlation v = C, v
between v and a, giving

v*V20p (a)v = —7*Coy PrC,y,
where

I(a) = supp (SA [EwOCZOLaD = {Z € [n]| ‘

/\} . (G.1)
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The i-th diagonal entry of \C/‘mg PI(a)\C/mo is

~ ~ ~ 2
—€;Cz, Pr(a)Cyro€i = — HPI((L)Cmoei L= | Pr(a)s—ilo HQ, (G.2)

which is the core component for us to study the curvature of objective 1. We illustrate the expectatlon
of diagonal term of Hessian in Lemma G.2 and Corollary G.3, whose flgure of visualized || Py(q)s—i[zd]|,

is shown in Figure 3. Lastly, we also prove the off-diagonal terms e; C’;EO PI(G)CwOe] of Hessian is likely
inconsequential in calculation of curvature in Lemma G.4.

We expect the Hessian to have stronger negative component in the s;[a¢] direction as ||P1(a)s il*o H 5
becomes larger. This term can by tremendously simplified when x is very sparse: suppose all entries of its
support I are separated by at least 2p — 1 samples, then by implementing the definition of support from
(G.1), we can derive

2 _ 2
~ | Prays—ilzolll; = = > LIS, Brocery o |3} o™ D 93 LIBig 52} (G.3)
j€lo sep.  j€lo

where 1 is the indicator function and g; are independent standard Gaussian r.v.s.. In expectation, the
summands in (G.3) acts like a smoothed logic function on entry 3;:

Lemma G.1 (Gaussian smoothed indicator). Let g ~ N(0, 1), then for any b, s € Rand XA > 0.

E, [921{|b,g+3|>,\ﬂ =1—erfp (A, s) + fo (A, 9), (G.4)
where
1 At+s) _0t9? A=) _0-92
hinve) = o= (25 ) 5 4 (B ) G5)
Ver [\ o] 0]
Proof. The proof can be derived via same calculation of integrals in Lemma F.1. |

Although the definition (G.4) seems incomprehensible at first glance, we can actually interpret it as a smoothed
indicator function which compares |b| to the threshold +/2/7A. Once we assign s = 0, then we can see that
Eg?1{}y.g/>x} is be an increasing function of |b|. Moreover by assigning different values for |b| we obtain:

1, b ~ 1
Eg®1{jpg152) = § 1/2, b = \/2/7\ . (G.6)
0, bl = 0

Relate (G.6) to (G.3), when |3;| is close to 1 then we expect — 1 || Prs_;[x] ||§ to be close to —1, and it increases
to 0 as |3;| decreases, suggests that the Euclidean Hessian at point a has stronger negative component at
silao] direction if |(a, s;[ac])| is larger. See Figure 4 for a numerical example. This phenomenon can be extend
beyond the idealistic separating case as follows:

Lemma G.2 (Expected Hessian diagonals). Let x¢ ~ii.q. BG(0) and A > 0, define the set I(a) in (G.1), write
8i = Y_gz; Bexoe, then for every a € SP=tand i € [n]:

n'E HPI(a)S—Z Zo H2 [ - Esq‘,erfﬁi (>‘7 Si) + Esq‘,fﬂq‘, (>‘a sl)] (G7)
Proof. Write g as . Observe that y x & = @ * 3 = > ¢ Bes—g[xo]. Thus for any j € [n] and i € [£p]:

(yxa);, ;= (;615 ilx] + Zﬁes oz ) =Pz + Zﬁszﬁeﬂ' =: Bix; + s;, (G.8)
0+i i
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Bi

Figure 4: A numerical example for E HPI(a)si B H 3 We provide a figure to illustrate the expectation
of =2 || Praysilxo H2 when entries of x are 2p-separated, as a function plot of 8; — 1 — erfg, (X, 0) +
f8; (A, 0) from (G.4) with different \. When |3;| ~ v2A where v; = 1/2/m, then the its function value is
close to 0.5. If | 3;] is much larger then ) its value grow to 1, implies there is a negative curvature at s; [ao]

direction. Similarly if |3;| is much smaller then X the function value is 0 thus the curvature is positive in
si[ao] direction.

where x; is independent of s;, and both x;, s; are symmetric and identically distributed for all j € [n].
Rewrite the random variable using (G.1) as

’ Z‘”Oal{\y*a|ﬂ A}

JjE€[n]

2
1Prays—ifl [y = | Preay Zsepn) (@oses—
- S ai
Lo L{|Bix0;+s;|>N}
J€[n]

Write & = g o w as composition of Gaussian/Bernoulli r.v.s., the expectation has a simple form:

2
E || Pr(ays—il@o]||, = 70 - Egi1{, gy 15052y = 10 - E (1 —erfg, (X, 8i) + fa, (N, 8i))
where s; =), i x0:3; with xo; ~ii.q. BG(0), yielding the claimed expression. [ |

When the signal length of y is sufficiently large, then i-th diagonal term for Hessian || Py (q)s—;[o H2 will
be close enough to its expected value.

Corollary G.3 (Large sample deviation of curvature). Suppose xo ~iiq. BG(8) in R", and k,c,, such that
(ao, 0, k) satisfies the sparsity-coherence condition SCC(c,,). Define X = cx/V'k in @g for some cy > 1/5, then there
exists some numerical constant C, ¢, > 0, such that if n > Cp*6~1logp and c,, < ¢, then with probability at least
1 —3/n, for every a € U+ |<;R(Sr,(cy)) and every i € [n], we have:

0 | Prays—ileal [ = n B [ Praysilaol 5] < ct/p (G.9)

Proof. See Appendix L.2. |

The off-diagonal entries of Hessian in general are much smaller then the diagonal entries; however, it
affects the region near sign shifts of ag the most where we need to show strong convexity in the region. We
provide an upper bound for off-diagonal entries in the vicinity of signed shifts. In these regions, only one
entry of the correlations } B(oy| is large and the rest is small.
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Lemma G.4 (Hessian off-diagonal term near solution). Suppose o ~;iiqa. BG(0) in R", and k, c,, such that
(ao, 0, k) satisfies the sparsity-coherence condition SCC(c,,). Let X = ¢y /Vk with cy > 1/5, then there exists some
numerical constant C, ¢ > 0 such that if n > CO~*logp and ¢, < €, then with probability at least 1 — 4 /n, for every
a € Uir|<ikR(Sr,v(cp), where By | < qroig=r A and every i # j € [p] \ {(0)}, we have

|si[zo]*| Pr(ay |s;]o]| < 8n6° (G.10)

Proof. Write i, = —1/logf and g as * = w o g. Wlog let 3y be the largest correlation 3. Define
random variables s’ = (B:\(0,i,j} ©r\{0,i,j} - Firstly via Corollary E.7 we have P [|s'| > 0.4\] < 26; also
define s = (Bre\{0,i,}> T+<\{0,i,;} ), and base on Corollary E.6 we have P[|s| > A/10] < 20. Expand the
(=1, —j)-th cross term with 6 < 0.1 we have:

Els_i[z]"| Pr(a) |s—j[z]| = E Zke[n] Tt i®ht 5] L1180z +Biwrsi+By@nss+s+s/|>A}
= 0% E|gig;| 1{i80mo+8.9:+8,9; +s+5'[>)}
< n6® - E [19ig;| (21{8,.1>1/4)
P [zo % 0] + P[|s| > 0.1A] + P[|s'] > 0.4)])]
< nb?- (exp (— log? 9_1) +6+260+ 29)
< 6n6>. (G.11)

Write (G.10) as two summation of independent random variables with ¢ = j — i by separating sum into two
sets Ji1, Jio defined in (D.4) with both |J;1|, |Ji2| < n6? with probability at least 1 — 2/n from Lemma D.1

Els_i[@]*| Pray ls_jlzll = > || [@r
(k—i)el(a)
= Z gk | |gr+e| + Z |9k |Gt
(k—i)el(a)NJe (k—i)el(a)NJe2

whose first summands can be upper bounded with high probability via Bernstein inequality Lemma N.4
with (6%, R) = (1,1) and writes C := U}, |<xR(S7, v(cu)) N {a| 1Ba)| < Z“Og%)\}, then we have

ploms Y ladlad —E Y ladllgin | = e’
IS (k—i)el(a)NJn (k—i)€l(a)NJn
P, Jex S dgkllgerd =B D gkl gkl | = no?
_Z#e[ PMOY \ o ieni (h—8)NJe1
—n26° —n20° no* 1
< 4p*- — ) < 8logp — ——— | < —— )<= G.12
=P eXp<2|Jt1|+2n93> —eXp( BP T g ) —eXp< 10 > =7 (G12)

when n = C~*logp with C' > 10* and #log® #~' > 1/p. Thus for all i # j € [+p] \ {0} and a satisfies our
condition of lemma, from (G.11) and (G.12) we can conclude :

|s—i[@]"| Pray ls 5[]l < Y Elgellgrrel + D Elgllgrsel +2n6° < 8nb?
I(a)NJ1 I(a)NJi2

which holds with probability atleast 1 —2/n —2-1/n =1 — 4/n base on Lemma D.1 and (G.12). |
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H Geometric relation between p and /!-norm

In this section, we discuss how to ensure that the smooth sparsity surrogate p approximates || - ||; accurately
enough that guarantees ¢, inherits the good properties of ¢,1. We prove several lemmas which allow us
to transfer properties of ¢ to ¢,. Our result does not pertain to the suggested pseudo-Huber surrogate
p(x); = \/x? + 6% in the main script, and is general for a class of function class defined in Definition H.2 that
is smooth and well approximates ¢! when the proper smoothing parameter § is chosen from the result of
Lemma H.6. In particular we ask the regularizer ps(z) to be uniformly bounded to |x| by §/2:

Ve eR,  |ps(z) — o] <6/2 (H.1)

then if § — 0 we have for every a near subspace,

||pr0x/\(g1 [@* y] — Prox,,, [E*y]H2 — 0, (H.2)
[Vee(a) — Ve, (a)l, =0, (H.3)
V200 (a) = V3¢, (a)]l2 — 0. (H.4)

An example choices of eligible smooth sparse surrogate is demonstrated in Table 1.
The marginal minimizer over x in (??) can be expressed in terms of the proximal operator [BC11] of p at
point @ * y:

~ . 2
prox,, i+ ] = argmin {Mo(z) + § 2]y — {a = 2.9) .
xTcR™

Plugging in, we obtain
wo(@) = Ao(proxy[@+y]) + 3 [|axy — proxy, @« ylll, - 5 @yl + 3 lyll; (H.5)

The objective function ¢,(a) is a differentiable function of a. This can be seen, e.g., by noting that
wola) = cPp)(@xy) = 5 l[@+ylz + 5 vl (H.6)

where ¢(g)(z) = g (prox,(2)) +3 ||z — prox,(2) H; is the Moreau envelope of a function g. The Moreau envelope
is differentiable:

Fact H.1 (Derivative of Moreau envelope, [BC11], Prop.12.29). Let f be a proper lower semicontinuous convex

function and X > 0 then the Moreau envelope e(\f)(z) = Af (prox, ¢[z])+3 ||z — prox, (2] Hz is Fréchet differentiable
with Ve(Af)(z) = z — prox, ,[z].

Furthermore, ¢, is twice differentiable whenever prox, , is differentiable. In this case, the (Euclidean)
gradient and hessian of ¢, are given by

V,(a) = —L*\C/y prox,, [\C/yba] , (H.7)
Vip,(a) = 7L*\éyv prox,, [\éyba] \éyl,. (H.8)
The Riemannian gradient and hessian over SP~! are
grad[p,](a) = —P,1 L*\éy prox,, {\C/'yl,a] , (H.9)
Hess[p,|(a) = =P, (L*Eyv prox,, [\C’/yba} \C/yL —(Vp,(a),a) I) P,.. (H.10)

Our analysis accommodates any sufficiently accurate smooth approximation p to the ¢! function. The
requisite sense of approximation is captured in the following definition:
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Surrogate class pi(z) Vpi(x) V2pi(x)

S ) . . et/ —1 dete/0
L h b 1 e 2L/6 —21/5 - - _—
og hyperbolic cosine 3 log (e +e ) cAa/s 1 1 §(etw/5 4 1)?
x 52
Pseudo Huber Va? 82 ViZ1 o2 (22 + 62)3/2

Gaussian convolution / |z —t| f5(t)dt erf(z/V/26) 2fs(x)

Table 1: Classes of smooth sparse surrogate p and how to set its parameter. Three common classes are
listed with parameter ¢ to tune the smoothness. All the listed functions are greater then |z| pointwise and
has largest distance to |z| at origin where p(0) — |z| < 4, satisfies the condition (H.11). Also its second
order derivatives V2p;(z) are monotone decreasing w.r.t. ||, hence are certified to be eligible §-smoothed
2" surrogates.

Definition H.2 (§-smoothed ¢! function). We call an additively separable function p(x) = Y"1, pi(x;) : R" = R,
a §-smoothed (* function with & > 0 if for each i € [n], p; is even, convex, twice differentiable and V?p;(x) being
monotone decreasing w.r.t. |x|, where, there exists some constant c, such that for all x € R:

i) — x| +¢| < 8/2 (H.11)

The proximal operator of the ¢ L norm is the entrywise soft thresholding function Sy; the proximal operator
associated to a smoothed ¢! function turns out to be a differentiable approximation to Sy. In particular, we
will show that it approximates Sy in the following sense:

Definition H.3 (v/5-smoothed soft threshold). An odd function SJ[-] : R — R is a \/S-smoothed soft thresholding
function with parameter § > 0 if it is a strictly monotone odd function and is differentiable everywhere, whose function
value satisfies

0 < sign(z) (S3[z] — Sy [2]) < VS, Vz eR (H.12)
and its derivative satisfies for any given B € (0, \):

IVSS[2] — VSalz]| < VA6/B, ||| - A| > B. (H.13)

If p is a §-smooth ¢! function, then for all i € [n], we have that prox, ,[z]; is a v/-smoothed soft threshold
function of z;. This can be proven with the following lemma:

Lemma H.4 (Proximal operator for smoothed £'). Suppose p is a d-smoothed (" function, then z; — prox, ,[z]; is
a v/ 6-smoothed soft threshold function.

Proof. We know that

T, = prox,,[z] = arg%lin () + 3 ||z — z||§ . (H.14)
we n

This optimization problem is strongly convex, and so the minimizer « is unique. Using the stationarity
condition and since p is separable, for all i € [n], we have AVp;(x,;) + x.; — z; = 0, implies

;= (Id+ AVpi) 7 (2)). (H.15)
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Since p; is convex and even , Vp; is monotone increasing and odd. By inverse function theorem, we know
that strict monotonicity and differentiability of Id + AV p, implies its inverse is differentiable and is a strictly
monotone increasing odd function. Furthermore, it implies Va .; has the form

_ 1

Notice that since V2 pz(:x) is monotone decreasing when z > 0, hence Vz.; is monotone increasing in z; > 0.

Now we are left to show that (H.12) and (H.13) hold, and since prox, ,[-]; is an odd function it suffices
to consider the case when the input vector z; is nonnegative. Firstly, via convexity and entrywise bounded
difference |p;(x) — |z|| < 6/2 we are going to show

Vpi(z)] <1 Yz eR,  Vpi(z)>1—/6/x V> VA (H.17)
Consider a positive x with Vp;(x) > 1 + ¢ for some € > 0, by convexity if Z > x then Vp;(Z) > 1 + ¢, hence
pi(x+0/e) > pi(x) + Vpi(z) - (0/e) >z —6/2+ (1 +¢€)-(0/e) = (x+ /) + /2,
contradicts the boundedness condition. Secondly, use mean value theorem we know for all = > Vd:

pi(VA8) — pi(0) _ (VA6 —6/2) — (0+6/2) . \ﬁ
VA —0 VA — 0 = P

To prove (H.12), when 0 < z; < A, then S)[z;] = 0 and x,; < VA since if x,; > VS, by (H.17):

Vpi(z) > >

AV ;i (2:) + T2 > M1 = /6/X) + VA =\ > 2

then x,; violate the stationary condition in (H.15), resulting 0 < x.; — Sx [z;] < VA whenever 0 < z; < A
Likewise in the case of z; > A where Sy, [z;] = z; — A, (H.17) provides:

Vo, >2zi— A+ )\5, )\Vpl(:cm) + Xy > )\(1 — \/(5/)\) +z; = A+ V A0 = Z;
Vo, <z;— A )\Vpi(azzi)—i—aczi <A+zi—-A=2z;

again violates (H.15) and therefore (H.12) holds for all z; € R.
Lastly (H.13) is a direct result of (H.12). For all z; < A — B, recall that V&, is monotone increasing in z;:

. Txi —TO-B)i _ (VAO+S\[A]) —Sy[A—B] VAd
P < P < < = :
VIS BV S o) B B
and similarly for all z; > A + B:
T+B)i — Tai _ SA [N+ Bl — (Sx[A] + VAI) VS
2i 2 i 2 > =1- =
Va2 e Vi 2 TR B B
implies (H.13) holds. ]

Based on (H.9)-(H.10) and denote 5y ta = axy, the only differences of Riemannian gradient and Hessian
between ¢, and ¢;1 comes from the difference of prox, , [@  y] and prox, . [@ * y]. Thus for the purpose of
obtaining good geometric approximation of ¢, with that of objective ¢,1, we may apply both Definition H.3
and Lemma H 4, together suggest if p is a §-smoothed ¢! function, then the i-th entry of prox, ,[@ * y]
will be v/ Ad-close to the authentic soft thresholding function Sy [@ * y],, and its gradient V prox, ,[a@ * y] is
V' Ad/B-close to VS, [a  y] as long as (@ * y), is not close to £\ by distance B.

Firsly, we will show by utilizing the random structure of y, such that with high probability, only a fraction
of entries of @ * y will be close to -\
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Lemma H.5 (Gradients discontinuity entries). For each a € SP~!, let
Jp(a) == {2 ‘ (Ey,,a) €[-A—B,-A+BJUN— B\ + B]} . (H.18)

Suppose the subspace dimension is at most k and signal y satisfies Definition E.1. Let A\ = c\/Vk and B <
' \0? /plogn for some cy,c’ € (0,1), then there is a numerical constant C > 0 such that if n > Cp°0=2log p, then
with probability at least 1 — 3/n, for every a € U+ <R (Sr,7(cy)), we have

24c'nh?
plogn

|J(a)| < (H.19)

Proof. See Appendix L.3. [

The geometric approximation between ¢, and ¢, necessarily consists of three parts: the gradient, the
Hessian, and the coefficients. Here we conclude the approximation result with the following lemma:

Lemma H.6 (p,1 approximates ¢,). Suppose o ~ii.q. BG(0) in R", and k,c, such that (ao, 0, k) satisfies the
sparsity-coherence condition SCC(c,,). Let p € R™ — R be a §-smoothed ¢* function with

e c/498
VE’ - p? 1og2 n

with some ¢, ¢y € (0,1), then there is a numerical constant C, ¢ > 0 such that if n > Cp®0~2log p and ¢y < T, then
with probability at least 1 — 10/n, the following statements hold simultaneously for every a € Uj+|<xR(Sr,v(cu)):

\ (H.20)

(1). The coefficients has norm difference
Hbf‘ip]\émo prox, i [@ * y] — L’[kip]\C/mo prox, ,[@ * y| H2 < nf*. (H.21)
(2). The gradient has norm difference
IVen(a) = Vo,(a)l, < ¢nbt, (H.22)
(3). The (pesudo) Riemmannian curvature difference is bounded in all directions v € SP~ via
Vo eSSt ‘v* (I—Egs[wgl](a) — Hess[go,,](a)) v‘ < 200¢'n6?. (H.23)
Proof. 1. (Coefficients) From Lemma H.4, the proximal -smoothed ¢! function satisfies
[Sxl@+y] - S3[@xyll, <V Vjen

Since the support of coefficient vectors are contained in [£p], using simple norm inequality:

. (H.24)

|t CouSa [+ ] = 112y CauSi T+ 9l || < VAT |47y Caa

Apply Lemma D.5 by replacing a, with standard basis ey and extend support of ¢ to ¢(,), notice that in this
case we have ;. = 0. Condition on the event

< V3(1+ 2up)nd < v3nd,

L) Co ,

, < [[tenCanc,

and we gain

(H.24) < VAon - V3n0 < nvV3X05 < ¢/no*.
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2. (Gradient) From definition of Riemannian gradient (H.9) and apply similar norm bound of (H.24), and
condition on the following events of Lemma D.5 holds, obtain

L*EyHQ < /3N + p)d < ¢nb’. (H.25)

IVon(a) — Vo, (a)], < Vaon -

3. (Hessian) For every realization of Jg(a) from a € U |<;9R(S-,7(c,)), base on Lemma H.5, condition on
the event such that

/ 2 24 / 2
B < M 17| < pfogi ; (H.26)

~ plogn’

and rewrite Jp(a) as J. Also condition on the event using Lemma D.5 and (1 + up)flogf~—! < 1
L*EyHQ <3n, L*EyPJHQ < /8[J[plogn, (H.27)

then the difference of Hessian (H.10), in direction v € SP~! can be bounded as

" (Hesslpn](a) — Hesslp,)(a)) o]
< ‘U*L*\C/’y (Pl(a) — diag [VS‘AS [\C/yLaH) \C/‘yw‘ +||Vee(a) — Vo,(a)l, (H.28)
where I(a) is defined in (G.1). Let D = Pj(q) — diag {VS;S\ {\C/yLaH and notice that D is a diagonal matrix,
which suggests (H.28) can be decomposed using
(P; + P;.)D(P; + Pj.) = PyDP; + P;-DPye,
where, from with property of v/§-smoothed ¢! function Lemma H.4:

< VAd/B.

max [P;DPy|;; <1, max |Pje DPje|;
j J

Finally, once again apply ¢ bound from (H.20) and bounds for B, |J|, y from (H.26)-(H.27), we gain

S~ 2 VS| o |2
(H28) < ||o*CyP|| + 22 |G| + 1V (@) = Vo, (a)ll,
3nVAd
< 8|J|plogn + nB + 'nb?
/2
24c¢'nb? 3n (X268 /p? log? n) '
8- -pl 'ng?
plogn plogm + d'M\0?/plogp ten
< 200¢'nh?,
where all above result holds with probability at least 1 — 10/n from Lemma H.5 and Lemma D.5. |

I Analysis of geometry

In this section we prove major geometrical result in Theorem B.1. This lemma consists of three parts of
geometry of ¢,; including the negative curvature region Corollary 1.2, large gradient region Corollary 1.4,
strong convexity region near shift Corollary 1.6, and retraction to subspace Corollary 1.8, which are respectively
base on geometric properties of ¢, in Lemma 1.1, Lemma 1.3, Lemma 1.5 and Lemma 1.7. We will handle
each individual region in the following subsections. To shed light on the technical detail of the proof, we
will begin with two figures for illustration of a toy example, which demonstrate the geometry near a two
dimension solution subspace Sy; ;y, as follows:
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T VA < |B)| < 18| VA <18 < 418}
v A A A

Retracztive Grazdient

Large Negative Large
Gradient Curvature: Gradient

Sy (18l 18;])

18j] < vA <l o5 1Bi] < vA

Syl

Figure 5: The top view of geometry over subspace S; ;1. We display the geometric properties in the
neighborhood of subspace S; ;3 (horizontal axis) which contains the solutions s;[ao] and s;[ao]. When
a lies near middle of two shifts (light green region) such that |3;| ~ |3;|, then there exists a negative
curvature direction in subspace Sy; ;1. When a leans closer to one of the shifts s;[ao] (blue green region),
its negative gradient direction points at that nearest shift. When a is in the neighborhood of the shift
si[ao] (dark green region) such that |3;| < A, it will be strongly convex at a, and the unique minimizer
within the convex region will be close to s;[ao]. Finally, the negative gradient will be pointing back toward
the subspace Sy; ;; if near boundary (grey region).

Psi }H(‘ss[ﬂ(a)Ps{\ =0
ij

\\ i }

Figure 6: The side view of geometry of subspace Sy; ;; on sphere. We illustrate the geometry of Sg; ;3
over the sphere, in which the properties of the three regions are denoted. In negative curvature region,
there exists a direction v such that v*Hess[p](a)v is negative. In large gradient region, the norm of
Riemannian gradient ||grad[¢](a)||, will be strictly greater then 0 and pointing at the nearest shift. Finally
there is a convex region near all shifts such that Hess[y](a) is positive semidefinite.

I.1 Negative curvature

For any a € SP~! near the subspace S, such that the entries of leading correlation vector B0y, B(1) have
balanced magnitude, the Hessian of ¢,(a) exhibits negative curvature in the span of s(g)[ao], 5(1)[ao]. We
will first demonstrate the pseudo negative curvature of ¢, in Lemma L1, then show ¢, approximates ¢, in

terms of Hessian in Corollary 1.2 when p is properly defined as in Appendix H.

Lemma I.1 (Negative curvature for o, ). Suppose that &y ~iia. BG(9) in R”, and k,c,, such that (ay,0,k)
satisfies the sparsity-coherence condition SCC(c,,). Set A = cx/Vk in pp with ¢y € [

11
504
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constants C, ¢, ', ¢ > 0 such that ifn > Cp°0~2log p, and u < T, then with probability at least 1 — ¢’ /n the following
holds at every a € Ujr <R (Sr,v(cy)) satisfying |B)| > 2 |B(o)|: for v € S0y, 1)y NSP~ 1 Na™t,

v*Hess[pp](a)v < —cnbA. (L1)
Proof. First of all the regional condition ‘% < 2 provides a two side bound for the two leading 3’s
B 4 4 8]
0.79 > ——=—— 18-, > [Bw)| > [Bw)| = = |Bw)| = = 2 — 12)
2 2 5 5 VT ,/
OB

Set J = {(0), (1)}, choose v = ¢*Cq,t ;v with ||v|, = 1 then ’||'y||§ - 1‘ < u. There exists such v satisfies
condition above with a L v by choosing ~y as

a*v =a"t"Cayt ;Y = Y0)Bo) +Y1)Ba) =0,

hence ‘7“) gg?; < 5. This implies 'Y(o) 257(1) L1 —p- 'Y(o)) where p < % < 1o it gives the
lower bound of ~(g a
1—p)-16
2 5 1=p-16 I.
70 = g5 qe = 0 (3)

1. (Expand the Hessian) The (pseudo) curvature along direction v is written as

v*Hess[pp|(a)v = v* V30 (@)v — (Vo (a),a) = —’y*L’}MC P, C =My + Bx[8] (L4)
expand the first term of (I.4) we obtain

— LJMC' P, C’ eMuyy
= —v"t5M (P) + Py + Pye) \C/mPI(a)\C/m (Poy + Pay + Pye) Muyy

~ 2 - -
<-3 HPI(Q)CmeZ— @My 12 Y ‘e;cmp,(a)cmej‘ (e M) (M)
et ? (i.)€{J,7°}
(1.0)=((0),(1))
~ 2
<-2 HPI(mCmei (il =)’
ieJ
+ 2#1;%&[);1)] e;\c/mPI(a)\C/wej‘ (||L§MLJ7||1 ||L*JCMLJ’Y||1 + (|’)’(0)| + ,U) (”)’(1)| + ,u)) (L5)

Consider the following events

Eoross 1= {Va €SP max; ey ejéwPI(a)E ej| < 4n02}
Encure = {V @ € R(Sy,7(cp)), miniey || Preays—ifellly = 76 (1= Eo, (A 50) + Eo, (A, 5) -

Cupﬂ} , (1.6)

and from Lemma E.4 we know
ey Mesylly < vl +20 < 15, flefe Moyl < pplvlly < 1.50p,
on the event E.;0ss N Encury, We have

- 7*L§Mémpz(a)émeJ"/
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2¢,m0
< 8-> (7l = 1)* (1 — Eg,ertp, (A, 8:) + Eq, f5,(\, 1)) + (18up + 8) n® + ~ 12

i€J 1’ ’ Vv |T|

91(B)

(L7)

Meanwhile, for the latter term of (I.4), consider the following event & where we write o; = sign(/3;) as

nf - |Bi| (1 — Eqerfg (A 8;) + 2 Vier
& =10 p , 1.8
X {U X[Bli < {na |Bi] 46 | 7| + C“"G Viere (18)

and use both ||3]|; < \°/“ﬂ ||ﬁ',.c|\2 < 9\T|2 On this event we have

c#ne

BxIB) <nb- > B (1—Egerfg (N s)) + 4n8? | 7] || Brel5 +

1ET

<nf-> B7(1—Egerfg () s;)) +5Cu”9

1ET V |T| '

92(B)

1814

(L9)

2. (Lower bound E fg,) Combine the first term from each of the (I.7) and (1.9). Use x < ¢, < ﬁ and (1.3) to

obtain (|| — ,u)2 > 0.38, we have

5 (91(8) +92(8)) < =D [(lwl = ) = B] (1~ s erfp, (A, 1))

i€J
+ Y B7(1—Eqgerfg, (N 5:) — 0.38) Eq, fa,() s:), (1.10)
ieT\J icJ

(‘H

now use Taylor expansion ? for f3,, and apply the upper bound where Es? < 4 || ﬂ||2 <0 <1 + NG + 9|:-H2> <

1 2\ A3 ( 332>
]Esi B )\731' Z]Esii- — 1+ 7
o) V2r (ﬂi| 183 A2

1 2\ 1 9c, A\
. e )\3 M ) ;
Var (w |ﬁi|3< G )

1(8)

Y

where f(3) is concave at stationary point since

{f’(ﬂ*) —0 — 2)\82 =3\ <A2 +
"B = 5 ( i (AQ * ?TT)) =7 (4’\_ 3/2A)

then combine with regional condition (1.2), and also apply assumption ¢, < 1 and ¢, < 515, we gain

038 Es fa,(\si) >03 min f(B)
Py ﬁ:m,mg

2 Apply exp [—22/2] > 1 —22/2
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. [ 2en S+ 9cucn 2 A3 +49,
> 0. - p -
2 0-3min { 079~ 0795 " \079 " 0798

> 0.3min {2¢y, 2A} > 0.6\. (I.11)

3. (Upper bound Ex[8];) When 83, = (|| — ,u)Q — n for some i > 0. With monotonicity Lemma F.3,
which implies:

(1- Es erf, (A, s ) = (1~ Esqerfg, (A, s m))
> (1 —Eg,erfg, (A, s4)), (L12)

from Lemma E.5

then combine (I.11)-(I.12) and use p <

Cu
44/I7|

2 2 2
010) < = (ol =) = By = 1) (1= Buyyenfay, (v50)

=0

+ 1 2 8- (v - 1) —n | (1= Eagerfa, (A s))

€7\ (0)

1€J
2 2
(18- 12~ 12 + 211, ) — 061

— 0.6\ (1.13)

<1

IN

On the other hand, when 87, > (|7 | = ) > 0.38, combining (I.11)-(1.12) gives:

1.10) < (18213 = 1913 + 2 vl ) + (o] = 1) = By ) Bogerfa, (A 50)

+ ((|7(1)| - /”L)z - Z 512) ]ES(Uerfﬁu)()‘? 8(1)) - 0'38ZE37‘,fﬁ7‘,()\’ 8i)

ieT\(0) i€J
< (\/F > + (’7(21) - ||ﬂ‘l'||g + /8(20)) ES(l)erf,@(1)()‘7 S(l)) — 0.6, (114)
where Lemma F.2 provides the upper bound for Es ,,erfg ,, (A, s(1)) as
1 (1)
Es,erfg, (A, s)) =1— Ex[B]y <1-— Ex[8]
(1) P8¢ >( ) 0B, (Bl ) 9 |,3(1)’ (1)
=1- 1Bay| — \/5/\ g\/? A (L15)
|5 ) ™ ™ 8w
then calculate the constant for the second term in (I.14) by writing x = ‘ :E;; ZE?: < 3, which provides
7(21) < (Hzil and ,6(0) < ”iﬂfl where ;1 < %, and by applying |B(1)| > 1 |B(0)| = 0.3, we have
() — D + e+ By r 1 |Bloy| +
< - 0
Bu] (2 + )[BT 03
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K2 -1

P
T VRZ+1
and finally combine (1.15)-(1.16), follow from (I.14) and use ¢y < %:

2¢ A
1.10) Eo4 2o —1+c,+ B2 ) —— — 0.6\
w10 < 7y (o —1ven ) o

2 6
o (0 36\ + c””) —0.6)

7,/‘7‘ 0.3

e (||ﬁ,\|2 )+4.2c# < 0.36 + 6c,, (L16)

— 0.3\ (1.17)

3. (Collect all results) Combine the components of pseudo Hessian (I 7) (I.9) with bounds for g; + gg from
(L.13) and (1.17), and use Lemma E.5 which provides both upf |7| < % and 0 || < % where ¢, < and
cy > £, We can obtain:

300

BN

=
S
>

§n9~<4c ~0.3
||

no
<
VTl
Finally, the curvature is negative along v direction with probability at least

[gccro%] - [ggcurv] - P [E"%} . (119)
—_——— — N ,
LemmaD.4  Corollary G3  Corollary F.4

(0.059 — 0.06) < —0.001nOA (1.18)

Similarly for objective ¢,, we have that

Corollary 1.2 (Negative curvature for ¢,). Suppose that xg ~iiqa. BG(6) in R", and k, c,, such that (ao, 0, k)
satisfies the sparsity-coherence condition SCC(c,,). Define X\ = cx/Vk in ¢, where cy € [%, 1], then there exists
some numerical constants C,c,c', ¢, > 0 such that if p is 5-smoothed €' function where § < ¢’\0%/p*log®n,
n > Cp°0~2log p and ¢, < ¢, then with probability at least 1 — ¢/ /n, for every a € U, |<xR(Sr,v(c,)) satisfying
1By| = 5 [Boo |: for v € Sto). )y NS”H Nat,

v*ﬁggs[wp](a)v < —cenbA (L.20)

Proof. Choose v € SP~! according to Lemma 1.1 and (H.23) from Lemma H.6 with constant multiplier §
satisfies ¢’!/* < 10~3¢, we gain

v*Hess[p,](a)v < —cnfA + 200¢'n? < —cnfA/2 1.21)
|
1.2 Large gradient

For any a € SP~! near subspace and the second largest correlation 3(;) much smaller then the first correlation
B0y while not being near 0, the negative gradient of ¢,(a) will point at the largest shift. We show this in
Lemma 1.3, and the ¢, version in Corollary 1.4 when p is properly defined as in Appendix H.

39



Lemma L.3 (Large gradient for ¢1). Suppose that €y ~;ii.q. BG(0) in R", and k, c,, such that (ao, 0, k) satisfies
the sparsity-coherence condition SCC(c,,). Define A = cx/V'k in pp with some cy € [£, 1], then there exists some
numerical constants C,c’, ¢, ¢ > 0, such that zfn > Cp°0~2log p and Cu < ¢, then with probability at least 1 — ¢ /n,
for every a € U|,.‘Sk9%(8.,.,fy(c#)) satisfying 3 |Boy| > |Ba)| > 410g9 1,

<U(O)L*s(0) [ao], fgrad[goel}(a» > cnb (log_2 9*1) A2 (1.22)
where o; = sign(B;).

Proof. 1. (Properties for o, 3) Define 6i,; = ;—5—, we first derive upper bound on the dominant entry

log
|B(0)| as follows. Write the geodesic distance between a and ¢*s;[ao] as a function of 3; as ds(a, +t*s;[a]) =
cos™(B;), then by triangle inequality we have:

dg(a, :tL*S(O) [ao]) > ds(iL*S(o) [ao], L*S(l) [ao}) - dS(CL7 L*S(l) [ao])
— cos! +B0) = cos !y —cos! |ﬁ(1)’

— B0 < cos (eos™—cos™ [B]) = B+ [0 —2) (1~ 7
<1-3(Bwl-m’.

Use the regional condition |B)| > %22\ and since u|7|*/* < 56, from Definition E.1, implies
B? 4 T

18| < 1- 20 (1 -~ VK) < 1049683, =: Bup. (1.23)

Meanwhile a lower bound for 3¢ can be easily determined by the other side of regional condition:
1Boy| = 2 (Ba)| =: Buw- (1.24)
Also since 8 = M «, based on properties of M from Lemma E.4. When ||a ||, <1+ ¢, and |||, <7 <
2

J"j}‘;}i [, we gain:

Bo) = (o) + ejo)Ma(0)
= |ap) = Bo)| < pvITlllerlly + py/p llarell,

¢, 02 cu ¢, 02
< ol o) oy fpy < s, (1.25)

2 2
and therefore ’a(0)| < |ﬁ(0)| + C“lf_l‘og < 1—.49 (elzg )\) 4 Cuelug < 1.

B

2. (Upper bound of 8*x[3]) Define a piecewise smooth convex upper bound 4 for 8;x[3]; as:

Vi
=426l 1Bl =2 A
h i) =
) {255 B < A

then Lemma N.7 tells us since Hﬁ,.\(o) ||Oo < Bay:

1AB) cubr, 9 20
S n) < HﬂmmHZ(l— ) < (14 9% g2 (1
iem\(0) 280 7 280
20 2 C#GIQOg
<(1- 1— n ,
( 25(1))( Bln) + )
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then condition on the following event using Corollary F4,

né - h(Bi) + C;/‘i Iﬂzl, Vier\(0)
{/BIX[IB] { no - 4ﬂ29 |T| + 3/2 |ﬂz|7 VierTe } ’

which provides the upper bound of 8*x|[8] by applying 5p > log®?(plog® p) > (Hfog)‘l/ 3 from lower bound of
6 from Definition E.1, || 37|, < C“al“g from Lemma E.5, |7| < |/p from lemma assumption and let ¢,

1.
< 100*

B (8] < x[Bl0)Bwy + D> Bix[Bli + (Bre, x[Blr<)

€7\ (0)

< xlBloBo +n(0 D (B +46% 7| 18,11

1€7\(0)

+ 2 (VITT 18-, + V3 118--1) )

2
cub

log

|| 0|7

40% || 0120g

< X[ﬁ](o),@(o) + ”(9 n(l— 5(20)) +0-
1+¢ 010
+e.0 po 4 Cullog >
g <p3/4 Tl pVo 7] )
02

6¢c
< x[8l(0)B) +nb (77(1 - B%) + |T|1g> : (1.26)

|20

wheren =1 — By

3. (Align the gradient with ¢*s(¢)[ag]) Base on the definition 3, since By = <a, L"5(0) [ao]>, we can expect
that the negative gradient is likely aligned with direction toward one of the candidate solution +¢*s ) [ao].

Wlog assume that both 3, 3(1) are positive, then expand the gradient and use incoherent property for ag
Lemma E.4 we have:

(v s(o)lacl, —grad,, [a]) = (+"s(0)[ao), " Ca, (x[8] - B*X[B)
> (x[Bl(0) — B*x[Bleyo)) — 1 || xIB1\0) — B*xIBlowy o) - (1.27)

where \ (0) is an abbreviation of the complement set [+2pg] \ (0). The latter part of (1.27) has an upper bound

using bounds of 8*x[8] < ‘3"9 Nx[Blrelly < ”‘972 from (1.62), and HX .,.\(0)H2 no H[)’T\ 0)”2 in event &,
we obtain:

1 {[x[81\0) — B*x[Blew (o) |
< M(\/HHXWT\(O)HQ +B°XB1VI7 |lar o,
+ VP Ix(Blrell, + B"X[BIV/P lare ||, Big)
<0+ /[T (18- 11> = B0y ]) + /171 (el = o))
+ %u\/z’m + gu\/ﬁw}

02 1 3
<n0- G |20+ = 8o ~ e+ (554 3) o]

¢, 0?
<nb- “;"’g (0.5 + ¢, — 0.580)) - (1.28)
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On the other hand, the former term of (I.27) possesses a lower bound using (1.25)-(1.26), x[3] o) > n6 (,6'(0) -5
no (6(0) — 0.511/1)\) and oy < 1:

X[Bl0) — B x[Blevo)

6¢,,0%,
> (1 - a0)B0)) I8y — nb - [n (1 - 5(20)) + L;_lg] ()

.03
> nb (1 — (ﬁ(o) + pl g) ﬂ(o)) (ﬁ(o) — 0.511/1)\)

|7l

(a)
cﬁlzo_ 66L9120
—nb [77 (1 — ,8(20)) <ﬂ(0) + /‘T| g) + ! gOL(O)

7|

(®)

2 cﬂ«elzog/@(QO)
(a)
C/Lelog (1 - 6(20)) 6c 92
2 1Y 1log
= (1= 8%) w80 ] e }
(b)
b2
> né [(1 - 5(20)) ((1=n) Boy — 0.51m\) — l|71\ g ((1 — )8 + 7) : (1.29)
combine (1.27) with (1.28)-(1.29) and n > 0, we have
2 C,ualzog 2
(1.27) > nf | (1 - By (1 =) By — 0.5114A) — ] (L=m)B) +7
c 0%
—nf - 7Tl|0g (0.5 + ¢, — 0.58(0))
A 8c,0?
> 32 1 —o. _ S og o 1 .
> no[ (1 6(0)) (2ﬁ(1)ﬁ(0) 0 511/1)\) 1 Big (130)
f(8)

4. (Lower bound of f(f8)) Given a fixed 3(1), the cubic function f(83(g)) has zeros set B(o) € {£1,1.028(1}
and has negative leading coefficient. Combine with the condition of B¢y € {fw, Bub} from (1.23)-(1.24), we
can observe that

Bo) € [Bib, Pub] = Bﬁ(m 1 - 0-49ﬁ(21)] C [1.028(1),1],

therefore the cubic term is always positive and minimizer is either one of the boundary point. When 3y = 8,

/Oog .
use (1+ 22) 6(21) < 1.01, and use v )\ < Y2 < ﬁ, since |T| > 2, we have:

2y/Ir| —

f(ﬁlb) Z (1 - 512]3) <£()\1)61b - 0-51U1)\) Z (1 — 0.616) . (: — 0.51) 1/1)\
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> 1 )\>012°g)\2 (L.31)
—VU . .
“16v2 T 32

On the other hand when B = Bub:

VlA
Bun) = (152 (Bu —0.51v A)
F(Bub) = ( b) 2B, 1
A
> 04987, - [ =2 (1-0.498%,) — 0.51, A
2 0490 (2/5(1) ( ﬁ(l)) )
which is a cubic function of 3(;) with negative leading coefficient, whose zeros set is {—0.73,0, 2.81}. Thus it
minimizes at the boundary points of 3;) € [4103;%’ 1} C [0,2.81], thus assign B(;) = Mog%, we have:
A\ (1 A
>049 ( ——-—) [ |1-049 ——— —0.
F(Bup) > 0.49 (4log91> (2 (1 0.49 (4log91) ) 0 51V1)\>
1 AN\ 6
> (2 ) > g2 1.32
6 (4log9—1> ~ 96 (132)
Finally combine (1.30) with the lower bound of cubic function (1.31)-(1.32) together with condition c,, < %
and v; = Y Zl°g, obtain
* . 80H0120g
<L s(0)lao], —grad,,, [a]> = nb - | min{f(Bup), f(B)} — e
02 .c3  80% .3
>nf | -2 182 ) 5 6% 10730062 3. 133
=" (96|T| 800 || ) =07 PP (1.33)
The proof for the case where 3y, negative can be derived in the same manner. [ ]

As a consequence, we have that

Corollary .4 (Large gradient for ¢,). Suppose that xo ~i;q. BG(8) in R™, and k, c,, such that (ao, 0, k) satisfies

the sparsity-coherence condition SCC(c,). Define X = cx/Vk in ¢, with cx € [%,1], then there exists some

numerical constants C,c,c,c”,@ > 0 such that if p is -smoothed ¢* function where § < ¢’ \0%/p?log® n with
n > Cp°0~2log p and ¢, < ¢, then with probability at least 1 — ¢’ /n, for every a € U, |<xR(Sr, v(c,.)) satisfying
%"6(0)| > |'6(1)| > 4log10*1)\’

<0'(0)L*s(0) [ao], —grad[cpp](a)> > cnb (log_2 9*1) A2 (1.34)
where o; = sign(B;).

Proof. Choose ¢*s(g)[ao] as in Lemma 1.3, and apply (H.22) from Lemma H.6 with the constant multiplier of
§ satisfies ¢’* < ¢/4, then utilize 0 |7|log” §~' < ¢, from Definition E.1 we have

(o 0)t"s(0)lac), —gradfp,)(a)) > ecnf(log >0~ )A — 'nb? > cnf(log > 6~ 1)\ /2 (1.35)
|
I.3 Convex near solutions

For any a € SP~! near subspace and the second largest correlation (1) smaller then 410%%)\, then ¢, will
be strongly convex at a. We show this in Lemma 1.5, and the ¢, version in Corollary 1.6 when p is properly
defined as in Appendix H.
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Lemma L5 (Strong convexity of ¢, near shift). Suppose that xg ~;;.q. BG(0) in R™, and k, ¢, such that (ao, 0, k)

satisfies the sparsity-coherence condition SCC(c,,). Define A = cx/V'k in g with cx € [%, 2], then there exists some

numerical constants C, c,c'c > 0 such that if n > Cp°0~2 log p and c,, < ¢, then with probability at least 1 — ¢’ /n,
for every a € U <xR(Sr, v(cu)) satisfying | B | < Moglﬁ)\:for allv € SP~1Nwt,

v*Hess[pp](a)v > cnb; (L.36)
furthermore, there exists a as an local minimizer such that
min [la — se[ao]||, < 3 max {u,p~"}. (1.37)

Proof. 1. (Expectation of x near shifts) We will write  as xy through out this proof. When a is near one of
the shift, the x operator shrinks all other smaller entries of correlation vector 3, (o) in an even larger shrinking
ratio. Firstly we can show |(B\ (o), \(0))| is no larger then \/2 with probability at least 1 — 46, since

A
P [!(5\<0>,w\<o>>| > 2}
2 A
<P {|<ﬂf\<0>,wﬂ(0)>y > 5] +P [<ﬁ.,.c,m.,.c>| > 10} <40 (1.38)

via Corollary E.6 and Corollary E.7. Now recall from Lemma F.2 and the derivation of (F.10)-(F.11), we know
for every ¢ # (0),
o Ex[Bli = nb |Bi| Es, [1 — erfg, (A, s1)]

<nd |/81| Eg,w\i |:921{

]

Big+B0)®(0) T8 (0),5} \{(0).}

P 0
Iﬁq:g\>%} + [w(o) 7 ]

< n018;| (Eg*1 {
+P [[(Byi0a1 2r(011)] > 3])

< n018:1 ((Eg)" P [|Brayg| > 31" + 0+ 49)

< nb|B;| (exp (— log? 9_1) +56)

< 6n6° | B;| (139)

where the third inequality is derived using union bound; the the fourth inequality is the result of (1.38), and
the fifth inequality is derived from Gaussian tail bound lemma N.1.

2. (Local strong convexity) Let v = C;; wv, for any |v||, = 1 we have H’yHg < 1+ pp. Furthermore:

[Yoy| = [{¢" 50y [ao], v)| = [(Part*sylacl,v)| = |(t"s(0)lao] — Bya, v)]

< [|le*sq)[ao] = Boyall, < /1 - 8- (1.40)

Consider any such v, the pseudo Hessian can be lower bounded as
v V30p (a)v = —'y*\C/mPI(a)\C’/m'y

~ 2 ~—
PI(a)Cwe(O)H2 - Z HPI(a)Cacei ?
i#(0)

2
) Vi

>~y

_QZ

i#]

e;CaPi(a)Caes| 17l 1]
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2 2 2
>~ (1-8%) Il — ma | Prcawys—ile]l 15

— 2max ’ef\C/wPI(a)\C/wej ||'7||? , (1.41)

i#]

where the second term is bounded by using its expectation derived in Lemma G.2, and utilize P [|s;| > A/2] <
46 from (1.38), Ex from (I.39) and regional condition |3(1)| < M()g% to acquire

E||Pr(ays—_ila]||; = nf [1 — Eq,ertg, (A 8;) + Eq, fa, (A, 8:)]

< |Ex[B]: +n - <maX fa,(\, ) + P [|si| > ;D

1Bi] lsil <%
2n6 A+ |si] (A —[si])?
< 6n6? + —— max ( - ex {— + 4n6?
Var sy \ 1B TP 2
< 10n6? +nb - logf~ " exp (—21log” 07 1)
< 11n#?, (1.42)

and define the events & lla]l,» Eeross and Epcury as follows:

2 cun
gpcurv = {Va € U|T‘§k9‘i($.,-,’y(cu)), ’|P1(a)5—i[-'13m2 < 11n62 + ;Té‘}
gcross =<Vac U\T|§km(8-ra’y(c,u))7 |ﬁ(1)| < m%, maX;+je[+p] e?\C/ﬂ’?PI(a)\émej’ < 8%03} ) (143)
Ela [E1lE §n9+3\/@1ogn}

For the Hessian term, on the event &,curv N Ecross N 6”93”2, and use all pp260?, upd || and 6,/p are all less then

410;%' from Lemma E.5, and from lemma assumption with sufficiently large C we have n > 0-'36 log2 n,

thus v* V21 (a)v can be lower bounded from (1.41) as
v* V20 (a)v > — (1 - ﬁ%0)> <n9 +3vnbd logn)
— (1 + up) (117192 + W) —8p (1 + up) - 8nb?
p

1 2 1le, 5  64c, 64c,

v

Y

1 2
—5nf- (1 — B+ 20%) : (1.44)

The bounds of 8*x[B] can be derive on the event whose expectation is drawn from Lemma F.2 and (1.39) as

o [[oxIBli = nbS,x (18] - 0, i€ )
x oix[Bli < 6162 8| + Sz, Vi (0) [
thenuse [|3]|, <1+ A“();% < 22, implies:

Bx[8) > 6 |B()| (|1B0)| — 12A) — cu Bl %2

>t (Bt — /27 - %)

> nd (ﬁ(QO) - )\) . (1.45)
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Finally via the regional condition |8)| < the absolute value of leading correlation

A
4logh—17
Bty > 11815 — 1718y > 1 —2¢, — 0.1 > 0.9, (1.46)
then we collect all above results and obtain:
v*I-/IEgs[¢gl](a)v = v*V2pp(a)v — B*x[B] > (1.55(20) —05—-XA— 200#) nfd > 0.3nb, (L.47)
with probability at least
1= P[E o] — P [E o] — P [quu ~ P[] >1-¢/n. (L48)

Lemma G4 Corollary G.3 LemmaD.2  Corollary F4

3. (Identify local minima) Wlog let a. be a local minimum where its gradient is zero that is close to ay. The

strong convexity (1.47), provides the upper bound on |a. — a3 via

por (@) > o (ao) + (@, — ao, gradlp)(ao)) + %nd la, — a2
— [lgradlpn)(ao)l, > 0.15n0 [[a. — aoll, (149)

Thus we only require to bound the gradient at ag, whose coefficients o = ey and correlation 3 has properties
Bo = land H Bo H - < phence H Bo ‘ ] < v2pu. Expand the gradient term and condition on &, since pp?6? < &

and 6§ < ;*%, we can upper bound the gradient at a, as

il
lgrad(pa](ao)lly = [|t*Ca, (x [8] — B*x[Bleo) 5 < 16" Cay || X80l

< VI (600 | Byoll, +n0 - 25z - /)

<0/ T+ pup (6p1/2p -0 + 22

SnH(Scuu—FG,u- \/ﬂ~p9+2%+%)

< 7,/Gunf - max {m %}. (L50)
Thus we conclude that with sufficiently small c,,:

la. — aoll, < 50y/c; max {p,p~ '} < $max{p,p'}. (151)

and we complete the proof by generalize this result from minima near a to any of its shifts s;[ag].

Similarly, for objective ¢, we have

Corollary 1.6 (Strong convexity of ¢, of near shift). Suppose that xo ~;;qa. BG(0) in R™, and k, c,, such that
(a0, 0, k) satisfies the sparsity-coherence condition SCC(c,,). Define A = cx/V'k in @, with cx € [L, 1], then there
exists some numerical constant C, ¢, ¢, ¢ ;@ > 0 such that if p is §-smoothed ¢* function where § < ¢/ \6® /p? log® nand
n > Cp°0~2logp and ¢, <€, then with probability at least 1 — ¢’ /n, for every a € U, |<xR(Sr,7(cy)) satisfying
1By| <X forallv € SP~1 Nat,

v*ﬁggs[gop](a)v > cenb; (L52)
furthermore, there exists a as an local minimizer such that

min @ — selao] |, < & max {15} (153)
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Proof. The strong convexity (1.52) is derived by combining (1.36) and (H.23) by letting constant multiplier of
§ satisfies ¢'*/4 < 10~3¢. On the other hand the local minimizer near solution (1.53) is derived via combining
(1.49), (H.21) and utilize both #,/p < ¢, and pp?6? < ¢, such that:

levade,)(@)l, < 14" Caylly [x[8) ~ CaS3 [Cytal||, + 116" Canlla X180,

<1+ pup-nb>+ 7\/cunf - max {ﬂ,p_l}
< 8nf,/c, - max {,u,pil} (1.54)

I.4 Retraction toward subspace

As in Figure 6, the function value grows in direction away from subspace S, we will illustrate this phe-
nomenon by proving the negative gradient direction —g will point toward the subspace S.. To show this, we
prove for every coefficients of a as o, there exists coefficients of g as ¢ satisfies

(are(g), are(a)) > cllorelly [[Grell, (L55)

whenever d,(a,S;) € [%, 7]. Apparently, the gradient will decrease d,(a, Sr), hence being addressed as
retractive toward subspace S.. This retractive phenomenon is true for gradient of both ¢, and ¢,.

Lemma I.7 (Retraction of @1 toward subspace). Suppose that xo ~ii.q. BG(6) inR", and k, c,, such that (ao, 0, k)
satisfies the sparsity-coherence condition SCC(c,,). Define A = cx/Vk in o with cx € (0, %], then there exists some
numerical constants C, ¢, > 0 such that if n > Cp®0~2log p and c,, < ¢, then with probability at least 1 — ¢’ /n, for
every a € Uj+<iR(Sr,v(cy)) such that if

do(a,S7) > v(cu)/2 (L56)

then for every o satisfying a = 1*Clq, o, there exists some ¢ satisfying grad[pgp](a) = ¢*Cq, ¢ that

(Gresere) = g 16l (157)
Proof. Write v = 7(c,,) Recall the gradient can be derived as
grad(pp(a) = —Pa1t"Coyx[B] = (aa” — I)1"Ca,x[B] = ¢"Ca, (B"x[Bla — x[8]) , (1.58)

for every « satisfies a = +*Cg4 0. Now via Corollary F.4, condition on the event:

nf - |8+« VieT
Ey =10 i < L. ) ) i i>nd-S il] s 1.59

and on this event, utilize Lemma E.5, bounds of 3*x([8] and ||x[8] ||, can be derived with ¢, < 1%; as:

B*x|B] < nb <||BT||§ + 40 |7| H,B.,.c||§ + Cu) > nb (1 +cu+ 4ci + Cu) < %n@ (1.60)
BX18] = 10 (18-113 = /2/mA1Br Il — ) =m0 (1= e, = V/2/mer = ¢,) = o (L.61)
IX[Blre 5 < 420 |71 [1Brelly + 222/ < 0 (deuy + ) < S5y (1.62)

Let a(g) = B*x[8)a — x|3), derive

2
(a(g)re, Qre) — ng Ha(g)‘rC”Q
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= B"x[0] ||Ot7—cH§ — (are, X[Blre)
— 15 18 X(Blare — x[8]< I3
B*x[8] IIGTU\@ — llecrelly [x[Blr<l,
1 * 2 2 1 2
— 505 1B XIB)" lare |5 — 55 [1X[B] 7l
> (B°X[8] — 555(B"X(8])°) lare |l — 35107 llorelly — 1551677 (L63)
notice that this is a quadratic function of 3*x[3] with negative leading coefficient and zeros at {0, 2n6}, hence

(1.63) is minimized when 3*x[3] = %n&. Plugging in,

\Y]

(163) > 2nfllore|3 — A6y [loerell, — 1ognén (L64)

then again this is a quadratic function of ||« |, with positive leading coefficient and zeros at {0, &~ }, thus
(I.64) is minimized at ||cr<[|, = . Plugging in again,

(164) > 300 |orely — S5m0y [[are |y — 1557072 > (2 — & — 105) 1072 > 0 (L65)

which concludes our proof. |

As a consequence, we have that

Corollary 1.8 (Retraction of ¢, toward the subspace). Suppose that xq ~;;.q. BG(0) in R"™, and k, c,, such that
(ao, 0, k) satisfies the sparsity-coherence condition SCC(c,,). Define A = c/+/|k| in @, with cx € (0, 1], then there
exists some numerical constants C, c,c’, ¢’ ¢ > 0 such that if p is 5-smoothed ¢* function where § < ¢’ \0% /p? log®n
and n > Cp°0~2logp and c,, < ¢, then with probability at least 1 — ¢ /n, for every a € U+ |<xR (S, v(c,)) such
that if

da(@,S7) = 7(cu)/2 (1.66)
then for every o satisfying a = 1*Clq, ., there exists some ¢ satisfying grad|p,](a) = ¢*Cq,( that
<CT“7a‘r"> > ng ||C‘r‘||§ : (167)
Proof. Write v = «(c,,). Define
x0 Bl = CaySalixyl,  x,[8) = Cuy S [a ).
which, and on event (I1.59) and Lemma H.6, we know
B xn[B] < 3no, (L68)
Ixer [Blr<lly < z5m07, (1.69)
X2 [8] = X181l < cant?, (1.70)

for some constant ¢; > 0. Now given any « satisfies a = ¢*Cq 0, the gradient of both objective can be
derived as

grad[pp](a) = —Pa1t"Cq, prox, | [@+ y] = (aa” — I) " Cay X1 [B]
= 1"Cay (B0 [Bla = x1 [B]) , (L71)
gradlppl(a) = —Pa1t"Ca, prox,, la x y] = (aa” = I) " Ca, X, 0]
= 1" Cay (B"x[Blex = x,[B8]) - (L72)
In the same spirit, define the coefficient of each gradient vector
Co = B"xar [Bla — xa [B]; (L73)
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Cp = ﬂ*Xp[ﬁ]a - Xp 18], (1.74)

which, by norm inequality from (1.68)-(1.70) and Lemma 1.7 , we can derive

1€ — Colly < (T — @B) (x,[8] — xa [B))l, < canb?, (L.75)
(€ )rells > 18*xer 1Bl llerelly — lIxer [Blre ||, > Lnor, (1.76)
(€ )rey @ure) > 2 [[(Cor)rell5 (1.77)

where the first inequality is derived by observing (I — a3*) is a projection operator, as such:
Ba=a"t"Cyyax=a"a =1,

(I-aB*)?=1I-2aB"+a(f*a)3"=1—-af".

Now we are ready to derive (1.57):

<(<p)‘r“7 are) > ((Cp)re, Qre) — ||aTCH2 ”Cp —Cn ”2
a9 (G )rell = cand™y
e (R
1 2 2 4
+ Gno (H(CP)T“ 2 = 2[[(Ce)rella 1€ = Cplly — NI — CpHQ) —cinby
2
> g [1Co)rell + 37 (57607)” — 57 (5167) (c1n)
— Wle (cln94)2 — cinfty
> 525 1Co)rells - (1.78)

where the last inequality is true since 6% < 7. |

VvV 1V

Y]

V

1.5 Proof of Theorem B.1

By collecting result from above, we are ready to prove the acclaimed geometric result in Theorem B.1. It
guarantees that for every a near S, either one of the following in true

Amin (Hess[g,](a)) < —cindA, (L79)
(o 0)t"s(0)[ao], —grad[p,](a)) > cand (log™> 671) A2, (1.80)
Hess[g,|(a) > csnb - P, 1, (L.81)

all local minimizer @ satisfies for some a, € {+¢*s¢[a] | € € [£po]},

||a‘_a*H2 SC4\/amaX{,uvpal}v (182)

and whenever 7 < d, (a,Sr) < 7, coefficient of a and its gradient g, o, written as ¢, satisfies

(Crevarre) > &5 [[Grell2. (1.83)

To connect the geometric results introduced in Lemma 1.1, Lemma 1.3, Lemma .5 and Lemma 1.7, we are only
required to prove the required signal condition claimed in Theorem B.1 is necessary from Definition E.1. In
particular, when the subspace dimension || < 4pyf. On top of that, we are also required to show the chosen
smooth parameter ¢ in the pseudo-Huber penalty p(z) = va? + §? approximate |z| sufficiently well, hence
results of Corollary 1.2, Corollary 1.4, Corollary 1.6 and Corollary 1.8 also holds.
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Proof. Firstly we will show when largest solution subspace dimension k£ = 4py6, the signal condition of
Definition E.1 will be satisfied. Recall that the signal condition of Theorem B.1 requests

2 s — <0< ‘ — (1.84)
Po log” po (pov/Et + /Do) log” po
since p = 3pg — 2, this implies the lower bounds for sparsity ¢ as:
1 1
6> - 5 > 5T (1.85)
2po (3logpe)”  plog™d
the upper bound of 6 via 6,/pg log® py < c:
; 2 2 2
< 9c < 162 7 o< 404 < 36¢ < 3626 ; (1.86)
VPo(3logpo)? — \/plog® 61 klog*py ~ k(3logpo)? ~ klog?6-1

and the upper bound for coherence y as:
pmax {k?, (p)*} log? 07! < pmax {16(p08)?, 9(pob)*} log? 1
< 16 (y/ipof)* log® po < 16c. (1.87)

Therefore Definition E.1 holds if max {16¢,36¢?} < ¢, /4 via (1.85)-(1.87).
Furthermore, we know from lemma assumption all interested a are near subspace S; by

AU R R
V/Polog” -1 VO VE 1 (pe8)®

P - { 2 1 4 } < (1.88)
S ——miny —F—, —, ———— =7 .
log? -1 VE /Dot upo/0k
where v is defined in Definition E.3 of widened subspace R(S-,v(c,)).

Lastly, the pseudo-Huber function p(z) = vz? + 62 is an ¢! smoothed sparse surrogate defined in
Definition H.2, by observing that it is convex, smooth, even, whose second order derivative (according to

Table 1) VZp(x) is monotone decreasing in |z|. More importantly

62
= (@2162)372

sup |p(x) — |z]| = |p(0) — [0]| = 4. (1.89)
z€R
Hence, by choosing ¢ < %/\, for some sufficiently small constant ¢’ and letting A = 0.2vk = 0.1//pof
in ,. We obtain the geometrical results in Corollary 1.2 when |B(1)| > 2 |B)|, Corollary 1.4 when % |B(o)| >
1By| > Mog% and Corollary 1.6 when Mog% > |B1)|, and the retraction result in Corollary L.8. [ ]

J Analysis of algorithm — minimization within widened subspace

In this section, we prove convergence of the first part of our algorithm—minimization of ¢, near S,. We
begin by proving the initialization method guarantees that a(?) is near S,, in the sense that

do(a?,8;) <7, (.1

where the distance d,, is defined in (B.15). We then demonstrate that small-stepping curvilinear search
converges to a desired local minimum of ¢, at rate O(1/k), where k is the iteration number. To do this, it
is important to utilize(i) the retractive property to show that the iterates stay near S, and (ii) the geometric
properties of ¢, near S-.
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J.1 [Initialization near subspace

The following lemma shows that the initialization a(”) = Ps,—1 [V (al=1)], where

a(fl) = Pgp— [Zée_’_ mogbzosdaou y (]2)
and is very close to the subspace S;:

Lemma J.1 (Initialization from a piece of data). Let & € R?P°~! indexed by [£po|, with T; ~i:.4. BG(). Define
T =T *ag, and a'® as

a® = — P51 Vop (Poor [07°7 Y [Gos - 57,,-1;077 1) J-3)

with A = 0.2/+/pf in 1. Set 7 = supp(T). Suppose that (ag, 0, k) satisfies the sparsity-coherence condition SCC(c,,)

and ay satisfies max;.; |(u} si[ao], v sjlao])| < p. Then there exists some constant c,@ > 0 such that if pof > 1000c

and c¢,, < ¢, then with probability at least 1 — 1/c, we have

1 1 1
do (a9, 8,) < ‘n min , , . A4
< ) ~ 4log? 61 VTl VP up\/§|‘r| 04

Proof. 1. (Distance to S, from a(”)) Let ) = ||¢, (a0 * @)||, = ||}, Caoz||, and v = 7(c,,), as in (J.4). Expand
the expression of a® from (].3) we have

al® = Psp_u,*\C/ySA [\C/ybpoPspo_u,;O(ao * m)}
Po

= Py 10°Coyx [%C;OLPOL* Caom} (.5

To relate a(® to its coefficient, introduce the truncated autocorrelation matrix M = C;O Lpo L;O C,,, define
Q, B as

f=1Maz, &=x[iMz|=x[j 0:6)

and note that M is bounded entrywise as

. 1 i=j€[=po+1,po—1]
M| <Sp itjelpotLpo— 1] li—jl <po- 0.7)
0 otherwise

From (J.5), we can write a(®) = Py, 1.*C,, &, meaning that the normalized version of & is a valid coefficient
vector for a(?). Let 7¢ = [+2p,] \ 7. The distance d,, to subspace S, (B.15) is upper bounded as

RN [ lael,
2(a7.57) S Gmal, S T Cadnll, — I Casdinely

l[arelly

< = po
VI=plrlllarlly = Vit ppllare|,

where the last inequality is derived with Lemma E.4. Therefore, it is sufficient to show

(14T 1) 1@y < /T = plrl |G, (:8)

to complete the proof that d,(a(?), S,) < .
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2. (Bound 7) Condition on the following two events

E = Al <4pob}, &y, = {\/@ <z, < 31709} 09
and utilize ;¢ bound from Lemma E.5 such that ;. |7| < 0.1. An upper bound on 7 can be obtained using
properties of M of (J.7):

N = [|e5,Cagz||, < llt"Cagzll, < V14 plr|]@lly < 2v/pof (J.10)

To lower bound 7, use n? = g*P.,.M P.g where g is the standard Gaussian vector. Observe the submatrix of
M is diagonal dominant:

M;; = ||, silaol|; € [0.1]

. po—l . (J.11)
(M) = Y |eg,silaolll; = laoll3 + Y- (Ilegsilaclll; + lleg,si—palaol;) = po
i€[£po] i=1

Write ¢ = g o w where w and g are Bernoulli and Gaussian vector respectively with supp(w) = 7, then the
trace of P, M P, can be written as sum of independent r.v.s as:

(PP ) = 3 e, silao]2
i1€[£po])

Bernstein inequality Lemma N.4 and (J.11) gives

P {tr (P,MP,) < 312109] <P {tr (P,JT/IP,) —pob < —pfﬂ
—(pof/4)? —pof
<92 W) ) <9 12
=P <2p09 Tpot/2) =P\ Ta0 )0 (12)

thus condition on w satisfies tr (P,. M PT> > 3pof/4 and &, expectation 1* has lower bound

Eglwn2 =Egjw {g*P.,.MP.,.g} =tr (P-,-MP-,-) > 3pof

then apply Bernstein inequality again by first writing svd of P, MP, =USU* with & being rank | 7| < 4pyf
and square orthobasis U. Let g’ = U*g, then ¢’ is standard i.i.d. Gaussian vector, provides alternative

expression 7% < Zfﬁ"lg ggzai where o; < 1+ p|7| < 1.1. We obtain probability of n? to be small as

pot pob
]P)g\w |:772 < g:| < ]P)g\w |:772 _]Eg\wn2 < _Z:|
. 2
< 2exp ( (pof/4) ) <
2(1 4 p|7)(12po0 + po6/2)

—pob
2 exp ( 140 ) (J.13)
by applying moment bounds (02, R) = (12po6(1 + p|7]),2(1 + p|7])). We thereby define event

&= {Vpob2<n<2/pb}, 0.14)

which holds w.h.p. based on (J.9), (J.12) and (J.13).
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3. (Bound a) Condition on &, N |z, N &;. Use definition B = %ﬂ x from (J.6), and properties of M from
(J.7) we can obtain:

1Be s < % v M| J2ll, < "V”g‘/;' - /3pof < 3uy/po 7]
. (J.15)
1—p|T|
1Bzlle > 3 ||exMer|| ll2ll, > 577 - Vool > 0.45
Use definition |||, = x[8]|2, condition on event
02 né .
£ — o:x[Bli = nbS,,A [|Bi]] — -—, YieT
T Noxia) < ane g + 2 viers |
also from Definition E.1 we have (pe)l/ 2 |T\3/ 2 W and from lemma assumption A = 5\}1@, provides
bounds of |||, via triangle inequality as:
~ 2 c,nb c
[l < 4n6? |- [Brellz + 22 /2y < 3c,mb (/s 1 %)
; (J.16)

@l > 70 (1112 — v/l = %/J]) = no (o 45— /21~ cﬂ> > 0.2n0
since both 0 ||, upf |T| < ¢, we have

V14 ppllae|ly, < 3c,nb\/1+ up (\/@ +p_1) < 6c,nb

c/“nb 1 1 1 ’
bgz@lmm{\/ﬁ’ VHP’ MP\/§T|} < 24y/6nby

lrelly <

which satisfies (J.8), since p || < ¢, < 1o55/

(14 v/ 1+ up) ||are

5 < (24\/@—&— ch) nfy < 0.1nby

< V1= plrlllax, - J.17)

Finally, given pof > 1000c, this result holds with probability at least

1- Pl ~P e, -PE] - PE]

————
LemmaD.1 [ ¥ 55 (.14) Corollary F.4

2 1 —pob 1
>1—- - — = — >1—= .
1 - 4exp < 140 > 1 (J.18)

c

J.2 Minimization near subspace (Proof of Theorem C.1)

Before we start the proof of theorem, writing g = grad[y,](a) and H = Hess[¢,|(a), we will first restate the
results of Theorem B.1 in simplified terms. The theorem shows that for any a € SP~! whose distance to
subspace dn(a,Sr) < 7, then at least one of the the following statement hold:

llglly = ng (J.19)
Amin (H> S —Mv (]20)

53



H>n,-P,.. J.21)

Furthermore, ¢, is retractive near S,: wherever d(a,S;) > 3, writing a(a), a(g) to be the coefficient of a,
g, we have

<a(a)‘rc> a(Q)T“’) 2 Nr ||O‘(g)‘rC ”2 . (]22)
Also, the the gradient, Hessian and the third order derivative are all bounded as follows:

Remark J.2. With high probability, for every a whose do(a,Sy) < 7, its
max {{|glly, [H|ly, [VH],} <7 = poly(n, p).

We state Remark ].2 without explicit proof since its derivation is similar to the proof in Theorem B.1.
We prove that if the negative curvature direction —v is chosen to be the least eigenvector with v* Hv < —1,,
and v*g (if cannot, let v = 0), then the iterates

o) — py, [aac) —1g®) _ 2(R) (J.23)

converges toward the minimizer a in £>-norm with rate O(1/k). Notice that here all n,, 1., 1, 1, 7] are all
greater then 0 and are rational functions of the dimension parameters 7, p.

Finally, we should note that a( being p-truncated shift coherent implies that a is at at most 2u-shift
coherent. Hence we utilize the usual incoherence condition in the proof.

Proof. Notice that when a is in the region near some signed shift a of ag, the function ¢, is strongly
convex, and the iterates coincide with the Riemannian gradient method, which converges at a linear rate.
Indeed, if for all k larger than some k, a(*) is in this region, then ||a® — al|, < (1 — tn.)~*~"|a®) — al|,
[AMSO09](Theorem 4.5.6) where the step size t = Q(1/n6) hence tn. = Q(1). We will argue that the iterates
a®) remain close to the subspace S, and that after k = poly(n, p) iterations they indeed remain in the strongly
convex region around some a.

1. (Existence of Armijo steplength). First, we show there exists a nontrivial step size ¢ at every iteration, in

the sense that for all @ € SP~1, there exists T' > 0 such that for all ¢ € (0,T), the Armijo step condition (C.11)
is satisfied. Note that since ¢, is a smooth function, @ — ¢, o Psy—1(a) admits a version of Taylor’s theorem
(see also [AMS09](Section 7.1.3)): for any £ L a, writing a™ = Ps,—1 [a + &,

|ep(a®) = (pp(a) + (grad(p,](a), &) + 3€ Hess[p,)(@)€)| < 7€l (J.24)

using || VH]|, < 7. Now, let € = —tg — t?v as in the iterates (C.10). Suppose the Armijo step condition (C.11)
does not hold, so

eo(a®) > op(@) = % (tlgl + 3tn. [0I13) - (.25)

Since g*v > 0 and v* Hv < —1, ||v||3 or v = 0, using ||a + b||3 < 4||a|3 + 4 ||b||> (Holder’s inequality) and
|H||, < 7, we can derive

(g,—tg —t?v) + 3(tg + t*v)"H (tg + t°v)
+eltg+ o]y >~ (tlgll3 + 5tn. 0]3)
= — 1t||gl; + 3’9" Hg + t*v*Hg
= Lt ol + 47 llg]3 + 47t o]} > 0
— = §tlgl3 +¢ (37 llgl; + 7 oll, lgll, + 4t lg1l3)
— t'no [0l +47° ]3> 0. (J.26)
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If

. lgll S
t <T =minq — — ~ , _ , (1.27)
{n||g||2+2nt||v2+877t|g||§ 167 [|v|l,

then (J.26) < 0 contradicting (J.25). Using our bounds on ||g||2, 7, 7, and ||v]], it follows that T is lower
bounded by a polynomial poly (n=,p™1).

2.(Bounds on d, (g, S+), do(v, Sr+)) We will show there are numerical constants ¢, ¢, such that

da(g,S7) < cgnby and do(v,8:) < ¢ynbp. (J.28)

Define

~ ~

xe[8] = Cg, proxy, @+ y], X,[B] = Cg, prox,, [@x*y],
then the gradient can be written as (1.58)

grad[pe](a) = " Ca, (8" x e [Bla — xe1[0]) , (J.29)
gradlp,l(a) = " Ca, (B X,[Ble — x,[8]) - (.30)

Use the following inequalities:

510 < |8"x0 [B]] < §nb,
Ixe2 18l < b,
I —apB|l, < 4y/p,
Ixer [8] = x,[Bll, < no*,
where the first and second bounds of x:[3] based on event (1.59); the third by observing ||a|, < 2 and

1By < 2+ cuy/p; the last from (H.21) of Lemma H.6 when ¢ is sufficiently small. Hence, by definition of
da(-,S+) (B.15) and knowing a is close to subspace ||ar<||, < 7, via triangle inequality, we get

da(gvsr) < da(grad[@fl](a’)787) + da (grad[(pp](a) - grad[@fl](a)787)
< IB"xer [Blocre = xer [Blrelly + (I — aB”) (X,[B] — xer Bl -
< %n@v + 2—107107 + 4\/]3m94
< 3nby. (J.31)

To bound the d,, norm of least eigenvector v, note that 3*x,[3] > 0, we can conclude
v*V2p,(a)v < v* P, V3p,(a)Pyiv+ B*x,[8] = v Hv < —n,,
expand V2<pp(a) as in (H.8), and since v is the eigenvector of smallest eigenvalue Apyin < —7,
P, V?p,(a)Pyiv = (I —aa*) L*CGO\C/;DO Vprox, , [@ * y] \C'/m0 C,.tv = Aninv, (J1.32)
hence there exists a(v) satisfies v = t*Cq,a(v) and

alv) = A}

min

Co,Vprox,, [a y] Cy,C, v — (ﬁ*CwO Vprox,, [@ * y] Ce,Cy, w) a} .
Now since Vprox, , [@ * y] is a diagonal matrix with entries in [0, 1],

da(v,87) < |la(v)|, < |)‘min|71||LCao||2HmOH?Hsz(l""HaHQ”ﬂHz) < ¢ynbp, (J.33)
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where we use upper bound of ||z¢||; < cnf from Lemma D.2 and |Ayin| > 7y > cndA from Corollary 1.2.

3. (Iterates stay within widened subspace). Suppose (J.22) holds. We will show that whenever

P<T = 034
then setting a™ = Ps,—1 [a — tg — t?v], we have
o (a*.8,) — do (a,S,)] < 2. (1.35)
and whenever d,(a,S;) € [1,7]
a2 (a*,S;) < d2 (a,S-) —t-/nby>. (J.36)

If both (J.35) and (J.36) hold, then all iterates a*) will stay near the subspace: do(a®,S;) < .

To derive (J.35), since both g 1 a and v L a we have |ja — tg — tgsz = |lal; + [[tg + t%”i > 1, and
since d, (-, S;) is a seminorm Lemma E.2:

de, (a+,S,.) = do(Pgp—1 [a —tg — tzv] ,Sr) < da (a —tg — tzv,S,.)
<d,(a,S;) +tda(g,S7) + t*ds(v,S;) (J.37)

suggests (J.35) holds via (J.28) and let n > Cp°6~2, we have
tde(g, Sr) + t2da(v,8r) < Goof + Sonohy < § (1.38)

with sufficiently large C.
To derive (J.36), let a(a) to be a coefficient vector satisfying dq(a, Sr) = ||a(a),<||,, and based on (J.30)
and (J.33), define

a(g) = ﬁ*Xp[ﬁ] (a) - Xp[ﬁ] (]39)
a(v) = mmC’mO Vprox,, [@* y] \C'/g60 C; . (J.40)

By the retraction property and norm bounds,

(a(a)re,0(g)re) > g llo(g) el (J.41)
[a(a)re|ly < (J.42)
[a(v)]l, < cvnep (J.43)

Since [lore |, > 2,

la(g)=lly = 18" xer [Bloere — xer [Blrelly = [[(T — aB”) (X,o[B] — x2 [B])

18" xer [Bl] llarelly = [Ixer [Blrelly = (I — aB7)ll5 [ (x,[B] — xer [B]]],

inf x I — Jnby + 2n6*

+ny. (J.44)

Finally, we can bound d,(a*,S;) as

AV AVARLY,

d%(a*,S;) < d%(a—tg — t?v,S,)
< || [eda) — te(g) — e(w)] |2

= [a(a)r|; — 2t {e(@)re, [a(g) + te(v)] ) + 12| [cx(g) + tee(w)] .

2
I
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< (@)= |5 — 2t (a(@)re, a(g)re) + 22 (@) re |, ex(v)]
+26 ||ax(g) e 5 + 2t* ev(w)][3

< d¥(a,S;) =2t [ (55 — 1) lla(g) e

< d*(a,S;) —t-c'nhy? (J.45)

3 — tnfpy — ts(c’z)nep)Z]

where the last inequality holds when t < %1 with sufficiently large n.

4. (Polynomial time convergence) The iterates a(*) remain within a y neighborhood of S, for all k. At any

iteration k, a*) is in at least one of three regions: strong gradient, negative curvature, or strong convexity.
In the gradient and curvature regions, we obtain a decrease in the function value which is at least some
(nonzero) rational function of n and p. On the strongly convex region, the function value does not increase.
The suboptimality at initialization is bounded by a polynomial in n and p,poly(n, p), and hence the total
number of steps in the gradient and curvature regions is bounded by a polynomial in n, p. After the iterates
reach the strongly convex region, the number of additional steps required to achieve ||a*) — a||; < ¢ is
bounded by poly(n, p) log e . In particular, the number of iterations required to achieve ||a*) —a|s < u+1/p
is bounded by a polynomial in (n, p), as claimed. [

K Analysis of algorithm — local refinement

In this section, we describe and analyze an algorithm which refines an estimate a(®) ~ a of the kernel to
exactly recover (ag, zo). Set

A 5k and IO+ supp(Sy [Coyy]), (K.1)
where as each iteration of the algorithm consists of the following key steps:

e Sparse Estimation using Reweighted Lasso: Set

25D argminLla® sz —yl3+ S AW fa; (K.2)
xT
ig k)

o Kernel Estimation using Least Squares: Set

a* ) — Py, [argmin 3 ||a * xF D yl3]; (K.3)

e Continuation and reweighting by decreasing sparsity regularizer: Set

ARFD) %)\(k) and T*EHD  supp(aF+Y), (K4)

Our analysis will show that ak) converges to ag at a linear rate. In the remainder of this section, we describe
the assumptions of our analysis. In subsequent sections, we prove key lemmas analyzing each of the three
main steps of the algorithm.

Below, we will write

/I = max {u,p_l} . (K.5)

Our refinement algorithm will demand an initialization satisfying

1a® — agll> < fi. (K.6)
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Our goal is to show that the proposed annealing algorithm exactly solves the SaS deconvolution problem,
i.e., exactly recovers (ag, o) up to a signed shift. We will denote the support sets of true sparse vector x
and recovered x(*) in the intermediate k-th steps as

I = supp(), I = supp(z®). (K.7)

It should be clear that exact recovery is unlikely if x; contains many consecutive nonzero entries: in this
situation, even non-blind deconvolution fails. We introduce the notation s as an upper bound for number of
nonzero entries of x in a length-p window:

kr = 6max {fp,logn}, (K.8)
then in the Bernoulli-Gaussian model, with high probability,

max |10 ([p] +0)] < . (K9)

Here, indexing and addition should be interpreted modulo n. The logn term reflects the fact that as n
becomes enormous (exponential in p) eventually it becomes likely that some length-p window of x is densely
occupied. In our main theorem statement, we preclude this possibility by putting an upper bound on n (w.r.t
). We find it useful to also track the maximum ¢% norm of z, over any length-p window:

l2olly += max || Pgpppy o, - (K.10)

Below, we will sometimes work with the [J-induced operator norm:

Moo= sup [Me|g (K.11)

lzllo<1

For now, we note that in the Bernoulli-Gaussian model, ||z || is typically not large
lzollg < V&I (K.12)

K.1 Reweighted Lasso finds the large entries of x,

The following lemma asserts that when a is close to ay, the reweighted Lasso finds all of the large entries of
xo. Our reweighted Lasso is modified version from [CWBO08], we only penalize « on entries outside of its
known support subset. We write T" to be the subset of true support I, and define the sparsity surrogate as

>l (K.13)
ie€Te

The reweighted Lasso recovers more accurate « on set 7' compares to the vanilla Lasso problem, it turns out
to be very helpful in our analysis which proves convergence of the proposed alternating minimization.

Lemma K.1 (Accuracy of reweighted Lasso estimate). Suppose that y = ag * xo with a is p-shift coherent and
lzollg < /K1 with ky > 1. If i? < ¢, then for every T C I and a satisfying ||a — aol|2 < [, the solution x™ to
the optimization problem

min { Haxa— g3+ Y fwil |, (K.14)
ieTe
with
A > 5/1[”0,* aon, (K.15)
is unique with the form
™ = 1;(C;;Cas)” vy (Chy — A\Ppro) (K.16)
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where o = sign(a™). Its support set J satisfies
(TUl>3y) € J C 1 (K17)

and its entrywise error is bounded as
Ha:+ - :L'OHOo < 3. (K.18)

Above, ¢, > 0 is a positive numerical constant.

We prove Lemma K.1 below. The proof relies heavily on the fact that when ay is shift-incoherent and a ~ ay,
a is also shift-incoherent, an observation which is formalized in a sequence of calculations in Appendix K.4.

Proof. 1. (Restricted support Lasso problem). We first consider the restricted problem

min {%Ha*LIw*yHng)\Z |(L1w)i|}. (K.19)

weRl ieTe
Under our assumptions, provided ¢ < 1 TemmaK.6 implies that
L;C;CQL] = [C;CQ]IJ > 0, (KZO)

and the restricted problem is strongly convex and its solution is unique. The KKT conditions imply that a
vector w, is the unique optimal solution to this problem if and only if

17CCotiw, € L7CLYy — A0 || Pre [ (wy). (K.21)

Writing J = supp(¢rwy) C I, Cqy = Coty, wy = therw, the corresponding sub-vector containing the
nonzero entries of w, and o j\7 = ¢’ Pre [sign(¢;w. )], the condition (K.21) is satisfied if and only if

CojCayw; = Cay — Ao, (K.22)
[Cat\g (Casws —y) [loo < A (K.23)

We will argue that under our assumptions, J necessarily contains all of the large entries of x:
Is3) = {é el ‘ ‘ZC()A > 3)\} c J (K24)

We show this by contradiction — namely, if some large entry of x is not in J, then the dual condition (K.23)
is violated, contradicting the optimality of w,. To this end, note that by Corollary K.7, C,;Cj, ; has full rank.
From (K.22),

wy =[Co3Cay) " [Caly — Aopr] . (K.25)

Write xo; = ¢%@o and (x0) s = Pr\ jxo. We can further notice that
Coywy —y = (CW [Ca’Cay] ™t Cu — 1) Y —ACay[Ca’Casl L onr

= (Cas[CaiCayl ™ Ca} = T) Cuy 0y
+ (Cas[CaiCasl ™ Cay = T) Cayrrs(@o) s
—ACqy [CajCaJ]il OJ\T

= (Cas[Ca’Casl ' Cai = T) Cay-a @0,
+ (CaJ [Ca’Cayl ' Coly — I) Caoon\s(To)r\s
~ACay[CoayCayl o, (K.26)
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where in the final line we have used that
(CaJ [Ca’Cay] ™ Cu — I) Coy = 0. (K.27)

Suppose that J is a strict subset of I (otherwise, if J = I, we are done). Take any i € I \ J such that
|zoi| = H (wo)I\JHOO, and let ¢ = sign(zo;). Using (K.26), Corollary K.7 and Lemma K.8, and simplify the

induced norms ||-|| ., and ||-||g_ 5 as ||-|| ., and [|-||5, we have

—&silal” (Coaywy —y) = Esifal” (I ~Cay[CaCay)™ Ca?}) silao]®o;

+¢sila]” (I~ Cay[Ca’Casl ™ Ca) Canl@o) i)

+ €s;]al* (I —Cay[Ca’Cay) Ca*J) Cao—aToy

+€XsilalCay [Ca’Cayl o (K.28)

> ((silal, silao)

~ lsila)Casly || [Ca3Ca) ™| _ ICa7silacll. ) | @odrs]l.

-
+ [[sila]"Cally ||[CaCay]

~ (lIsila]*Cay-a,ll;

+llsilal*Cayllz |[Ca’Casl ™| | 1CasCar-aslls ) V2 Izl

Si [a]*caol\{i} H 1

[ wiCanrs] )l

= Alsilal*Cayl [|[CaiCasl || llonrll., (K.29)
> ((1 —lla —aoll2) = Cikrpp x 1 % /7) [(@o)rl
= Cowafi+ irfi x 1% i) [|(@o) o

— (2v/Alla - aoll2 + Csv/Arfi x 1 x wrlla = o2 ) |0l

_A\Cyrifi (K.30)
> (1= Clwgii = Ca (1)) o) sl

— 2%r]la — agll2 — (csﬁi%) k1 lla — aoll, — (Carrfi) A (K.31)
> 5 |[(@o)nall, — A2, (K.32)

where the last line holds provided fix7 < ¢, to be a sufficiently small numerical constants. If || (€) 1\ /[|c > 32,
this is strictly larger than ), implying that |a} (Casw; — y)| > A, and contradicting the KKT conditions for
the restricted problem. Hence, under our assumptions

| (o) ||, < 3A (K.33)

2. (Solution of Full Lasso problem) We next argue that the solution of the restricted support Lasso problem,
w,, when extended to R™ as ™ = ¢ jw, is the unique optimal solution to the full Lasso problem

min Plasso(T) = Lllaxx — yl5 + A Z ;] - (K.34)

i€Te
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To prove that ™ is the unique optimal solution, it suffices to show that for every i € I¢,
|sila]*(a*xx™ —y)| <\ (K.35)

Indeed, suppose that this inequality is in force. Write ¢ = A — max;ere |s;[a]*(a * *™ — y)|, and notice that
from the KKT conditions for the restricted problem,

0 € Pjamg@lasso (CL') (K36)

Combining with (K.35), we have that for every vector ¢ with supp(¢) C I° and [[{|lcc < 1, then e €

Iprasso(@ ™). Let &’ be any vector with ;. # 0 and set ¢ = Pyesign(x’), then from the subgradient inequality,

Qplasso(w/) Z Qolasso(w—i_) + <€Cv $/ - w+>
2 @lasso(w—i_) + € ||w/lf ||1 ’ (K37)

which is strictly larger than ¢i.s0 (™). Hence, when (K.35) holds, any optimal solution & to the full Lasso
problem must satisfy supp(z) C I. By strong convexity of the restricted problem, the solution to (K.34) is
unique and equal to .

We finish by showing (K.35). Using the same expansion as above, we obtain

silal” (I = Cay [CaiCas) ™ Caly) Cayrrs (@)
sila]* (I —Cay[Ca’Cay]™! caj) cao_aJxOJ]

sila]"Ca s [Caiklcaﬂ_l O'J\T‘ (K.38)

|sila]"(Caswy — y)| <

+

+A

<

Si[a]*caoI\JHl

—

+silalCaslly [ (CasCas) || _||CaiCanns]| ) ll@o)rvsl..
+ (Hsi[a]*ca(raj”z

+[1sifa)*Cally [1Ca3Casl ™| 1Ca5Casayll ) V2ol

+ Mlsila)*Casly [(Ca5Cas)™|_llonel.. (K:39)

< Cy (ks + prr X 1 X fikr) X 2A
+ (2\/IQI||CL— CLOHQ +C2\/K/[ﬁ X1 x /Q[Ha— (10”2) X \/Kr

+ AC3 % ﬁ/i[ (K40)
< ((C1+ C3) iy + C1(fikr)*)A + (2 + Cofikr ) 51 ||l@ — ao]| (K.41)
<A, (K.42)

where the last line holds as long as ¢, is a sufficiently small numerical constant. This establishes that ™ is
the unique optimal solution to the full Lasso problem.

3. (Entrywise difference to x¢) Finally we will be controlling Hw}r — (o) ||OO Indeed, from Corollary K.7,
Lemma K.§,

&3 = @0)s ], = |[[CaiCasl ™ Ca’iCayo = A[CaCasl ™ o = (@0 _
<||[Ca5Ca sl ' CaliCaq—a s (x0)s ||, + M|[[CaiCasl o nr|l
+[|[CaiCasl ™ CalCan (o)l
<2 ||Ca§CaOfaJ||[Hoo (o).l +
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22 +2|CajCanyl . o)l
< 221 ||la — aolly |@ollg + 2X + 2 x 3fi x 2677 x 3)
< 3krlla — aglls + 2\ + 36k
<3\, (K.43)

establishing the claim. [ |

K.2 Least squares solution a*) contracts

In this section, given x to be the solution to the reweighted Lasso from a, we will show the solution of the
least squares problem

* « argmini fa’xx — yl; (K.44)

a’€eRP

a

is closer to ag compared to a. Observe that in Lemma K.1, the solution of (K.16)
x = 17 (Ch;Cay) 'ty (CiCoyo — \Pp\10) (K.45)
by assuming C; ;,Cq; ~ I, a ~ ag and J \ T ~ (), is a good approximation to the true sparse map x,
z = I(xg—0) = xo; (K.46)
furthermore, its difference to the true sparse map ||z — ||, is proportional to ||ay — al|, as
x—xy ~ P;(CiCqaywg — CpCaxy) = P [C; Cyit(ag—a)]. (K.47)
To this end, since we know the solution of least square problem a™ is simply
at = (L'CiCu) ' (L' CEC, ay), (K.48)
this implies the difference between the new a™* and ay, has the relationship with a — a, roughly

at —ay = (L'CLCL) ' (L CiCpytag — L*CLCyhLay)
(n@)*1 L*C:;OC’Q0 (kg — x)
~ (n0)" " *C} CayPC} Cyyt(a — ap). (K.49)

Q

To make this point precise, we introduce the following lemma:

Lemma K.2 (Approximation of least square estimate). Given ag € RP° to be ji-shift coherent and o ~ BG(6) €
R™. There exists some constants C,C’, ¢, ,c,, such that if \ < kg, ik3 < ¢, and n > Cp*logp, then with
probability at least 1 — ¢/n, for every a satisfying ||a — ao||, < 1t and x of the form

@ = 17(Ci;Car)" ¢ (Cay — APp\10) (K.50)
where the set J, T satisfies I.¢x C T C J C I, we have

1
py || "CrCy gotag — 'Cy Co P1C; Cyit(ap — a) H2

- 1
< O (X fing ) + = lla— aoll, (K.51)

N logn
with A = X + NCTER
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Proof. We will begin with listing the conditions we use for both « and x. First, we know from Lemma K.1
and our assumptions on the set 7', then & approximates x, in the sense that

lx — zoll, < 3A (K.52)
[(o)nsl, < 3X (K.53)
[(xo)nrl,, < 6A (K.54)

Write xy = g o w with g iid standard normal, w iid Bernoulli and g and w independent. From (K.53) we
know [T\ J| = [{7] |gi| <3\, w; # 0}|. Since Pw; # 0] = 0 and P[|g;| < 3\] < 3\, Lemma D.1 implies that
with probability at least 1 — 2/n:

I\ J| < 3Anf+ 6vVAnflogn < 3An# (K.55)
II\T| < 6\nf+ 12V nflogn < 6Anb, (K.56)

and
I(I\ J) N slI)] < 3An6? + 6V An6? log n < 3An6?; (K.57)

together with base on properties of Bernoulli-Gaussian vector z, from Appendix D and we conclude with
probability at least 1 — ¢/n, all the following events hold:

%n@ < |I] < 2né, (K.58)
INs I < 2n6? K.
rgggl Nsell]] < 2n (K.59)
rg&aéd(l\{])ﬂse[f]\ < 6Anb?, (K.60)
lzolly < #r, (K.61)
||E()>|sa:0||2D < ki, (K.62)
lzoll3 < 206, (K.63)
lzoll; < 2n6, (K.64)
I?Qg(”PIﬂsz[I]xOH% < 27102, (K65)
I?QS(HPIQSZU\J]QU()Hl < 12Xn92, (K.66)
|Caotlly < 3n, (K.67)
provided by n > C8~2 log p for sufficiently large constant C.
1. (Approximate C; with Cy,) Since
"CrCy zotag = "Cy Cy_gotag + °C;_, Cygitag (K.68)

where

* *
L szwocm,wouzom

IN

2
laolly ll —@olly + [|Claytlly v/2pmax |(sefa — @o], & — o)

< llz = woll% %111 + V27 (I - ol x max 001
< €1 (Wn6 + /2 (\*n6?))
< 2017\°nb, (K.69)
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we have that

| CiCrnotag — t*Ch Cou_gytagllz < 2C1A°n. (K.70)

2. (Extract the ag — a term) Observe that

t*C; Coy(x — 0)
= 1°C3,Cay (L,, (C2yCas) " 05 (CLCayo — APy 70)

* *
"Ch Cxaytag

-l (CZJCaJ)_l (CasCay) (xo)s — PI\JJJ())
= L*C;OCGOJ(CZJCGJ)_IC:;J (Cay—ao)
+ 1°C},Cays(ChyCas) 'CLy (Camo — Cay(x0) )
— 1"Cy Co, Pp
— A*C} Cayi(CL Cay) 5Py o, (K.71)

where, the second term in (K.71) is bounded as

t*C} Cayi(CiyCay) "Cy (Cao — Cay(x0) )|,
<|[Cxotlly X [Cagally H(C;JCGJ)_lHQ
< [[CasCarlly x [[(o) s,

< Oy (\/n9 X 3 X ik X )\\/Xnﬁ)
< 3CoukrAInb; (K.72)

the third term in (K.71) is bounded as
167 C2y Cao Prysoll, = [|e”Caq (Plappo + €0e5) Cry Pryso
2
< llaoll; [[(o)r\ s,
+ | Caytlly x v/2p x I(gljg(HPmsZ[I\J]iU()Hl < || (@o) ||,
< C4 ()\2 x Anb + /Tip? x Anf? x )\)
< 2C5AA\nb; (K.73)
and finally, write A = (C}; ;Cq;)~* — I, then the forth term in (K.71) is bounded as
M[e*Cp Cagts(ChyCas) 'ty Ppra,
= A H”*Cao (P[ip]\o + 3065) Czbs (I +A) L§PJ\TU||2
< M| Coll, V2P max | Pros,innioll, + Miaolly [|Praraol,

+ M [Clotlly V22 (| Prosiinoll, 1Al o0
+ Mlaolly ol [[Ally V[T \ T
< C4)\(\/ﬁp2 % Anf? + Anb
+ VIip? x n8% X fik; +Vn x firg Xn@)

<20, (X n ﬁm) And. (K.74)
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Therefore, combining (K.72)-(K.74) we obtain
[|¢*Cs Ca—agtag — t*Ch Cayi(CiiyCas) ' ChyCay-ao,
<Oy (X n ﬁm) Ané. (K.75)

3. (Extract the set J) Lastly, we will further simplify the term with @ — a¢ in (K.75) by extracting the set J:

0 Cao—aTo
=1"C, Cayy (I +A)Cy 4 (a—ag)s
=1"C, Co,PIC; Cyit(ag — a)

+1°C; CoysAC, ;Czyt(ag — a)
+0°C} Cayy (CyCay) ' Ci_gysCuot(ao — a)
—1°Ch Co, Pr\ ;C, Cyit(ag — a), (K.76)

1 C% Cay s (C2,Cay) ' C

Cyot(ag — a)

where, the latter terms in (K.76) are bounded as

L*C;DC"C’JACZOJC%"H2 < ”CwoLHg ||CaoJ||§ ||AH2 < C6ﬁfﬁn9
L*C;ZDCGOJ (C;JCGJ)_l C* Jcicol’

a—ao

,
2 " _ -
< [|Cuotll3 [[Caoully H(CaJCaJ) 1H2 |Cao—atslls < Crpin/kinb
* 2 ~ 2
|PrsCay Cant ||, < 11\ J| [[do * 2ol

< Cshnf x kp < Cg ()\m n %) né, (K.77)

whence we conclude, that since ¢,k < ¢, and Ax; < Bcy, as long as ¢, < 1o5 (c%; + c% + ﬁ) and
n > 10°C260~2k2 log® n, we gain:
16*C, Cays(C;Cas) ' Cy ;1 Cay—ao
—1"Cy, Co, P1C; Cyit(ap — a)ll2

< (1 * 1000) "0 llao — all
< +nbllag —al,. (K.78)
The claimed result therefore is followed by combining (K.70), (K.75) and (K.78). [ ]

The next thing is to show the operator
(n0) ™! (1*Cj,CayPiC} Coyt) (K.79)
contracts a toward ag. We first will show that
(n0) " (*C},Cay PIC}, Coyt) = aoay (K.80)

by seeing t*C; PrCq,t ~ (nt)) egef via sparsity of x¢. Finally since the local perturbation on sphere is close
to a quadratic function in /2-norm of difference, we have

l(ao,a —ag)| < Lla—aols. (K.81)

Again, we introduce the following lemma to solidify our claim:
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Lemma K.3 (Contraction of a to a). Given ag € R?° to be ji-shift coherent and xo ~ BG(0) € R™. There exists
some constants C,C’, ¢, c, c,, such that if \ < ¢fiky, pk3 < ¢, and n > CO~2p*log p, then with probability at least
1 —¢/n, for every ||a — aol|ly, < 1,

1
la — aol|,no. (K.82)

| *Cy, Cay PiC Cayt(ag — a) ||2 < D)

Proof. Since E (P;s;[xo], sj[xo]) = 0 for all i # j and set I, we calculate
E {Lrip}C;oPICwoL[ip]] = Z E [efC;OPICmoei} ee;

i€[+p]

= Elaolzeoes + Y ElPrsifao]ll;eief
i€[£p]\0
= nbepe; + n92P[ip]\0
= nf*T + nd(1 — 0) ege}. (K.83)
whence
E[¢*Cy Cay PiCy Cogt| = *C; E[Ch PiCyy] Ca,t
= n02L*C:;OCa0L + nf(1 — 0)apayg, (K.84)
implying the expectation is a contraction mapping for ag — a when ¢, < 555
|E[¢*Cy Cay PiC; Coyt] (ap — a) Hg
< n0?[|e* G5, Cayt], lao = ally + 16 |laoll, [(ao, a0 — a)|
< nb® x 20ip x ||ao — all, + $nb |ao — a3
< (26 + 3¢,) lao — all,n0
< g1 llao — allynb. (K.85)

For each entry of C}; P;Cy,, again from Appendix D we know with probability at least 1 — ¢/n:

. s C'/nflogn i=3j=0
€1 Cay PrCaye; — F [€]C2, PrClasej]| < { C'/nfPlogn  otherwise

Thus via Gershgorin disc theorem, when n > 103C"20~2p? log n:
Amax (Uiey Cay PrConot ) — B |14 Cis, PiCa iy | ) < C'pv/nflogn
< &nb? (K.86)

Finally we combine (K.85), (K.86) and get

IN

| +*C},Cay PrC; Cayt(ag — a) (6—14719 + &nb? ||Caol,ip||§) llao — all,

lag — al|,nb. (K.87)

I

IN

‘
32
| ]

Lemma K.1-K.3 together implies the single iterate contract of alternating minimization contracts a toward a.
We show it with the following lemma:
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Lemma K.4 (Contraction of least square estimate). Given ag € RP° to be ji-shift coherent and xy ~ BG(0) € R™.
There exists some constants C,C', c, c,, such that if ik3 < ¢, and n > C0~*p? log n, then with probability at least
1 — ¢/n, for every A and a satisfying

5,[7/1[ Z A Z 5,%[ ||afa0||2, (KSS)

and suppose & has the form of (K.16), then the solution a™ to

min {Ha' i sz} (K.89)

a’€Rp
is unique and satisfies

1
< 5 la — aol|, - (K.90)

[Pso-1 [a*] — aol,
Proof. Write « as ™, then
)\P (L*C::CEL) = U?nin (CEOL + Cﬂl mo )

[Umm —[|Ce mo”H}

vV

Z |:Um1n C:l:ol’ _2\/7”:13_‘770” :|
> {%vﬁn — 8)\\/5\/971}
> lgn, (K.91)

where the fourth inequality is derived from using the upper bound of sparse convolution matrix from
Remark D.6, and the last line holds by knowing A < 5¢,% . From (K.91) we know the least square problem
of (K.89) has unique solution a™, written as

at = (CiCL) " Cly, (K.92)
whence
at —ay = (L*CLCx) " (L' CECht) ap — ag
= (L*CLCpt) " (L*CLCoy—at) ap. (K.93)

Combine Lemma K.2 and Lemma K.3, we know

| CoCayatll < (€A (X471 ) + 2 la— aoll,) no (K.94)
for some constant C';. Combine (K.91), (K.93), (K.94) and since A < jixy, by letting ¢,, < ﬁ, we gain
+ < [¢"C2Cu0—atlly
||a' aOHQ — )\p(L*C;CwL)
~ 1 1
< 20 (3 + firr ) +3la—aoll, < 7. (K.95)
For the final bound,
H a* Cal < la® — aqll, + [lla* ]|, — 1]
a2 > llatl;

2 Ha+ —agll,

—Jat —aoll, = 3 ”“
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~ 1
< Co\ ()\+/m1> + §||afao||2, (K.96)

and since A > k7 ||a — ao||,, finally we gain

krlogn 1
(K96) < Cy (m + LR ml) la—aoll, + 5 lla—aol,
1
<3 la — aoll, (K.97)
as long as n > 20020~ 'prrlogn and ¢, < 556

K.3 Linear convergence of alternating minimization (Proof of Theorem C.2)

In the first two sections we have shown the iterate contract a toward a(, under our signal assumption. We tie
up these result by showing the following theorem which proves that the iterates produced by alternating
minimization converge linearly to ay:

Proof. We will prove our claim by induction on k. Clearly, when k = 0, we have 5« [|al®) — ag [, < A0 =

Spikg and 1O = {i : [s;[a9]*1*Cqyz0| > A }. Then for all ;| > 6A(?), we have

5[] Cagao| > (1= [(@©a0)[) @] — || Py Cipess[a®]||, x V2 2ol
> (1—20)6A — 20i\/kr x 251
> 50— 430

= A0, (K.98)

hence I g\ C 1 (0) therefore the condition of Lemma K 4 is satisfied, implies (C.32) holds for k£ = 0.
Suppose it is true for 1,2, ...,k — 1, such that

kila®™ —ao, < IA*TD =A™ and  Iogyeen €TI0 (K.99)
and since Iy gy = Isgy-1) C I®) we can again apply Lemma K 4, resulting
willa® ~all, < dnrfla® —af, < 3A® (.100)

as claimed. ]

K.4 Supporting lemmas for refinement
The following lemma controls the shift coherence of a:
Lemma K.5 (Coherence of a near a ). Suppose that ay is fi-shift coherent, and ||a — aol|, < . Then

[off [CCa,]ll <20 (K.101)
off [C;Calll o < 31 (K.102)

Proof. Notice that for any ¢ # 0, | (a, s¢[ao]) | < |(ao, se[ao]) | + | {a — ao, selao]) | < &+ [lao — allz < 2.
Similarly, [ (a, s¢[a]) | < [(a — ao, s¢[ac]) | + | (@, sclao]) | < lla — aoll2 + 2 < 3, as claimed. L

From this we obtain the following spectral control on C};C,, to simply the notations, we will write

Co1Car = L1CLCht; = [C;Ch]11 (K.103)

in the latter part of this section.
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Lemma K.6 (Off-diagonals of [C;C,]r.1 ). Suppose that aq is ji-shift coherent and ||a — aq||, < fi. Then
licaca—11,,||, < 9% (K.104)

We prove this lemma by noting that C;C, = Cy, , is the convolution matrix associated with the autocorre-
lation r4 o of a. Since supp(rq,q) € {—p+1,...,p — 1} is confined to a (cyclic) stripe of width 2p — 1, we
can tightly control the norm of this matrix by dividing it into three block-diagonal submatrices with blocks
of size p x p. Formally:

Proof. Divide [ into r = [n/p] subsets Iy, ..., I,_q such thatforall £ =0,...,r — 1:
Ir=In{pt,pl+1,....pl+(p—1)}=In0(p|+pl).

Notice that for each ¢:
supp ([C;Calr,,1) C 1o % (Ie—1 Wiy Ié+1),

where / + 1 and ¢ — 1 are interpreted cyclically modulo r.
For an arbitrary v € RH! we calculate

3
I
-

2 2
H[C;Ca ~1,, vH -3 liczca -1, qu (K.105)
2 = 2
r—1 2
— Z [CaCa— 111, 1, \wrawr,,, VLo 10w , (K.106)
£=0
r—1 § 2 9
s [CaCa — Ihz,fzq&ﬂfkﬂlzﬂ r HUI@_NJINJI@H H2 (K.107)
=0
r—1 )
<367 x (31)° x Y [|vr, e |l (K.108)
£=0
< 3k% x 912 x 3|v|3, (K.109)
giving the claimed result. |

As a consequence, we have that

Corollary K.7 (Inverse of [C};C4] 1,s). Suppose that aq is p-shift coherent, that ||a — ao||, < [ and that ki < 5.

Then for cvery J C Land any norm |- € { |l oo » I }, e have
H[c;ca —.r]e,,JH<> < 9kl (K.110)
H[C;Ca];b - IH<> < 18kr7t (K.111)
H[C;;Ca];j]H<> < 2. (K.112)

Proof. First we prove
H[C;Ca - I]J,JH2 < 9k, (K.113)
H[C;Ca - I}J,JHOHOO < 6k, (K.114)
H[C;;Ca -1, ]H < 6kl (K.115)
S l0—-0
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Where the first claim follows from Lemma K.6. The second follows by noting that the ¢>° operator norm is
the maximum row ¢! norm, and that each row has at most 2« entries, of size at most 3. The last follows by
noting that

H[CZCa - I}J,JHD_”:’ < max ‘[CZCa — 1] () +0), I (2014 ‘F
< 6r1]i. (K.116)
Then we prove
H[C;Ca];’b - IH2 < 18k11L,
fcieus 1] <
H[C;;ca];l, - IH < 1271, (K.117)
o O0—0

which are followed from the fact that if || - ||¢, is a matrix norm and ||A[|, < 1, then

: 1A
I+A) ' —7q|, <——20
Il 27 =1lo = Tyay

Finally, (K.112) follows from the triangle inequality. |

Also, we need to bound the convolution of ay — a with |lay — a||, requiring for bounds of the lasso solution:

Lemma K.8 (Convolution of ag — a). Suppose that ag is p-shift coherent and ||a — ao||, < [, then for every J C I,

I[CaCas-alrilloee < V2r[la—aol, (K.118)
H[C;Cao—a]J,J”D_@ < \/iﬁl lla — ‘10”2 (K.119)
Proof. For the first inequality, we have
[[CaCas-alsivllnLo = max _[(s;la], (ag — a) xv)|
jed; lvllg=1
< P —a)*
= je[n]r,n\li}\{lgzl [Py [(@0 — a) « ]|,
<l|la —apl|y x max P v
< oll2 je[n],\lvHD:lH [£p]+7 Hl
< V27 |lag — al|, (K.120)

The second inequality is derived by

H[Czcara]J,J”D_@ < Hél%,x |[CZCGOfa]Jﬁ([p]Jré),Jﬂ([Qp]wLE’)

F

< \/2x3 max, ; | (si[al, 5;la — a])?
<V2k1|la — aol|,, (K.121)

finishing the proof. u

Again, using a variant of the argument for Lemma K.6, we have the following:

Lemma K.9 (Off-diagonal of submatrix of C;C,,). Suppose that ay is p-shift coherent and ||a — aol|, < . For
any J C I, if

kg = max|JO{LE+ 1, 04 p—1}| (K.122)
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Ki\g = meax|(I\J)ﬁ{€,€+1,...,€+p—1}| (K.123)

Then
“[C;CQO}J7,\J]‘2 < 6 /mrRNI (K.124)
Proof. Taker = [n/p] and for ¢ =0,...,r — 1, write
Jo=J0(pl+pl),  Le=(I\J)N([p]+pl),

Take v € RI/\/I arbitrary and notice that

H[C:;Can]J,I\J "Hz = TZ H[C;CGO]JZ,I\J "H

2

2

r—1
D) [ PP T
- r—1
<A0% X Ky X 3kp\g X Z HULg_lLJLzuLHle
=0
<A X Ky x 3kp g % 3|3, (K.125)
giving the result. .

Lemma K.10 (Perturbation of vector over sphere). If both a, aq are unit vectors in inner product space, then

{a,a—ao)| < %lla— a3 (K.126)

Proof. Via simple norm inequalities:
ia-— all = 1-(a,a0) = 1—(a,ap—a+a) = (a,a—ay) > 0 (K.127)
|

Lemma K.11 (Convolution of short and sparse). Suppose § € RP, and v € R™ where supp(v) = I satisfies

mox [In(pl+0] < & (K.128)
€n
then

16+ vll, < V26 6], [[v]l, (K.129)
Proof. Since every p-contiguous segment of I has at most « elements, by splitting I = I} W Io, ..., W, W R

such that each sets I; are p-separated:

I, = {il,in+1,igﬁ+1,...}0{07...,n—p—1}7
IQ = {iQ,iK+2,i2f£+2,...}m{07...,717})71},

LQ = {imi%,z’g)m...}ﬂ{O,...,n—p—1}, (K130)
R=In{n—-p,...,n—1}. (K.131)
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Then the p-separating property gives ||d * Py, v|, = [|8]|, || Pr,v||,. Hence:
|0 * Pro||, = Z(S * Prv+ 8+ Pgo|| < Z |0 * Pr,v||, + || % Prol|
1€ER 2 IS
= 118l llvrlly + 1181, 1 Proll,
1EK

< Vellvn e, ez 19l + Ve llvrly 119l

< V2i|vlly 6], (K.132)
where the last two inequalities were coming from Cauchy-Schwartz. |

L Finite sample approximation

In this section we collect several major components of proof about large sample deviation. In particular, the
concentration for shift space gradient x(3);, shift space Hessian diagonals ||P1(a)5_7; [o] o and the set of
gradients discontinuity entries |Jp(a)]|.

L.1 Proof of Corollary F.4

Proof. 1. (e-net) Write = as x¢ and |3, = n through out this proof, firstly from Definition E.1 for every

a € Ujr<pR(S7,7(cu)), we know n < 1 +¢,, + ﬁ‘g%l < /p- Define ¢ = Qngfﬁ and consider the e-net
N for sphere of radius 7. From Lemma N.5 we know for any ¢, < 1:
30\ 2P 3n3/22\ P 32\ P
AR (”) < (”p) < ( P ) (L.1)
€ C2 C2

for each i € [n] define such net as N; ;, and define an event such that all center of subsets in N ; are being
well-behaved:

ENet 1= {VZ S [n]7 o'i”71X[6e}i - O'inilEX[ﬁe]i < Z%Z VB € NE,iv} (L-Z)

2. (Lipschitz constant) The Lipschitz constant L of x[-]; w.r.t 3 is bounded in terms of x regardless of entry i:

Ix[8li — x[8']:| <

<l

ej\émS,\ [\émﬁ} - ef\éwSx [\émﬁ/}
N [Ewﬂ] N [Ew@’]

< IIwIIQJ >

J€[n]

‘ 2

2

Sa [Ew ,6'} N [\C/‘mﬁ’}

J J

S ||ac||2 H\C/wﬁ - \émﬁl 9
<llzlly - llzll, - 18 =Bl = LB =Bl (L3)

Define the event that x[3]; that has small Lipschitz constant as

ELip = {L < 2n3/29} (L.4)
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on the event &y,;;,, for every points in R(Sr, v(c,)) and i € [n], there exists some 3. € N ; such that

’(Uinil)([ﬁ]i — Umflmi) — (o'inlX[,@g]i — Umfl]EX[ﬁg]i)‘ <2Le < Z%Z (L.5)

Onevent £y,ipNENet, (L.2), (L.5) implies x[3] is well concentrated entrywise and anywhere in U <R (S-, y(cy)):

_ _ c1+co)f .
on'x[Bli — oin ' Ex[B],| < (1p3/22)’ Va € Up<pR(Sr,v(cy)), Vi € [n] (L.6)
as desired, where, using Lemma D.2,
Pleg,] <P [kug > 2n9] <1/n; (L.7)

and using union bound,

PERe) <P |: max O'in_IX[ﬁs]i — Uin_lmi > 619]

aEENg,i p3/2
i€[n]
-1 -1 1t
<n|Ne| P |oon™ " x[B:]o — oon " Ex|B:]o > | (L.8)

3. (Bound P [£f,]) Wlog write n = t-(2p) for some integer t and 2p > 4py — 3 and replace o with . Observe
that Z;(8) from (F.9) is independent of Z,4,(8) for all j € [n] while all Z; are identical distributed. We
write x[8]o as sum of iid r.v.s. as

n/2p—1
xBlo=Y_ Z;B) =) ( > zkw(ﬁ))

Jj€ln] ke(2p] t=0

wlog let oy = 1 and split the independent r.v.s, write EZ, = EZ, bound the tail probability of x[3], as

n/2p—1
_ = c10 n cinb
P |n~'x[Blo > n 1Ex<ﬁ>o+p;/2] <2p-1f»[ S Zo(8) > 2pEZ(ﬂ)+2;5/2] (L.9)
t=0

The moments of Z; can be bounded by using |Z,(8)| < |zo| |Boxo + so| < Boxd + |To||s0| where s =
Ze;&o x¢B, write € = w o g ~i i q. BG(6). For the 2-norm we know

2

|
<O1BI3 <0 (1+eu+55%5) <3 (L.10)

2
]E‘So| =E 012

> @B
¢

As for the g-norm, use the moment generating function bound, such that for all ¢ > 0:

E|so|” < gt "Eexp |t |sol] < gt~ [] Ew, g, exp [twe [gel 18]
14

< 2qlt71 H E., exp [wgtzﬁf/ﬂ
1
<2¢t [ (1 -0+ 0exp [£°87/2]) (L.11)

4
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notice that the entrywise twice derivative of (L.11) w.r.t. 37’s are always positive, this function is convex for
all 37. Constrain on the polytope >, 87 < Hﬁ”g, the maximizer of (L.11) w.r.t. 37’s occurs and a vertex point
where 32 = ||8]|5. Thus

(L.11) < 2¢t~¢ (1 — 0+ 0exp [t2 1812 /2]) Tt — 6+ 6% < 2q1t77(1 + 6 exp[| B3 £2/2)-
240

Choose t = \/q/ ||B]|5, use ¢!! > (¢!/2) - (e/q)"?, we have
E fsol < 2qlg™%/ B3 (1 + 0 expla/2]) < 8]|I|3 max {e /2,0 } q!l. (L12)
Apply Jensen’s inequality (Zl 1 Zi ) < Nt Zf\il z], use Gaussian moment Lemma N.2, (L.10) and (L.12),
obtain for g > 3,
EZ(8)* < E (Box] + |xo| |so])* < 2B [B3x} + x3s?] < 60 +20% |83 < 70,
EZ(B)" < E (Boaf + |0 |sol)” < 27" (E2d! + E|zo| ' E |so|?)
< 02971 (2g — 1)1 + 627} (g — 1) (8 18]|¢ max {e_‘Z/Q, 9} q!!)
< 047! + 027|815 ¢!

Thus, recall that ||3]|, = 7, use (02, R) = (861n?, 4n), from (L.8)-(L.9), apply Bernstein inequality Lemma N.4
withn > Cp°0~2logp,and ¢, cp € [0,1] we have

n/2p—1
n cinb
P[] < 2np Nl P [ > Z(8)> 5-EZ(8) + 21,/]

3np2 3p _ (cln9/2p5/2)2
<2np| — exp
2 161612 /2p + 8ncind/2p®/?

9/2 5/2
- <4p10g <3n (c1nf/2p°/?) )

) 16n6n?/p
2 2
oo () )
2 2
—cinf 1

< Bt S it )

< exp( T00,7 ) < (L.13)
[

L.2 Proof of Corollary G.3

Proof. Write x as x though our this proof. Write 8;x; + s; = Zee[ip] Bexy—iyj = <B7 T[4p]— 1+J> and the
support w.r.t. some a as I(3). Define the random variable Z;;(3) as

1Prays—illlls = D @31 (p00y o) or) = 2 Zus(B) (L14)
jeln) jeln)

and define {Z;;(8) }j el that are independent r.v.s. and as a upper bounding function of Z;;(3) as

3, (B, @ap)—iti)]| > A

, [(Bs ®ap—is)| < A/2, (L.15)

2
wJ

72 ({8, ®pp—ivi)| — A/2) otherwise

SN\
&
i
(e}
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chA
24np\/pa9 lognlogf—1
consider the e-net . for sphere of radius 7. From Lemma N.5 we know

3 72 » 72 »
|N|<(;7> g(c np®/0 || lognlog - ) S(c,c)\npzlogn) , (L.16)

2C 2

Similar to proof of Corollary F4. Let ||8]|, < n < \/p. Define ¢ = for some ¢, > 0 and

for each i € [n] define such net as . ;, and define an event such that all center of subsets in N ; are being
well-behaved:

gNet = {VZ S [’I’L], n_l Z le(ﬂa) — E?Z(,Bg) S V,BE S Ngﬂ;} 5 (L17)

Also, >, Z;;(B) is a Lipchitz function over 3 for every i € [n] as
o o x?
2. Z48) = 3. Zy(8)| < 3 575 (B =B wpwp-iv)]
J€n] Jj€ln]

J€(n]

3 || pep)—its |
<y Dl g,

< 575 Il - max syl 18— 1,

=L[B - B, (L.18)

and define event &1;, such that the Lipchitz constant is bounded as

ELip 1= {L < 12n0+/pblognlog 0*1)\_1}, (L.19)

then on event &y, for any points 3in R (S, v(¢,)) and i € [n], there exists some B in N ; with |3 — B¢, < ¢,
and thus

J€ln] j€[n]

/
_ _ 0
(nl N Z,8) -EZ ) ( 3" Z,(8.) IEZi(BS)> <2Le < %. (L.20)
On event &rip, N Enet, from (L.17), (L.20), we can conclude that for all 3 € R(S,,7(c,)) and i € [n] that:
T Prgys—ilwol|ly — B || Prgysifwoll; < vt Y Ziy(8) — EZi(8)

(1 +c5)f
p

< (L.21)

as desired, where the error probability of £f;, is bounded using Lemma D.2 and Lemma D.3, which give

P[&f,) <P [||:c||§ > 2n9} +P |:Hé<‘[i}§ | @ap)45], > 3V/Plognlog 91}
j€[n
<3/n, (L.22)

when n > 1037, As for £§,, use union bound and split the r.v.s since Z;, Z; -, are independent for all j:

w2 n_— cnb
P[Exet) < 2np - [NC|- P .

ij Zi2;(B) - 3 BZi(8)| = 5
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Now we calculate the variance and L¢-norm of Y, Z; o1, for ¢ > 3:

-2
< Ex?<
{]EZM < Ex! < 36 L.23)

EZ], <Eax3" <0(2¢— 1)1 < 1. (30)-2972¢!
and apply Bernstein inequality with (o2, R) = (36,2), then use n > Cp*§~1logp and ¢}, ¢, < 1 to obtain

n/2p

— n _— cinb
2np [N | P [ > Ziawi(B) - %Ezi > 21;02 ]
k

72 (chnf/2p*)?
< log(2 2p1 °1 - !
= CxXP {og( np) + 2plog (C’QC,\ o8 n> 6n6/2p + 4cinb/2p?
72 cnb
< log [ 5—np?1 T
< exp {3}) og <c’20>\ np” log n> 217 ]
< exp[—¢?nb/(50p°)] < 1/n, (L.24)
where the last two inequalities holds when & > %. The other side of inequality of (G.9) can be derived
172
by defining Z,; as
3, (8, ®1p)—ij )| > 3M/2
Z;;(8) =40, (B, @pep—ivg)| <X, (L.25)
o) ({8, ®ap)—i+;)| = A),  otherwise

and define Enet, £Lip similarly, such that on intersection of these events,

n | Prgysifal|[; — nT'E||Prgysilal]l; > n Tt Y Z,,(8) — EZi(8)

J€n]
/ /
> ([a+a)f (L.26)
p
as desired. [ |

L.3 Proof of Lemma H.5

Proof. 1. (Expectation upper bound) We will write « as x. Similar to proof of Corollary F.4 let ||3||, < n <
/p- For each i € [n], define the random variable

Xi(B) = L{|(s:[x).8—-rI<B} T L{|(ss[a],8)+AI<B}> (L.27)

then number of indices for vector z % 3 that are within B of ) is a random variable >
of the X;(83)’s consider an upper bound X;(3) defined as

X (B). For each

i€[n]

(I(sil=], B)| = (A= B = M)) [{si[z],B)| € [\ = B~ M,\— BJ
|(ss[x], B)| € [\ = B,A + B]
ar (M4 B+ M) —[(sil=], B)]) |(sil], B)] € [\ + B,A + B+ M]

0 else

= e

Xi(8) = (L.28)

where B < M = c\0?/ (plogn) < \/4 for some constant 0 < ¢ < 1.
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Notice that & ~j.q. BG(f) is equal in distribution to Pj(4)g, where g ~i;.q. N(0,1), and I(a) C [n] is
an independent Bernoulli subset. Conditioned on I(a), (x,3) = (g, Pr@)8) ~ N(0, HPI(G)L?H;). For all
realizations of I(a), the variance ||Pl(a)/6H§ is bounded by ||P1(a)BH; < |18l12 < p. Using these observations,

and letting f,(t) = (v/2m0) “exp (—t?/20?) denote the pdf of an (0, 02) random variable, the expectation
of >, X () can be upper bounded as

Y E[Xi(B)] < (2n) - P[(x,8) € [A\—B—MA+ B+ M|
i€[n]

<(2n)-2(B+M t
<(2n)-2(B + );;gp]teu 5 pan o0

<4n(B+ M) 2s%) ]fg(/\—B—M)
g<e(0,p

<d4n(B+ M) sup fs(A/2). (L.29)

o2€(0,p]

AN _d LR it

Ao’ \2) T do ame TP\ 802 ) T wzmet TP\ 7802 )

and hence f,()\/2) is maximized at either 6% = 0, 0 = p or 0% = A\? /4. Comparing values at these points, we
obtain that

Notice that

1

1
sup Fo(AN/2) < faja(N/2 exp < ) < — (L.30)
B e =YD ()\/2) 7%
whence, by letting B < cA\§?/ (plogn), the upper bound of expectation become:
2
Y E[X.(8 < o B oy < 2 X (L.31)
plogn
i€[n]
2. (e-net) Define ¢ = 3575 logcjé\fizg()_g; o= Write A = c\/+/ |7| and consider the e-net N for sphere of radius
n < /p. From Lemma N.5 we know
6 13p
V| < 377 < 81|T|p log nlog =1 S 2plogn (L32)
307 c-cy
and define an event such that all center of subsets in N are being well-behaved:
- — 18cnf?
Exer =14 Y Xi(Be) ~nEX(B.) < — o V. €NL, (L.33)
bl plogn

3. (Lipschitz constant) Furthermore, the function )" X ;(3) is Lipchitz over 3 such that

n

<0 2 lsilel, 8- 8]

i€[n]

< —Hé?)](HP[ipHiBH 18 =Bl

S X - Y X
i€[n]

i€[n]
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= LB - A,

define the set N where Lipschitz constant is well bounded:

-1
Eiip = {L < 3n4/pllognlogl }7

M

then on event &rip, for every 3 in R(Sr, v(c,.)), there exists some 8. in N ; with ||3 — B.||, < ¢, thus

2
< 9L < 2cnb .
plogn

(L.34)
i€[n] i€[n]

‘ (Z X.(8) - nlEX(ﬁ)) - (Z X.(8.) - nEX(@))

On event &rip N Enet, from (L.31), (L.33) and (L.34), we can conclude that for every 8 € R(S,,7v(c,)) and
i€ [n],

2
S X(8) < (L.35)
bl plogn

as desired, where the error probability of £f;, is bounded using Lemma D.3, which gives
P[&fp) <P [mzﬁ |z sp4]], > 3V/Plognlog 9—1} <2/n, (L.36)
JEIN

4. (Bound P [££,,]) Wlog let us assume that 2p divides n. By applying union bound and observing that X;(3)
is independent of X ;2,(3) for any i € [n], we split Y, X ;(3) into n/2p independent sums of r.v.s, we have

n2el — 9cnh?
P[ERe) < 2p|Ne| - P Z (X2m(ﬁ)_E[X('B)]) > p?logn
j=0

where each summand has bounded variance and L?-norm derived similarly as its expectation such that

EX;(8)! <2-Pl(si[],B8) e A\—=B—-MA+B+M] <2 -—-2(B+ M) < Ach?

~ plogn’

1
2)

and apply Bernstein inequality Lemma N.4 with (02, R) = (4cf?/ (plogn), 1), obtains

n/2p -1 2 27,2 2
— 9cnd —(9¢nd? /p*logn)
P Xopi —E|X — | <
Jz::o (X0 (B) (X®)]) > p?log n] P {2cn92/p2 logn + 2(9¢nb? /p? logn)
—4cnf?
< exp ;
p?logn

thus when n = Cp°0~2log p:

¢ 2pl 4enb?
P [ERet] < exp [log(Qp) + 13plog ( D Ogn) cn

- logn} <1/n (L.37)

C -+ C)

aslongas 5 > 10°/ (¢? - ¢).

78



M Algorithm for experiment

In our experiment, we use Algorithm 1(below), which is an adaptation of accelerated gradient descent
[BT09] to the sphere. In particular, we apply momentum and increment by the Riemannian gradient via the
exponential and logarithmic operators

Exp,(u) = cos(luly) -+ sin(lull,) - 72, (M)
Log,(b) := arccos({(a,b)) - Hlf"r((: :)H M.2)

derived from [AMS09]. Here Exp,, : a* — SP~! takes a tangent vector of a and produces a new point on the
sphere, whereas Log,, : SP~! — a~ takes a point b € SP~! and returns the tangent vector which points from
atob.

Algorithm 1 SaS deconvolution with Accelerated Riemannian gradient descent

Require: Observation y, sparsity penalty A = 0.5//pof, momentum parameter 7 € [0, 1).
Initialize a(©) « —Psp-1V, (Psp_1 [01’0*1; [yo, -  Ypo— 1]; 0Po— 1])
fork=1,2,..., K do
Get momentum: w Exp, (1 - Log 1) (@®)).
Get negative gradient direction: g <— — grad[p,](w).
Armijo step a*+t1) « Exp, (tg), choosing t € (0,1) s.t. p,(@®*+D) — ¢, (w) < —t | glf3-
end for
Ensure: Return ).

N Tools

Lemma N.1 (Tail bound for Gaussian r.v.). If X ~ N (0,0?), then its tail bound for t > 0 can be

2
P[X >t < t\;ﬂ exp (—21;2> (N.1)

Lemma N.2 (Moments of the Gaussian random variables). If X ~ N (O, 02), then ifor all integer p > 1,

E[|IX[] < 0" (p— D). (N.2)

Lemma N.3 (Gaussian concentration inequality). Let = (x1,...,x,) be a vector of n independent standard
normal variables. Let f : R™ — R be an L-Lipschitz function. Then for all t > 0,

P(|f(z) — Ef(®)| > f] < 2exp (—;L) . (N3)

Lemma N.4 (Moment control Bernstein inequality for scalar r.v.s). ([FR13], Theorem 7.30) Let x1, ..., x,
be independent real-valued random variables. Suppose that there exist some positive number R and o* such that
& i E[X?] < o®and

L3 Ellakl’] < 302RP72pl, for all integers p > 3.

Let S =37 | @;, then forall t > 0, it holds that

2
P[|S —E[S]| > t] < 2exp (-M). (N.4)
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Lemma N.5 (e-net on sphere). [Ver10] Let (X, d) be a metric space and let £ > 0. A subset N of X is called an
e-net of X if for every point x € X there exists some point y € N so that d(z,y) < e. There exists an e-net N for the
sphere S"~1 of size [IN| < (3/¢)".

Lemma N.6 (Hanson-Wright). [RV*13] Let @1, . . ., x,, be independent, subgaussian random variables with sub-
gaussian norm sup,,s., p~/* (E |:17f|)1/p < 0. Let A € R™*™, then for every t > 0,

t? t
Pllz*Ax — Ex*Ax| > t] < 2exp | —cmin , . (N.5)
640t || Al7 8v207 (Al

Lemma N.7 (Maximum of separable convex function). Let f : Ry — Ry be a convex function of the form
f(x) =z — s(z) with s : Ry — Ry satisfying

LI) < M, forallz >y > 0.
€ Y
Then forn € Nand 0 < N < nlL,
- s(L)
J)<N[1—-—= N.6
ogwggmﬁﬁlll@; flas) < < L > (NO
Proof. Since the feasible set is a convex polytope; the convex function )" ;| f(x;) is maximized at a
vertex, and that its vertices consist of 0 and permutations of the vector [L, o, Ly 0. 0], where r =
LN/L)

N — |N/L] L < L. Then the function value at the maximizing vector x, can be derived as:
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