
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits

A. Proof of Theorem 1
We generalize the analysis of Agrawal and Goyal (2013a). Since arm 1 is optimal, the regret can be written as

R(n) =

K∑

i=2

∆iE [Ti,n] .

In the rest of the proof, we bound E [Ti,n] for each suboptimal arm i. Fix arm i > 1. Let Ei,t = {µ̂i,t ≤ τi} and Ēi,t be
the complement of Ei,t. Then E [Ti,n] can be decomposed as

E [Ti,n] = E

[
n∑

t=1

1{It = i}
]

= E

[
n∑

t=1

1{It = i, Ei,t occurs}
]

+ E

[
n∑

t=1

1
{
It = i, Ēi,t occurs

}
]
. (10)

TERM bi IN THE UPPER BOUND

We start with the second term in (10), which corresponds to bi in our claim. This term can be tightly bounded based on the
observation that event Ēt,i is unlikely when Ti,t is “large”. Let T =

{
t ∈ [n] : Qi,Ti,t−1

(τi) > 1/n
}

. Then

E

[
n∑

t=1

1
{
It = i, Ēi,t occurs

}
]
≤ E

[∑

t∈T
1{It = i}

]
+ E


∑

t 6∈T
1
{
Ēi,t

}



≤ E

[
n−1∑

s=0

1{Qi,s(τi) > 1/n}
]

+ E


∑

t 6∈T

1

n




≤
n−1∑

s=0

P (Qi,s(τi) > 1/n) + 1 .

TERM ai IN THE UPPER BOUND

Now we focus on the first term in (10), which corresponds to ai in our claim. Without loss of generality, we assume that
Algorithm 1 is implemented as follows. When arm 1 is pulled for the s-th time, the algorithm generates an infinite i.i.d.
sequence (µ̂

(s)
` )` ∼ p(H1,s). Then, instead of sampling µ̂1,t ∼ p(H1,s) in round t when T1,t−1 = s, µ̂1,t is substituted

with µ̂(s)
t . Let M = {t ∈ [n] : maxj>1 µ̂j,t ≤ τi} be round indices where the values of all suboptimal arms are at most τi

and

As =
{
t ∈M : µ̂

(s)
t ≤ τi, T1,t−1 = s

}

be its subset where the value of arm 1 is at most τi and the arm was pulled s times before. Then

n∑

t=1

1{It = i, Ei,t occurs} ≤
n∑

t=1

1

{
max

j
µ̂j,t ≤ τi

}
=

n−1∑

s=0

n∑

t=1

1

{
max

j
µ̂j,t ≤ τi, T1,t−1 = s

}

︸ ︷︷ ︸
|As|

.

In the next step, we bound |As|. Let

Λs = min
{
t ∈M : µ̂

(s)
t > τi, T1,t−1 ≥ s

}

be the index of the first round inM where the value of arm 1 is larger than τi and the arm was pulled at least s times before.
If such Λs does not exist, we set Λs = n. Let

Bs =
{
t ∈M ∩ [Λs] : µ̂

(s)
t ≤ τi, T1,t−1 ≥ s

}

be a subset of M ∩ [Λs] where the value of arm 1 is at most τi and the arm was pulled at least s times before.
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We claim that As ⊆ Bs. By contradiction, suppose that there exists t ∈ As such that t 6∈ Bs. Then it must be true that
Λs < t, from the definitions of As and Bs. From the definition of Λs, we know that arm 1 was pulled in round Λs, after it
was pulled at least s times before. Therefore, it cannot be true that T1,t−1 = s, and thus t 6∈ As. Therefore, As ⊆ Bs and
|As| ≤ |Bs|. In the next step, we bound |Bs| in expectation.

Let Ft = σ(H1,T1,t , . . . ,HK,TK,t
, I1, . . . , It) be the σ-algebra generated by arm histories and pulled arms by the end of

round t, for t ∈ [n] ∪ {0}. Let Ps = min {t ∈ [n] : T1,t−1 = s} be the index of the first round where arm 1 was pulled s
times before. If such Ps does not exist, we set Ps = n+ 1. Note that Ps is a stopping time with respect to filtration (Ft)t.
Hence, Gs = FPs−1 is well-defined and thanks to |As| ≤ n, we have

E [|As|] = E [min {E [|As| | Gs] , n}] ≤ E [min {E [|Bs| | Gs] , n}] .

We claim that E [|Bs| | Gs] ≤ 1/Q1,s(τi)− 1. First, note that |Bs| can be rewritten as

|Bs| =
Λs∑

t=Ps

εtρt ,

where εt = 1{maxj>1 µ̂j,t ≤ τi} control which ρt = 1
{
µ̂

(s)
t ≤ τi

}
contribute to the sum. Now recall Theorem 5.2 from

Chapter III of Doob (1953).

Theorem 3. Let X1, X2, . . . and Z1, Z2, . . . be two sequences of random variables and (Ft)t be a filtration. Let (Xt)t
be i.i.d., Xt be Ft measurable, Zt ∈ {0, 1}, and Zt be Ft−1 measurable. Let Nt = min {t > Nt−1 : Zt = 1} for t ∈ [m],
N0 = 0, and assume that Nm <∞ almost surely. Let X ′t = XNt

for t ∈ [m]. Then (X ′t)
m
t=1 is i.i.d. and its elements have

the same distribution as X1.

By the above theorem and the definition of Λs, |Bs| has the same distribution as the number of failed independent draws
from Ber(Q1,s(τi)) until the first success, capped at n − Ps. It is well known that the expected value of this quantity,
without the cap, is bounded by 1/Q1,s(τi)− 1.

Finally, we chain all inequalities and get

E

[
n∑

t=1

1{It = i, Ei,t occurs}
]
≤

n−1∑

s=0

E [min {1/Q1,s(τi)− 1, n}] .

This concludes our proof.

B. Proof of Theorem 2
This proof has two parts.

UPPER BOUND ON bi IN THEOREM 1 (SECTION 5.1)

Fix suboptimal arm i. To simplify notation, we abbreviate Qi,s(τi) as Qi,s. Our first objective is to bound

bi =
n−1∑

s=0

P (Qi,s > 1/n) + 1 .

Fix the number of pulls s. When the number of pulls is “small”, s ≤ 8α

∆2
i

log n, we bound P (Qi,s > 1/n) trivially by 1.

When the number of pulls is “large”, s >
8α

∆2
i

log n, we divide the proof based on the event that Vi,s is not much larger

than its expectation. Define

E =

{
Vi,s − (µi + a)s ≤ ∆is

4

}
.
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On event E,

Qi,s = P
(
Ui,s − (µi + a)s ≥ ∆is

2

∣∣∣∣Vi,s
)
≤ P

(
Ui,s − Vi,s ≥

∆is

4

∣∣∣∣Vi,s
)
≤ exp

[
−∆2

i s

8α

]
≤ n−1 ,

where the first inequality is from the definition of event E, the second inequality is by Hoeffding’s inequality, and the third
inequality is by our assumption on s. On the other hand, event Ē is unlikely because

P
(
Ē
)
≤ exp

[
−∆2

i s

8α

]
≤ n−1 ,

where the first inequality is by Hoeffding’s inequality and the last inequality is by our assumption on s. Now we apply the
last two inequalities to

P (Qi,s > 1/n) = E [P (Qi,s > 1/n |Vi,s)1{E}] + E
[
P (Qi,s > 1/n |Vi,s)1

{
Ē
}]

≤ 0 + E
[
1
{
Ē
}]
≤ n−1 .

Finally, we chain our upper bounds for all s ∈ [n] and get the upper bound on bi in (9).

UPPER BOUND ON ai IN THEOREM 1 (SECTION 5.1)

Fix suboptimal arm i. Our second objective is to bound

ai =
n−1∑

s=0

E
[
min

{
1

Q1,s(τi)
− 1, n

}]
.

We redefine τi as τi = (µ1 +a)/α−∆i/(2α) and abbreviateQ1,s(τi) asQ1,s. Since i is fixed, this slight abuse of notation
should not cause any confusion. For s > 0, we have

Q1,s = P
(
U1,s

αs
≥ µ1 + a

α
− ∆i

2α

∣∣∣∣V1,s

)
.

Let Fs = 1/Q1,s − 1. Fix the number of pulls s. When s = 0, Q1,s = 1 and E [min {Fs, n}] = 0. When the number of

pulls is “small”, 0 < s ≤ 16α

∆2
i

log n, we apply the upper bound from Theorem 4 in Appendix C and get

E [min {Fs, n}] ≤ E [1/Q1,s] ≤ E [1/P (U1,s ≥ (µ1 + a)s |V1,s)] ≤ c ,

where c is defined in Theorem 2. The last inequality is by Theorem 4 in Appendix C.

When the number of pulls is “large”, s >
16α

∆2
i

log n, we divide the proof based on the event that V1,s is not much smaller

than its expectation. Define

E =

{
(µ1 + a)s− V1,s ≤

∆is

4

}
.

On event E,

Q1,s = P
(

(µ1 + a)s− U1,s ≤
∆is

2

∣∣∣∣V1,s

)
= 1− P

(
(µ1 + a)s− U1,s >

∆is

2

∣∣∣∣V1,s

)

≥ 1− P
(
V1,s − U1,s >

∆is

4

∣∣∣∣V1,s

)
≥ 1− exp

[
−∆2

i s

8α

]
≥ n2 − 1

n2
,

where the first inequality is from the definition of event E, the second inequality is by Hoeffding’s inequality, and the third
inequality is by our assumption on s. The above lower bound yields

Fs =
1

Q1,s
− 1 ≤ n2

n2 − 1
− 1 =

1

n2 − 1
≤ n−1
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for n ≥ 2. On the other hand, event Ē is unlikely because

P
(
Ē
)
≤ exp

[
−∆2

i s

8α

]
≤ n−2 ,

where the first inequality is by Hoeffding’s inequality and the last inequality is by our assumption on s. Now we apply the
last two inequalities to

E [min {Fs, n}] = E [E [min {Fs, n} |V1,s]1{E}] + E
[
E [min {Fs, n} |V1,s]1

{
Ē
}]

≤ E
[
n−11{E}

]
+ E

[
n1
{
Ē
}]
≤ 2n−1 .

Finally, we chain our upper bounds for all s ∈ [n] and get the upper bound on ai in (9). This concludes our proof.

C. Upper Bound on the Expected Inverse Probability of Being Optimistic
Theorem 4 provides an upper bound on the expected inverse probability of being optimistic,

E [1/P (U1,s ≥ (µ1 + a)s |V1,s)] ,

which is used in Section 5.2 and Appendix B. In the bound and its analysis, n is s, p is µ1, x is V1,s − as, and y is U1,s.

Theorem 4. Let m = (2a+ 1)n and b =
2a+ 1

a(a+ 1)
< 2. Then

W =
n∑

x=0

B(x;n, p)




m∑

y=d(a+p)ne
B

(
y;m,

an+ x

m

)

−1

≤ 2e2
√

2a+ 1√
2π

exp

[
8b

2− b

](
1 +

√
2π

4− 2b

)
.

Proof. First, we apply the upper bound from Lemma 2 for

f(x) =




m∑

y=d(a+p)ne
B

(
y;m,

an+ x

m

)

−1

.

Note that this function decreases in x, as required by Lemma 2, because the probability of observing at least d(a+ p)ne
ones increases with x, for any fixed d(a+ p)ne. The resulting upper bound is

W ≤
i0−1∑

i=0

exp[−2i2]




m∑

y=d(a+p)ne
B

(
y;m,

(a+ p)n− (i+ 1)
√
n

m

)

−1

+ exp[−2i20]




m∑

y=d(a+p)ne
B
(
y;m,

an

m

)


−1

,

where i0 is the smallest integer such that (i0 + 1)
√
n ≥ pn, as defined in Lemma 2.

Second, we bound both above reciprocals using Lemma 3. The first term is bounded for x = pn− (i+ 1)
√
n as




m∑

y=d(a+p)ne
B

(
y;m,

(a+ p)n− (i+ 1)
√
n

m

)

−1

≤ e2
√

2a+ 1√
2π

exp[b(i+ 2)2] .

The second term is bounded for x = 0 as



m∑

y=d(a+p)ne
B
(
y;m,

an

m

)


−1

≤ e2
√

2a+ 1√
2π

exp

[
b
(pn+

√
n)2

n

]
≤ e2

√
2a+ 1√
2π

exp[b(i0 + 2)2] ,

where the last inequality is from the definition of i0. Then we chain the above three inequalities and get

W ≤ e2
√

2a+ 1√
2π

i0∑

i=0

exp[−2i2 + b(i+ 2)2] .
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Now note that

2i2 − b(i+ 2)2 = (2− b)
(
i2 − 4bi

2− b +
4b2

(2− b)2

)
− 4b2

2− b − 4b = (2− b)
(
i− 2b

2− b

)2

− 8b

2− b .

It follows that

W ≤ e2
√

2a+ 1√
2π

i0∑

i=0

exp

[
−(2− b)

(
i− 2b

2− b

)2

+
8b

2− b

]

≤ 2e2
√

2a+ 1√
2π

exp

[
8b

2− b

] ∞∑

i=0

exp
[
−(2− b)i2

]

≤ 2e2
√

2a+ 1√
2π

exp

[
8b

2− b

](
1 +

∫ ∞

u=0

exp

[
− u2

2
4−2b

]
du

)

≤ 2e2
√

2a+ 1√
2π

exp

[
8b

2− b

](
1 +

√
2π

4− 2b

)
.

This concludes our proof.

Lemma 2. Let f(x) ≥ 0 be a decreasing function of x and i0 be the smallest integer such that (i0 + 1)
√
n ≥ pn. Then

n∑

x=0

B(x;n, p)f(x) ≤
i0−1∑

i=0

exp[−2i2]f(pn− (i+ 1)
√
n) + exp[−2i20]f(0) .

Proof. Let

Xi =

{
(max {pn−√n, 0} , n] , i = 0 ;

(max {pn− (i+ 1)
√
n, 0} , pn− i√n] , i > 0 ;

for i ∈ [i0] ∪ {0}. Then {Xi}i0i=0 is a partition of [0, n]. Based on this observation,

n∑

x=0

B(x;n, p)f(x) =

i0∑

i=0

n∑

x=0

1{x ∈ Xi}B(x;n, p)f(x)

≤
i0−1∑

i=0

f(pn− (i+ 1)
√
n)

n∑

x=0

1{x ∈ Xi}B(x;n, p) + f(0)
n∑

x=0

1{x ∈ Xi0}B(x;n, p) ,

where the inequality holds because f(x) is a decreasing function of x. Now fix i > 0. Then from the definition of Xi and
Hoeffding’s inequality,

n∑

x=0

1{x ∈ Xi}B(x;n, p) ≤ P
(
X ≤ pn− i√n

∣∣X ∼ B(n, p)
)
≤ exp[−2i2] .

Trivially,
∑n

x=0 1{x ∈ X0}B(x;n, p) ≤ 1 = exp[−2 · 02]. Finally, we chain all inequalities and get our claim.

Lemma 3. Let x ∈ [0, pn], m = (2a+ 1)n, and b =
2a+ 1

a(a+ 1)
. Then for any integer n > 0,

m∑

y=d(a+p)ne
B

(
y;m,

an+ x

m

)
≥

√
2π

e2
√

2a+ 1
exp

[
−b (pn+

√
n− x)2

n

]
.
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Proof. By Lemma 4,

B

(
y;m,

an+ x

m

)
≥
√

2π

e2

√
m

y(m− y)
exp

[
− (y − an− x)2

man+x
m

(a+1)n−x
m

]
.

Now note that
y(m− y)

m
≤ 1

m

m2

4
=

(2a+ 1)n

4
.

Moreover, since x ∈ [0, pn],

m
an+ x

m

(a+ 1)n− x
m

≥ man

m

(a+ 1)n

m
=
a(a+ 1)n

2a+ 1
=
n

b
,

where b is defined in the claim of this lemma. Now we combine the above three inequalities and have

B

(
y;m,

an+ x

m

)
≥ 2

√
2π

e2
√

2a+ 1

1√
n

exp

[
−b (y − an− x)2

n

]
,

Finally, note the following two facts. First, the above lower bound decreases in y when y ≥ (a + p)n and x ≤ pn.
Second, by the pigeonhole principle, there exist at least b√nc integers between (a+ p)n and (a+ p)n+

√
n, starting with

d(a+ p)ne. These observations lead to a trivial lower bound
m∑

y=d(a+p)ne
B

(
y;m,

an+ x

m

)
≥ b
√
nc√
n

2
√

2π

e2
√

2a+ 1
exp

[
−b (pn+

√
n− x)2

n

]

≥
√

2π

e2
√

2a+ 1
exp

[
−b (pn+

√
n− x)2

n

]
.

The last inequality is from b√nc /√n ≥ 1/2, which holds for n ≥ 1. This concludes our proof.

Lemma 4. For any binomial probability,

B(x;n, p) ≥
√

2π

e2

√
n

x(n− x)
exp

[
− (x− pn)2

p(1− p)n

]
.

Proof. By Stirling’s approximation, for any integer k ≥ 0,
√

2πkk+ 1
2 e−k ≤ k! ≤ ekk+ 1

2 e−k .

Therefore, any binomial probability can be bounded from below as

B(x;n, p) =
n!

x!(n− x)!
pxqn−x ≥

√
2π

e2

√
n

x(n− x)

(pn
x

)x( qn

n− x

)n−x
,

where q = 1− p. Let

d(p1, p2) = p1 log
p1

p2
+ (1− p1) log

1− p1

1− p2

be the KL divergence between Bernoulli random variables with means p1 and p2. Then
(pn
x

)x( qn

n− x

)n−x
= exp

[
x log

(pn
x

)
+ (n− x) log

(
qn

n− x

)]

= exp

[
−n
(
x

n
log

(
x

pn

)
+
n− x
n

log

(
n− x
qn

))]

= exp
[
−nd

(x
n
, p
)]

≥ exp

[
− (x− pn)2

p(1− p)n

]
,

where the inequality is from d(p1, p2) ≤ (p1 − p2)2

p2(1− p2)
. Finally, we chain all inequalities and get our claim.


