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Abstract
We introduce a novel approach, requiring only
mild assumptions, for the characterization of deep
neural networks at initialization. Our approach
applies both to fully-connected and convolutional
networks and easily incorporates batch normal-
ization and skip-connections. Our key insight is
to consider the evolution with depth of statistical
moments of signal and noise, thereby characteriz-
ing the presence or absence of pathologies in the
hypothesis space encoded by the choice of hyper-
parameters. We establish: (i) for feedforward net-
works, with and without batch normalization, the
multiplicativity of layer composition inevitably
leads to ill-behaved moments and pathologies; (ii)
for residual networks with batch normalization,
on the other hand, skip-connections induce power-
law rather than exponential behaviour, leading to
well-behaved moments and no pathology.

1. Introduction
The feverish pace of practical applications has led in the re-
cent years to many advances in neural network architectures,
initialization and regularization. At the same time, theoreti-
cal research has not been able to follow the same pace. In
particular, there is still no mature theory able to validate the
full choices of hyperparameters leading to state-of-the-art
performance. This is unfortunate since such theory could
also serve as a guide towards further improvement.

Amidst the research aimed at building this theory, an impor-
tant branch has focused on networks at initialization. Due to
the randomness of model parameters at initialization, charac-
terizing networks at that time can be seen as characterizing
the hypothesis space of input-output mappings that will be
favored or reachable during training, i.e. the inductive bias
encoded by the choice of hyperparameters. This view has
received strong experimental support, with well-behaved
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input-output mappings at initialization extensively found to
be predictive of trainability and post-training performance
(Schoenholz et al., 2017; Yang & Schoenholz, 2017; Xiao
et al., 2018; Philipp & Carbonell, 2018; Yang et al., 2019).

Yet, even this simplifying case of networks at initializa-
tion is challenging as it notably involves dealing with: (i)
the complex interplay of the randomness from input data
and from model parameters; (ii) the broad spectrum of po-
tential pathologies; (iii) the finite number of units in each
layer; (iv) the difficulty to incorporate convolutional layers,
batch normalization and skip-connections. Complexities
(i), (ii) typically lead to restricting to specific cases of in-
put data and pathologies, e.g. exploding complexity of
data manifolds (Poole et al., 2016; Raghu et al., 2017), ex-
ponential correlation or decorrelation of two data points
(Schoenholz et al., 2017; Balduzzi et al., 2017; Xiao et al.,
2018), exploding and vanishing gradients (Yang & Schoen-
holz, 2017; Philipp et al., 2018; Hanin, 2018; Yang et al.,
2019), exploding and vanishing activations (Hanin & Rol-
nick, 2018). Complexity (iii) commonly leads to making
simplifying assumptions, e.g. convergence to Gaussian pro-
cesses for infinite width (Neal, 1996; Roux & Bengio, 2007;
Lee et al., 2018; Matthews et al., 2018; Borovykh, 2018;
Garriga-Alonso et al., 2019; Novak et al., 2019; Yang, 2019),
“typical” activation patterns (Balduzzi et al., 2017). Finally
complexity (iv) most often leads to limiting the number of
hard-to-model elements incorporated at a time. To the best
of our knowledge, all attempts have thus far been limited in
either their scope or their simplifying assumptions.

As the first contribution of this paper, we introduce a novel
approach for the characterization of deep neural networks at
initialization. This approach: (i) offers a unifying treatment
of the broad spectrum of pathologies without any restriction
on the input data; (ii) requires only mild assumptions; (iii)
easily incorporates convolutional layers, batch normaliza-
tion and skip-connections.

As the second contribution, we use this approach to charac-
terize deep neural networks with the most common choices
of hyperparameters. We identify the multiplicativity of layer
composition as the driving force towards pathologies in
feedforward networks: either with the neural network hav-
ing its signal shrunk into a single point or line; or with the
neural network behaving as a noise amplifier with sensitivity
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exploding with depth. In contrast, we identify the combined
action of batch normalization and skip-connections as re-
sponsible for bypassing this multiplicativity and relieving
from pathologies in batch-normalized residual networks.

Our results can be fully reproduced with the source code
available at https://github.com/alabatie/
moments-dnns.

2. Propagation
We start by formulating the propagation for neural networks
with neither batch normalization nor skip-connections, that
we refer as vanilla nets. We will slightly adapt this formu-
lation in Section 6 with batch-normalized feedforward nets
and in Section 7 with batch-normalized resnets.

Clean Propagation. We first consider a random tensorial
input x ≡ x0 ∈ Rn×···×n×N0 , spatially d-dimensional with
extent n in all spatial dimensions and N0 channels. This
input x is fed into a d-dimensional convolutional neural
network with periodic boundary conditions, fixed spatial
extent n, and activation function φ.1 At each layer l ≥ 1,
we denote Nl the number of channels or width, Kl the
convolutional spatial extent, xl,yl ∈ Rn×···×n×Nl the post-
activations and pre-activations, ωl ∈ RKl×···×Kl×Nl−1×Nl

the weights, and bl ∈ RNl the biases. Later in our analysis,
the model parameters ωl, bl will be considered as random,
but for now they are considered as fixed. At each layer, the
propagation is given by

yl = ωl ∗ xl−1 + βl,

xl = φ(yl),

with ∗ the convolution and βl ∈ Rn×···×n×Nl the tensor
with repeated version of bl at each spatial position. From
now on, we refer to the propagated tensor xl as the signal.

Noisy Propagation. To make our setup more realistic, we
next suppose that the input signal x is corrupted by an input
noise dx ≡ dx0 ∈ Rn×···×n×N0 having small iid compo-
nents such that Edx[dxidxj ] = σ2

dxδij , with σdx � 1 and
δij the Kronecker delta for multidimensional indices i, j.
We denote Φl(x) ≡ xl, with Φl the neural network mapping
from layer 0 to l, and we consider the simultaneous propaga-
tion of the signal Φl(x) and the noise Φl(x + dx)− Φl(x).
At each layer, this simultaneous propagation is given at first
order by

yl = ωl ∗ xl−1 + βl, dyl = ωl ∗ dxl−1, (1)

xl = φ(yl), dxl = φ′(yl)� dyl, (2)

1It is possible to relax the assumptions of periodic boundary
conditions and constant spatial extent n [B.5]. These assumptions,
as well as the assumption of constant width Nl in Section 7, are
only made for simplicity of the analysis.

with � the element-wise tensor multiplication. The tensor
dxl resulting from the simultaneous propagation of (xl,dxl)
in Eq. (1) and Eq. (2) approximates arbitrarily well the noise
Φl(x + dx)− Φl(x) as σdx → 0 [C.1]. For simplicity, we
will keep the terminology of noise when referring to dxl.

From Eq. (1) and Eq. (2), we see that xl, yl only depend
on the input signal x, and that dxl depends linearly on
the input noise dx when x is fixed. As a consequence,
dxl stays centered with respect to dx such that ∀x,α, c:
Edx[dxlα,c] = 0, where from now on the spatial position is
denoted as α and the channel as c.

Scope. We require two mild assumptions: (i) x is not triv-
ially zero: Ex,α,c[x

2
α,c] > 0;2 (ii) the width Nl is bounded.

Some results of our analysis will apply for any choice of φ,
but unless otherwise stated, we restrict to the most common
choice: φ(·) ≡ ReLU(·) = max(·, 0). Even though ReLU
is not differentiable at 0, we still define dxl as the result
of the simultaneous propagation of (xl,dxl) in Eq. (1) and
Eq. (2) with the convention φ′(0) ≡ 1/2 [C.2].

Note that fully-connected networks are included in our anal-
ysis as the subcase n = 1.

3. Data Randomness
Now we may turn our attention to the data distributions of
signal and noise: Px,α(xl), Px,dx,α(dxl). To outline the
importance of these distributions, the output of an L-layer
neural network can be expressed by layer composition as
(xL,dxL) = Φ̃l,L(xl,dxl), with Φ̃l,L the mapping of the
signal and noise by the upper neural network from layer
l < L to layer L. The upper neural network thus receives
xl as input signal and dxl as input noise, implying that
it can only have a chance to do any better than random
guessing when: (i) xl is meaningful; (ii) dxl is under control.
Namely, when Px,α(xl), Px,dx,α(dxl) are not affected by
pathologies. We will make this argument as well as the
notion of pathology more precise in Section 3.2 after a few
prerequisite definitions.

3.1. Characterizing Data Distributions

Using vl as a placeholder for any tensor of layer l in the
simultaneous propagation of (xl,dxl) – e.g. yl, xl, dyl,
dxl in Eq. (1) and Eq. (2) – we define:

– The feature map vector and centered feature map vector,

ϕ(vl,α) ≡ vlα,:, ϕ̂(vl,α) ≡ vlα,: − Ex,dx,α[vlα,:],
3

2Whenever α and c are considered as random variables, they
are supposed uniformly sampled among all spatial positions
{1, . . . , n}d and all channels {1, . . . , Nl}.

3Slightly abusively, the notation x, dx,α,vl is overloaded in
the expectation.

https://github.com/alabatie/moments-dnns
https://github.com/alabatie/moments-dnns
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with vlα,: the vectorial slice of vl at spatial positionα. Note
that ϕ(vl,α), ϕ̂(vl,α) aggregate both the randomness
from (x,dx) which determines the propagation up to vl,
and the randomness from α which determines the spatial
position in vl. These random vectors will enable us to
circumvent the tensorial structure of vl.

– The non-central moment and central moment of order p
for given channel c and averaged over channels,

νp,c(v
l) ≡ Ex,dx,α

[
ϕ(vl,α)pc

]
, νp(v

l) ≡ Ec
[
νp,c(v

l)
]
,

µp,c(v
l) ≡ Ex,dx,α

[
ϕ̂(vl,α)pc

]
, µp(v

l) ≡ Ec
[
µp,c(v

l)
]
.

In the particular case of the noise dxl, centered with re-
spect to dx, feature map vectors and centered feature
map vectors coincide: ϕ(dxl,α) = ϕ̂(dxl,α), such that
non-central moments and central moments also coincide:
νp,c(dx

l) = µp,c(dx
l) and νp(dxl) = µp(dx

l).

– The effective rank (Vershynin, 2010),

reff(v
l) ≡ TrCx,dx,α

[
ϕ(vl,α)

]
||Cx,dx,α

[
ϕ(vl,α)

]
|| ,

with Cx,dx,α the covariance matrix and || · || the spec-
tral norm. If we further denote (λi) the eigenvalues of
Cx,dx,α[ϕ(vl,α)], then reff(v

l) =
∑
i λi/maxi λi ≥ 1.

Intuitively, reff(v
l) measures the number of effective direc-

tions which concentrate the variance of ϕ(vl,α).

– The normalized sensitivity – our key metric – derived from
the moments of xl and dxl,

χl ≡
(
µ2(dxl)

µ2(xl)

) 1
2
(
µ2(dx0)

µ2(x0)

)− 1
2

. (3)

To grasp the definition of χl, we may consider the signal-to-
noise ratio SNRl and the noise factor F l,

SNRl ≡ µ2(xl)

µ2(dxl)
, F l ≡ SNR0

SNRl
= (χl)2. (4)

We obtain SNRl
dB = SNR0

dB − 20 log10 χ
l in logarithmic

decibel scale, i.e. that χl measures how the neural network
from layer 0 to l degrades (χl > 1) or enhances (χl < 1)
the input signal-to-noise ratio. Neural networks with χl > 1
are noise amplifiers, while neural networks with χl < 1 are
noise reducers.

Now, to justify our choice of terminology, let us reason
in the case where xl = Φl(x

0) is the output signal at the
final layer. Then: (i) the variance µ2(xl) is typically con-
strained by the task (e.g. binary classification constrains
µ2(xl) to be roughly equal to 1); (ii) the constant rescal-
ing Ψl(x

0) =
√
µ2(xl)/

√
µ2(x0) · x0 leads to the same

constrained variance: µ2(Ψl(x
0)) = µ2(Φl(x

0)). The nor-
malized sensitivity χl exactly measures the excess root mean

square sensitivity of the neural network mapping Φl rela-
tive to the constant rescaling Ψl [C.3]. This property is
illustrated in Fig. 1.
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Figure 1: Illustration of χl in the fully-connected case with
one-dimensional input and output, N0 = 1, Nl = 1. We
show the full input-output mapping Φl (blue curves) and
randomly sampled input-output data points

(
x0,Φl(x

0)
)

(red circles) for three different neural networks sharing the
same input signal x0 and the same variance in their output
signal µ2(Φl(x

0)). (a) Since input data points x0 appear in
flat regions of Φl, the sensitivity is low: χl < 1. (b) Φl is a
constant rescaling: χl = 1. (c) Since Φl is highly chaotic,
the sensitivity is high: χl > 1.

As outlined, χl measures the sensitivity to signal perturba-
tion, which is known for being connected to generalization
(Rifai et al., 2011; Arpit et al., 2017; Sokolic et al., 2017;
Arora et al., 2018; Morcos et al., 2018; Novak et al., 2018;
Philipp & Carbonell, 2018). A tightly connected notion
is the sensitivity to weight perturbation, also known for
being connected to generalization (Hochreiter & Schmidhu-
ber, 1997; Langford & Caruana, 2002; Keskar et al., 2017;
Chaudhari et al., 2017; Smith & Le, 2018; Dziugaite & Roy,
2017; Neyshabur et al., 2017; 2018; Li et al., 2018). The
connection is seen by noting the equivalence between a
noise dωl on the weights and a noise dyl = dωl ∗xl−1 and
dxl = φ′(yl)� dyl on the signal in Eq. (1) and Eq. (2).

3.2. Characterizing Pathologies

We are now able to characterize the pathologies, with ill-
behaved data distributions, Px,α(xl), Px,dx,α(dxl), that we
will encounter:

– Zero-dimensional signal: µ2(xl)/ν2(xl)
l→∞−−−→ 0. To

understand this pathology, let us consider the following
mean vectors and rescaling of the signal:

νl ≡
(
ν1,c(x

l)
)

c, x̃l ≡ xl

||νl||2
, ν̃l ≡

(
ν1,c(x̃

l)
)

c.

The pathology µ2(xl)/ν2(xl) → 0 implies µ2(x̃l) → 0,
meaning that ϕ(x̃l,α) becomes point-like concentrated at
the point ν̃l of unit L2 norm: ||ν̃l||2 = 1 [C.4]. In the limit
of strict point-like concentration, the upper neural network
from layer l to L is limited to random guessing since it
“sees” all inputs the same and cannot distinguish between
them.
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– One-dimensional signal: reff(x
l)

l→∞−−−→ 1. This pathology
implies that the variance of ϕ(xl,α) becomes concentrated
in a single direction, meaning that ϕ(xl,α) becomes line-
like concentrated. In the limit of strict line-like concentra-
tion, the upper neural network from layer l to L only “sees”
a single feature from x.

– Exploding sensitivity: χl ≥ exp(γl)
l→∞−−−→ ∞ for some

γ > 0. Given the noise factor equivalence of Eq. (4), the
pathology χl → ∞ implies SNRl → 0, meaning that the
clean signal xl becomes drowned in the noise dxl. In the
limit of strictly zero signal-to-noise ratio, the upper neural
network from layer l to L is limited to random guessing
since it only “sees” noise.

4. Model Parameters Randomness
We now introduce model parameters as the second source of
randomness. We consider networks at initialization, which
we suppose is standard following He et al. (2015): (i)
weights are initialized with ωl ∼ N

(
0, 2 / (Kd

l Nl−1) I
)
,

biases are initialized with zeros; (ii) when pre-activations
are batch-normalized, scale and shift batch normalization
parameters are initialized with ones and zeros respectively.

Considering networks at initialization is justified in two re-
spects. As the first justification, in the context of Bayesian
neural networks, the distribution on model parameters at ini-
tialization induces a distribution on input-output mappings
which can be seen as the prior encoded by the choice of
hyperparameters (Neal, 1996; Williams, 1997).

As the second justification, even in the standard context of
non-Bayesian neural networks, it is likely that pathologies
at initialization penalize training by hindering optimization.
Let us illustrate this argument in two cases:

– In the case of zero-dimensional signal, the upper neural
network from layer l to L must adjust its bias parameters
very precisely in order to center the signal and distinguish
between different inputs. This case – further associated
with vanishing gradients for bounded φ (Schoenholz et al.,
2017) – is known as the “ordered phase” with unit corre-
lation between different inputs, resulting in untrainability
(Schoenholz et al., 2017; Xiao et al., 2018).

– In the case of exploding sensitivity, the upper neural net-
work from layer l to L only “sees” noise and its backprop-
agated gradient is purely noise. Gradient descent then per-
forms random steps and training loss is not decreased. This
case – further associated with exploding gradients for batch-
normalized φ = ReLU or bounded φ (Schoenholz et al.,
2017) – is known as the “chaotic phase” with decorrela-
tion between different inputs, also resulting in untrainability
(Schoenholz et al., 2017; Yang & Schoenholz, 2017; Xiao
et al., 2018; Philipp & Carbonell, 2018; Yang et al., 2019).

From now on, our methodology is to consider all moment-
related quantities, e.g. νp(xl), µp(xl), µp(dxl), reff(x

l),
reff(dx

l), χl, as random variables which depend on
model parameters. We denote the model parameters as
Θl ≡ (ω1,β1, . . . ,ωl,βl) and use θl as shorthand for
Θl|Θl−1. We further denote the geometric increments of
ν2(xl) as δν2(xl) ≡ ν2(xl)/ν2(xl−1).

Evolution with Depth. The evolution with depth of ν2(xl)
can be written as

log

(
ν2(xl)

ν2(x0)

)
=
∑
k≤l

log δν2(xk)− Eθk [log δν2(xk)]︸ ︷︷ ︸
s[ν2(xk)]

+

Eθk [log δν2(xk)]− logEθk [δν2(xk)]︸ ︷︷ ︸
m[ν2(xk)]

+ logEθk [δν2(xk)]︸ ︷︷ ︸
m[ν2(xk)]

,

where we used log
(
ν2(xl)
ν2(x0)

)
= log ν2(xl)− log ν2(x0) =∑

k≤l log δν2(xk) and expressed log δν2(xk) with telescop-
ing terms. Denoting δν2(xk) ≡ δν2(xk)/Eθk [δν2(xk)] the
multiplicatively centered increments of ν2(xk), we get [C.5]

m[ν2(xk)] = logEθk [δν2(xk)], (5)

m[ν2(xk)] = Eθk [log δν2(xk)], (6)

s[ν2(xk)] = log δν2(xk)− Eθk [log δν2(xk)]. (7)

Discussion. We directly note that: (i) m[ν2(xk)] and
m[ν2(xk)] are random variables which depend on Θk−1,
while s[ν2(xk)] is a random variable which depends on Θk;
(ii) m[ν2(xk)] < 0 by log-concavity; (iii) s[ν2(xk)] is cen-
tered with Eθk [s[ν2(xk)]] = 0 and EΘk [s[ν2(xk)]] = 0.

We further note that each channel provides an independent
contribution to ν2(xk) = 1

Nk

∑
c ν2,c(x

k), implying for
large Nk that δν2(xk) has low expected deviation to 1 and
that | log δν2(xk)| � 1, |m[ν2(xk)]| � 1, |s[ν2(xk)]| � 1
with high probability. The term m[ν2(xk)] is thus domi-
nating as long as it is not vanishing. The same reasoning
applies to other positive moments, e.g. µ2(xl), µ2(dxl).

Further Notation. From now on, the geometric increment
of any quantity is denoted with δ. The definitions of m, m
and s in Eq. (5), (6) and (7) are extended to other positive
moments of signal and noise, as well as χl with

m[χl] ≡ 1
2

(
m[µ2(dxl)]−m[µ2(xl)]

)
,

m[χl] ≡ 1
2

(
m[µ2(dxl)]−m[µ2(xl)]

)
,

s[χl] ≡ 1
2

(
s[µ2(dxl)]− s[µ2(xl)]

)
.

We introduce the notation a ' b when a(1+εa) = b(1+εb)
with |εa| � 1, |εb| � 1 with high probability. And the
notation a . b when a(1 + εa) ≤ b(1 + εb) with |εa| � 1,
|εb| � 1 with high probability. From now on, we assume
that the width is large, implying

δχl = exp
(
m[χl] +m[χl] + s[χl]

)
' exp

(
m[χl]

)
.
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We stress the layer-wise character of this approximation,
whose validity only requires Nl � 1, independently of
the depth l. This contrasts with the aggregated character
(up to layer l) of the mean field approximation of yl as a
Gaussian process, whose validity requires not only Nl � 1
but also – as we will see – that the depth l remains suffi-
ciently small with respect to Nl.

5. Vanilla Nets
We are fully equipped to characterize deep neural networks
at initialization. We start by analyzing vanilla nets which
correspond to the propagation introduced in Section 2.

Theorem 1 (moments of vanilla nets). [D.3] There exist
small constants 1 � mmin,mmax, vmin, vmax > 0, random
variables ml,m

′
l, sl, s

′
l and events Al, A′l of probabilities

equal to
∏l
k=1(1− 2−Nk) such that

Under Al: log ν2(xl) = −lml +
√
lsl + log ν2(x0),

Under A′l: logµ2(dxl) = −lm′l +
√
ls′l + log µ2(dx0).︸ ︷︷ ︸

mmin ≤ ml ≤ mmax, E
Θl|Al

[
sl
]

= 0, vmin ≤ Var
Θl|Al

[
sl
]
≤ vmax

mmin ≤ m′l ≤ mmax, E
Θl|A′

l

[
s′l
]

= 0, vmin ≤ Var
Θl|A′

l

[
s′l
]
≤ vmax

Discussion. The conditionality on Al, A′l is necessary to
exclude the collapse: ν2(xl) = 0, µ2(dxl) = 0, with un-
defined log ν2(xl), logµ2(dxl), occurring e.g. when all
elements of ωl are strictly negative (Lu et al., 2018). In
practice, this conditionality is highly negligible since the
probabilities of the complementary events Ac

l , A
′c
l decay

exponentially in the width Nl [D.4].

Now let us look at the evolution of log ν2(xl), logµ2(dxl)
under Al, A′l. The initialization He et al. (2015) enforces
Eθl [ν2(xl)] = ν2(xl−1) and Eθl [µ2(dxl)] = µ2(dxl−1)
such that: (i) EΘl [ν2(xl)], EΘl [µ2(dxl)] are kept stable
during propagation; (ii) m[ν2(xl)], m[µ2(dxl)] vanish and
log ν2(xl), logµ2(dxl) are subject to a slow diffusion with
small negative drift terms: m[ν2(xl)] < 0, m[µ2(dxl)] < 0,
and small diffusion terms: s[ν2(xl)], s[µ2(dxl)] [D.5].4

The diffusion happens in log-space since layer composition
amounts to a multiplicative random effect in real space. It is
a finite-width effect since the terms m[ν2(xl)], m[µ2(dxl)],
s[ν2(xl)], s[µ2(dxl)] also vanish for infinite width.

Fig. 2 illustrates the slowly decreasing negative expectation
and slowly increasing variance of log ν2(xl), logµ2(dxl),
caused by the small negative drift and diffusion terms. Fig. 2
also indicates that log ν2(xl), logµ2(dxl) are nearly Gaus-
sian, implying that ν2(xl), µ2(dxl) are nearly lognormal.
Two important insights are then provided by the expres-

4Any deviation from He et al. (2015) leads, on the other hand,
to pathologies orthogonal to the pathologies of Section 3.2, with
either exploding or vanishing constant scalings of (xl, dxl).

sions of the expectation: exp(µ + σ2/2) and the kurto-
sis: exp(4σ2) + 2 exp(3σ2) + 3 exp(2σ2) − 3 of a log-
normal variable exp(X) with X ∼ N (µ, σ2). Firstly, the
decreasing negative expectation and increasing variance of
log ν2(xl), logµ2(dxl) act as opposing forces in order to
ensure the stabilization of EΘl [ν2(xl)], EΘl [µ2(dxl)]. Sec-
ondly, ν2(xl), µ2(dxl) are stabilized only in terms of ex-
pectation and they become fat-tailed distributed as l→∞.

−15 −10 −5 0 5 10

(a)
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l = 200

log ν2(xl)− log ν2(x0)

−4 −2 0 2 4

(b)
l = 50
l = 100
l = 150
l = 200

log µ2(dxl)− log µ2(dx0)

Figure 2: Slowly diffusing moments of vanilla nets with
L = 200 layers of width Nl = 128. (a) Distribution of
log ν2(xl)− log ν2(x0) for l = 50, 100, 150, 200. (b) Same
for logµ2(dxl)− logµ2(dx0).

Theorem 2 (normalized sensitivity increments of vanilla
nets). [D.6] Denoting yl,± ≡ max

(
± yl, 0

)
, the dominat-

ing term under {µ2(xl−1) > 0} in the evolution of χl is

δχl '
(

1− Ec,θl

[
ν1,c
(
yl,+

)
ν1,c
(
yl,−

)
µ2(xl−1)

])− 1
2

. (8)

︸ ︷︷ ︸
∈[1,
√

2]

Discussion. A first consequence is that χl always increases
with depth. Another consequence is that only two possibili-
ties of evolution which both lead to pathologies are allowed:

– If sensitivity is exploding: χl ≥ exp(γl) → ∞ with
exponential drift γ stronger than the slow diffusion of
Theorem 1 and if ν2(xl), µ2(dxl) are lognormally dis-
tributed as supported by Fig. 2, then Theorem 1 implies
the a.s. convergence to the pathology of zero-dimensional
signal: µ2(xl)/ν2(xl)→ 0 [D.7].

– Otherwise, geometric increments δχl are strongly lim-
ited. In the limit δχl ' exp

(
m[χl]

)
→ 1, if the moments

of x̃l ≡ xl/
√
µ2(xl) remain bounded, then Theorem 2 im-

plies the convergence to the pathology of one-dimensional
signal: reff(x

l)→ 1 [D.8] and the convergence to pseudo-
linearity, with each additional layer l becoming arbitrarily
well approximated by a linear mapping [D.9].

Experimental Verification. The evolution with depth of
vanilla nets is shown in Fig. 3. From the two possibili-
ties, we observe the case with limited geometric increments:
δχl ' exp

(
m[χl]

)
→ 1, the convergence to the pathology

of one-dimensional signal: reff(x
l) → 1, and the conver-

gence to pseudo-linearity.
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Figure 3: Pathology of one-dimensional signal for vanilla
nets with L = 200 layers of width Nl = 512. (a) δχl

such that δχl ' exp
(
m[χl]

)
→ 1. (b) reff(x

l) indicates
one-dimensional signal pathology: reff(x

l)→ 1.

The only way that the neural network can achieve pseudo-
linearity is by having each one of its ReLU units either
always active or always inactive, i.e. behaving either as zero
or as the identity. Our analysis offers theoretical insight
into this coactivation phenomenon, previously observed
experimentally (Balduzzi et al., 2017; Philipp et al., 2018).

6. Batch-Normalized Feedforward Nets
Next we incorporate batch normalization (Ioffe & Szegedy,
2015), which we denote as BN. For simplicity, we only
consider the test mode which consists in subtracting ν1,c(y

l)

and dividing by
√
µ2,c(yl) for each channel c in yl. The

propagation is given by

yl = ωl ∗ xl−1 + βl, dyl = ωl ∗ dxl−1, (9)

zl = BN(yl), dzl = BN′(yl)� dyl, (10)

xl = φ(zl), dxl = φ′(zl)� dzl. (11)

Theorem 3 (normalized sensitivity increments of batch-nor-
malized feedforward nets). [E.1] The dominating term in
the evolution of χl can be decomposed as

δχl = δBNχ
l · δφχl ' exp

(
mBN[χl]

)
· exp

(
mφ[χl]

)
,

exp
(
mBN[χl]

)
≡
(
µ2(dxl−1)

µ2(xl−1)

)− 1
2

Ec,θl

[
µ2,c(dy

l)

µ2,c(yl)

] 1
2

,

exp
(
mφ[χl]

)
≡
(

1− 2Ec,θl [ν1,c(z
l,+)ν1,c(z

l,−)]
)− 1

2

.︸ ︷︷ ︸
∈[1,
√

2]

Effect of Batch Normalization. The batch normalization
term is such that exp(mBN[χl]) ' δBNχ

l, with δBNχ
l de-

fined as the increment of χl in the convolution and batch
normalization steps of Eq. (9) and Eq. (10). The expression
of exp(mBN[χl]) holds for any choice of φ.

This term can be understood intuitively by seeing the differ-
ent channels c in yl as Nl random projections of xl−1 and
batch normalization as a modulation of the magnitude for

each projection. Since batch normalization uses
√
µ2,c(yl)

as normalization factor, directions of high signal variance
are dampened, while directions of low signal variance are
amplified. This preferential exploration of low signal di-
rections naturally deteriorates the signal-to-noise ratio and
amplifies χl owing to the noise factor equivalence of Eq. (4).

Now let us look directly at exp(mBN[χl]) in Theo-
rem 3. If we define the event under which the vectorized
weights in channel c have L2 norm equal to r: W l,c

r ≡{
||vec(ωl:,:,c)||2 = r

}
, then spherical symmetry implies

that variance increments in channel c from xl−1 to yl and
from dxl−1 to dyl have equal expectation under W l,c

r :

Eθl|W l,c
r

[µ2,c(y
l)]

µ2(xl−1)
=

Eθl|W l,c
r

[µ2,c(dy
l)]

µ2(dxl−1)
.

On the other hand, the variance of these increments depends
on the fluctuation of signal and noise in the random direction
generated by vec(ωl:,:,c)/||vec(ωl:,:,c)||2. This depends on
the conditioning of signal and noise, i.e. on the magnitude
of reff(x

l−1), reff(dx
l−1). If we assume that dxl−1 is well-

conditioned, then µ2,c(dy
l)/µ2(dxl−1) can be treated as a

constant and by convexity of the function x 7→ 1/x:(
µ2(dxl−1)

µ2(xl−1)

)−1

Eθl|W l,c
r

[
µ2,c(dy

l)

µ2,c(yl)

]
& 1,

which in turn implies exp(mBN[χl]) & 1. The worse the
conditioning of xl−1, i.e. the smaller reff(x

l−1), the larger
the variance of µ2,c(y

l) at the denominator and the impact
of the convexity. Thus the smaller reff(x

l−1) and the larger
exp(mBN[χl]). This argument is strictly valid for the first
step of the propagation wherein the noise has perfect condi-
tioning, resulting in exp(mBN[χ1]) ≥ 1 [E.2].

Effect of the Nonlinearity. The nonlinearity term is such
that exp(mφ[χl]) ' δφχ

l, with δφχl defined as the incre-
ment of χl in the nonlinearity step of Eq. (11). This term
is analogous to the term of Eq. (8) for vanilla nets, ex-
cept that ν1,c(z

l,+)ν1,c(z
l,−) is less likely to vanish than

ν1,c(y
l,+)ν1,c(y

l,−)/µ2(xl−1) in Eq. (8) since batch nor-
malization now keeps the signal centered around zero.

Experimental Verification. In Fig. 4, we confirm exper-
imentally the pathology of exploding sensitivity: χl ≥
exp(γl) → ∞ for some γ > 0. We also confirm that:
(i) dxl remains well-conditioned, while xl becomes ill-
conditioned; (ii) reff(x

l) and δBNχ
l are inversely correlated.

Interestingly, δφχl becomes subdominant with respect to
δBNχ

l at large depth. This stems from the fact that
zl becomes fat-tailed distributed with respect to x, α,
with large µ4(zl) and small ν1(|zl|). Combined with
ν1(zl,+) ≤ ν1(|zl|) and ν1(zl,−) ≤ ν1(|zl|), this explains
the decay of | exp(mφ[χl])− 1| and thus of |δφχl − 1|.
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Figure 4: Pathology of exploding sensitivity for batch-
normalized feedforward nets with L = 200 layers of width
Nl = 512. (a) Geometric increments δχl decomposed
as the product of δBNχ

l defined as the increment from
(xl−1,dxl−1) to (zl,dzl), and δφχl defined as the incre-
ment from (zl,dzl) to (xl,dxl). (b) The growth of χl indi-
cates exploding sensitivity pathology: χl ≥ exp(γl)→∞
for some γ > 0. (c) xl becomes ill-conditioned with small
reff(x

l). (d) zl becomes fat-tailed distributed with respect
to x, α, with large µ4(zl) and small ν1(|zl|).
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Figure 5: Well-behaved evolution of batch-normalized
resnets with L = 500 residual units comprised of H = 2
layers of width N = 512. (a) Geometric feedforward
increments δχl,1 decomposed as the product of δBNχ

l,1

defined as the increment from (yl,0,dyl,0) to (zl,1,dzl,1),
and δφχl,1 defined as the increment from (zl,1,dzl,1) to
(yl,1,dyl,1). (b) χl has power-law growth. (c) reff(x

l,1)
indicates that many directions of signal variance are pre-
served. (d) µ4(zl,1), ν1(|zl,1|) indicate that zl,1 has close
to Gaussian data distribution.

7. Batch-Normalized Resnets
We finish our exploration of deep neural network archi-
tectures with the incorporation of skip-connections. From
now on, we assume that the width is constant, Nl = N ,
and following He et al. (2016), we adopt the perspective of
pre-activation units. The propagation is given by

(yl,dyl) = (yl−1,dyl−1) + (yl,H ,dyl,H), (12)

zl,h = BN(yl,h−1), dzl,h = BN′(yl,h−1)� dyl,h−1,

xl,h= φ(zl,h), dxl,h= φ′(zl,h)� dzl,h,

yl,h= ωl,h ∗ xl,h+ βl,h, dyl,h= ωl,h ∗ dxl,h.︸ ︷︷ ︸
1 ≤ h ≤ H , withH the number of layers inside residual units

and with (yl,0, dyl,0) ≡ (yl−1, dyl−1)

If we adopt the convention (y0,H ,dy0,H) ≡ (y0,dy0),
then Eq. (12) can be expanded as

(yl,dyl) =
∑l

k=0
(yk,H ,dyk,H). (13)

For consistency reasons, we redefine the inputs of the prop-
agation as (y,dy) ≡ (y0,dy0) and the normalized sensi-
tivity and its increments as

χl,h ≡
(
µ2(dyl,h)

µ2(yl,h)

) 1
2
(
µ2(dy0)

µ2(y0)

)− 1
2

, δχl,h ≡ χl,h

χl,h−1
,

χl ≡
(
µ2(dyl)

µ2(yl)

) 1
2
(
µ2(dy0)

µ2(y0)

)− 1
2

, δχl ≡ χl

χl−1
.

Theorem 4 (normalized sensitivity increments of batch-nor-
malized resnets). [F.3] Suppose that we can bound sig-
nal variances: µ2,min . µ2(yl,H) . µ2,max and feed-
forward increments: δmin . δχl,h . δmax for all l, h.
Further denote ηmin ≡

(
(δmin)2Hµ2,min − µ2,max

)
/µ2,max

and ηmax ≡
(
(δmax)2Hµ2,max − µ2,min

)
/µ2,min, as well as

τmin ≡ 1
2ηmin and τmax ≡ 1

2ηmax. Then there exist positive
constants Cmin, Cmax > 0 such that(

1 +
ηmin

l + 1

) 1
2

. δχl .
(

1 +
ηmax

l + 1

) 1
2

, (14)

Cminl
τmin . χl . Cmaxl

τmax . (15)

Discussion. First let us note that Theorem 4 remarkably
holds for any choice of φ, with and without batch normaliza-
tion, as long as the existence of µ2,min, µ2,max, δmin, δmax is
ensured. In the case φ = ReLU, the existence of δmin, δmax
is always ensured but the existence of µ2,min, µ2,max is only
ensured when batch normalization controls signal variance
inside residual units: µ2,c(z

l,H) = 1 [F.4].

Now let us get a better grasp of Theorem 4. We see in
Eq. (14) that the evolution remains exponential inside resid-
ual units since ηmin, ηmax have an exponential dependence in
H . However, it is slowed down by the factor 1/(l + 1) be-
tween successive residual units. This stems from the dilution
(Philipp et al., 2018) of the residual path (yl,H ,dyl,H) into
the skip-connection path (yl−1,dyl−1) with ratio of signal
variances: µ2(yl,H)/

(
µ2(yl,H) + µ2(yl−1)

)
decaying as

1/(l+1). If we remove the dilution effect by multiplying the
residual branch by 0 (i.e. replacing the scaling in 1/(l+1) by
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a scaling in 1) and if we set µ2,min = µ2,max, then Eq. (14) re-
covers the feedforward evolution (δmin)H . δχl . (δmax)H .
The dilution is clearly visible in Eq. (13). Namely, each
residual unit adds a term (yl,H ,dyl,H) of increased χl,H

but its relative contribution to the aggregation gets smaller
and smaller with l, so that the growth of χl gets slower and
slower with l.

Since 1
2 log(1 + η

x ) ' η
2x and

∫ x
x0

η
2x′ dx

′ ' log x
η
2 for

x � 1, the bounds on χl =
∏
k δχ

k = exp
(∑

k log δχl
)

in Eq. (15) are obtained by integrating the bounds on the
logarithm of Eq. (14). A direct consequence of the dilution
is thus the power-law evolution of χl instead of the expo-
nential evolution for feedforward nets. Equivalently, when
rewriting Eq. (15) as

Cmin exp(τmin log l) . χl . Cmax exp(τmax log l),

the evolution of χl for resnets is equivalent to the evolution
of χτ log l for some τ > 0 for feedforward nets. In other
words, the evolution with depth of resnets is the logarithmic
version of the evolution with depth of feedforward nets.

Experimental Verification. The evolution with depth of
batch-normalized resnets is shown in Fig. 5. There is a
clear parallel between the evolution for l ≤ 500 in Fig. 5
and the evolution for l . 15 in Fig. 4. This confirms that
batch-normalized resnets are slower-to-evolve variants of
batch-normalized feedforward nets.

The exponent in the power-law fit of Fig. 5b is notably set
to τ ≡ 1

2 (〈δχl,1〉2H − 1), with the feedforward increment
〈δχl,1〉 averaged over the whole evolution. This means that
Eq. (15) very well describes the evolution of χl in practice.

Contrary to batch-normalized feedforward nets, the signal
remains well-behaved with: (i) many directions of signal
variance preserved in reff(x

l,1); (ii) close to Gaussian data
distribution, as indicated e.g. by µ4(zl,1) close to the Gaus-
sian kurtosis of 3. No pathology occurs.

8. Discussion and Summary
The novel approach that we introduced for the characteri-
zation of deep neural networks at initialization brings three
main contributions: (i) it offers a unifying treatment of the
broad spectrum of pathologies; (ii) it relies on mild assump-
tions; (iii) it easily incorporates convolutional layers, batch
normalization and skip connections.

Most studies on the convergence of neural networks to Gaus-
sian processes have until now considered the maximal depth
L as constant and the width in the limit Nl →∞ for l ≤ L.
We reversed this perspective by considering the width Nl
as large but still bounded and the depth in the limit l→∞.
Then the mean-field approximation of yl as a Gaussian
process indexed by x,α eventually becomes invalid:

– In the context of vanilla nets, with e.g. an input ϕ(x,α)
constant with respect to α and reduced to a single point
of RN0 such that ϕ(xl,α) remains a single point of RNl .
Given the evolution of Fig. 2, the L2 norm ||ϕ(xl,α)||22 =
Nlν2(xl) becomes fat-tailed distributed as l → ∞. For
given x,α, c, this means that xlα,c and thus ylα,c become
fat-tailed distributed as l→∞.

– In the context of batch-normalized feedforward nets, with
e.g. an input ϕ(x,α) constant with respect to α and uni-
formly sampled among M points positioned spherically
symmetrically in RN0 . Given the evolution of Fig. 4, spher-
ical symmetry together with batch normalization implies
that for any given x,α, c: EΘl [z

l
α,c] = EΘl [ν1,c(z

l)] = 0,
EΘl [(z

l
α,c)

2] = EΘl [µ2,c(z
l)] = 1, and EΘl [(z

l
α,c)

4] =

EΘl [µ4(zl)] � 1. For given x,α, c, this means that zlα,c
and thus ylα,c become fat-tailed distributed as l→∞.

Similar observations were made in previous works. Duve-
naud et al. (2014) found that the composition of Gaussian
processes eventually leads to lognormal and ill-behaved
derivatives; Matthews et al. (2018) found that the conver-
gence to Gaussianity as Nl → ∞ becomes slower with
respect to Nl as the depth l grows. This stems from the fact
that the affine transform at each layer is additive with respect
to the width dimension, but layer composition is multiplica-
tive with respect to the depth dimension. Intuitively, the
Central Limit Theorem implies that yl becomes normally
distributed as Nl →∞, but lognormally distributed (with
fat-tail) as l→∞.

Beside from this insight, our approach enabled us to charac-
terize deep neural networks with the most common choices
of hyperparameters:

– In the case of vanilla nets, the initialization He et al. (2015)
limits the evolution of second-order moments of signal and
noise. Combined with the limited growth of χl, this results
in the convergence to the pathology of one-dimensional sig-
nal: reff(x

l) → 1 and the convergence to neural network
pseudo-linearity, with each additional layer l becoming ar-
bitrarily well approximated by a linear mapping.

– In the case of batch-normalized feedforward nets, the
pathology of exploding sensitivity: χl ≥ exp(γl) → ∞
for some γ > 0 has two origins: on the one hand, batch
normalization which upweights low-signal pre-activation
directions; on the other hand, the nonlinearity φ.

– Finally in the case of resnets, χl only grows as a power-
law. Equivalently, the evolution with depth of resnets is the
logarithmic version of the evolution with depth of feedfor-
ward nets. The underlying phenomenon is the dilution of
the residual path into the skip-connection path with ratio of
signal variances decaying as 1/(l + 1). This mechanism is
responsible for breaking the circle of depth multiplicativity
which causes pathologies for feedforward nets.
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A. Details of the Experiments
Fig. 1 considered an input x0 as a Gaussian mixture, with x0 ∼ N (−1, 0.32) with probability 1/2 and x0 ∼ N (1, 0.32)
with probability 1/2. This input x0 was propagated into: (a) a single layer with φ = tanh; (b) a single layer with φ linear;
(c) a batch-normalized feedforward net with: φ = ReLU and Nk = 100 for 1 ≤ k < 10; φ linear and Nl = 1 for l = 10.

The experiments of Fig. 2, 3, 4, 5 were made on cifar10 with a random initial convolution of stride 2 reducing the spatial
dimension from 32 to n = 16 and increasing the width from 3 to N0. In each case, we considered the convolutional extent
Kl = 3 and periodic boundary conditions.

In Fig. 2, we considered the widthNl = 128 and the total depthL = 200. For each realization, we randomly initialized model
parameters following He et al. (2015) and randomly sampled M = 1, 024 images to constitute the input data distribution.
For each realization, we then computed the evolution with depth of log ν2(xl)− log ν2(x0) and logµ2(dxl)− logµ2(dx0).
The distributions of log ν2(xl)− log ν2(x0) and logµ2(dxl)− logµ2(dx0) shown in Fig. 2 were estimated using 10, 000
such realizations. The limited width – slightly smaller than standard values – had the purpose of limiting computation time
in order to gather more realizations.

In Fig. 3, 4, 5, we increased the width to Nl = 512. For each realization, we randomly initialized model parameters
following He et al. (2015) and randomly sampled M = 64 images to constitute the input data distribution. We then
computed the evolution with depth of all moment-related quantites. For each quantity, the expectation as well as the 1σ
intervals displayed in Fig. 3, 4, 5 were estimated using 1, 000 such realizations.

Let us make a few remarks:

– The limited number of images M for each experiment enabled to reduce the computation time, in particular penalized
by the computation of reff(x

l), reff(dx
l), reff(x

l,1), reff(dx
l,1) in Fig. 3, 4, 5. For batch-normalized feedforward nets and

batch-normalized resnets, choosing M in the range of standard batch sizes also had the advantage that our setup of batch
normalization in test mode matched the usual setup of batch normalization in training mode.

For vanilla nets in Fig. 2, 3 and batch-normalized resnets in Fig. 5, this reduction of M had very little impact. For
batch-normalized feedforward nets in Fig. 4, on the other hand, this reduction of M had the effect of limiting pathologies
in the signal. This can be understood by considering M ′ batch-normalized random points (z0, . . . , zM ′). In our case,
M ′ is proportional to M but M ′ > M since the data distribution depends on the input x and the spatial position α. By
considering the worst-case scenario such that (z0, . . . , zM ′) = (−a, . . . ,−a, b,−a, . . . ,−a):

1

M ′

∑
i

zi =
−(M ′ − 1)a+ b

M ′
,

1

M ′

∑
i

(zi)
2 =

(M ′ − 1)a2 + b2

M ′
,

1

M ′

∑
i

(zi)
4 =

(M ′ − 1)a4 + b4

M ′
,

1

M ′

∑
i

zi = 0,
1

M ′

∑
i

(zi)
2 = 1 =⇒ a =

1√
M ′ − 1

, b =
√
M ′ − 1,

1

M ′

∑
i

(zi)
4 =

1 + (M ′ − 1)3

M ′(M ′ − 1)
.

This shows that the empirical kurtosis of (z0, . . . , zM ′) is roughly bounded by M ′, i.e. that the pathologies of the signal
are naturally limited by the number of input images M . As a result, for larger M we found that: (i) reff(x

l) gets closer
to 1; (ii) µ4(zl) gets even larger and ν1(|zl|) gets even smaller; (iii) | exp(mBN[χl])− 1| and |δBNχ

l − 1| get larger; (iv)
| exp(mφ[χl])− 1| and |δφχl − 1| get even smaller.

– The dynamics of | exp(mBN[χl])− 1| at very low depth in Fig. 4, 5 stems from the input images from cifar10 having
a number of channels equal to 3� Nl = 512. The signal is therefore ill-conditioned at very low depth and quickly gets
better conditioned, implying that | exp(mBN[χl])− 1| is non-negligible at very low depth and quickly gets vanishing. This
dynamics is brief and occurs before the settling of the main dynamics which leads in particular to the conditioning of the
signal degrading again in Fig. 4.

– We tested to set more realistic values for the width Nl in the experiment of Fig. 2. We always observed an absolutely
equivalent behaviour apart from the diffusion getting slower with larger Nl.

– We tested to change the boundary conditions from periodic to reflective and to zero-padding. We always observed an
equivalent behaviour with reflective conditions. As for zero-padding conditions: (i) the evolution of vanilla nets was
slightly changed with reff(x

l) converging to a value of roughly 2 instead of 1 due to the creation of new signal directions by
zero-padding; (ii) the evolution of batch-normalized feedforward nets and batch-normalized resnets were always equivalent.
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– We tested to change the dataset from cifar10 to mnist, with the random initial convolution of stride 2 reducing the
spatial dimension from 28 to n = 14 and increasing the width from 1 to N0. We observed an equivalent behaviour apart
from the signal being slightly more fat-tailed at low depth due to the original images being more fat-tailed in mnist
than in cifar10.

– Finally we tested to change the fuzz parameter ε of batch normalization. The experiments of Fig. 4, 5 used the standard
value ε = 0.001 but we observed an indistinguishable behaviour when using the value ε = 0.

B. Complementary Definitions and Notations
In this section, we use again vl as placeholder for any tensor of layer l in the simultaneous propagation of (xl,dxl).

B.1. Receptive Field

Receptive Field Mapping. Let us consider the convolution at layer l of an input vl−1 ∈ Rn×···×n×Nl−1 from layer l − 1.
The output feature map of the convolution (ωl ∗ vl−1)α,: at position α ∈ {1, . . . , n}d is obtained by the application of the
convolution kernel ωl over a local input region from vl−1 of size Kd

l Nl−1, with Kd
l the spatial extent and Nl−1 the channel

extent. The local input region is called the receptive field of ωl ∗ vl−1 at spatial position α.

The receptive field mapping RF associates vl−1 to the tensor RF(vl−1) ∈ Rn×···×n×Kd
l Nl−1 , with RF(vl−1)α,: the

reshaped vectorial form of the receptive field of ωl ∗vl−1 at spatial positionα. We denoteRl = Kd
l Nl−1 the dimensionality

of RF(vl−1)α,: and Ilc the set of indices in RF(vl−1)α,: corresponding to elements in channel c in vl−1. Strictly speaking,
RF depends on l but this is implied by the argument, so we write RF for simplicity.

Receptive Field Vectors. The receptive field vector and centered receptive field vector associated with vl−1 are defined as

ρ(vl−1,α) ≡ RF(vl−1)α,: and ρ̂(vl−1,α) ≡ RF(vl−1)α,: − Ex,dx,α[RF(vl−1)α,:],

where, slightly abusively, we overloaded the notation x,dx,α,vl−1 in the expectation. Again, strictly speaking, ρ and ρ̂
depend on l but this is implied by the argument.

B.2. Propagation with Receptive Field Formulation

Equation of Propagation. Using the definition of RF, the affine transformation from the receptive field RF(xl−1)α,: to
the feature map in the next layer ylα,: can be written as

ylα,: = W lRF(xl−1)α,: + bl = W lRF(xl−1)α,: + βlα,:, (16)

withW l ∈ RNl×Rl the suitably reshaped matricial form of ωl. To lighten notation, we write yl = W lRF(xl−1) + βl as
a short for the affine transformation of Eq. (16) occuring at all spatial positions α. We have the following equivalence
between the notations with receptive field and convolution:

W lRF(xl−1) + βl = ωl ∗ xl−1 + βl.

For vanilla nets, the simultaneous propagation of (xl,dxl) can be written as

yl = W lRF(xl−1) + βl, dyl = W lRF(dxl−1),

xl = φ(yl), dxl = φ′(yl)� dyl.

For batch-normalized feedforward nets, the simultaneous propagation of (xl,dxl) can be written as

yl = W lRF(xl−1) + βl, dyl = W lRF(dxl−1),

zl = BN(yl), dzl = BN′(yl)� dyl,

xl = φ(zl), dxl = φ′(zl)� dzl.
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B.3. Symmetric Propagation

Symmetric Propagation for Vanilla Nets. We define additional tensors obtained by symmetric propagation at each layer l.
For vanilla nets, they are given by

ȳl = −W lRF(xl−1)− βl, dȳl = −W lRF(dxl−1),

x̄l = φ(ȳl), dx̄l = φ′(ȳl)� dȳl.

Under standard initialization, the tensor moments have the same distribution with respect to θl for both propagations.
Furthermore, ∀α, c: xlα,c + x̄lα,c =

∣∣ylα,c∣∣ and xlα,c x̄
l
α,c = 0, implying that ∀α, c: (xlα,c)

2 + (x̄lα,c)
2 = (ylα,c)

2. Thus ∀c:

ν2,c(x
l) + ν2,c(x̄

l) = ν2,c(y
l). (17)

Now let us consider the second-order moments of the noise tensor:

(dxlα,c)
2 + (dx̄lα,c)

2 = (dylα,c)
2φ′(yα,c)

2 + (dȳlα,c)
2φ′(ȳα,c)

2 = (dylα,c)
2[φ′(yα,c)

2 + φ′(ȳα,c)
2] = (dylα,c)

2, (18)

where Eq. (18) was obtained using dȳlα,c = −dylα,c and ylα,c = −ȳlα,c, as well as the convention φ′(0) ≡ 1/2. Since dxl,
dx̄l, dyl are centered, it follows that ∀c:

µ2,c(dx
l) + µ2,c(dx̄

l) = ν2,c(dx
l) + ν2,c(dx̄

l) = ν2,c(dy
l) = µ2,c(dy

l). (19)

Symmetric Propagation for Batch-Normalized Feedforward Nets. For batch-normalized feedforward nets, the
symmetric propagation at each layer l is given by

ȳl = −W lRF(xl−1)− βl, dȳl = −W lRF(dxl−1), (20)

z̄l = BN(ȳl), dz̄l = BN′(ȳl)� dȳl, (21)

x̄l = φ(z̄l), dx̄l = φ′(z̄l)� dz̄l. (22)

BN in Eq. (21) uses the statistics of ȳl such that, under standard initialization, the tensor moments have the same distribution
with respect to θl for both propagations. We then simply have

z̄l = −zl, dz̄l = −dzl. (23)(24)

The same analysis as before gives ∀c:

ν2,c(x
l) + ν2,c(x̄

l) = ν2,c(z
l), (25)

µ2,c(dx
l) + µ2,c(dx̄

l) = µ2,c(dz
l). (26)

B.4. Gramian and Covariance Matrices

We adopt the standard definition of the Gramian matrices of ϕ(vl−1,α), ϕ̂(vl−1,α), ρ(vl−1,α), ρ̂(vl−1,α):

Gx,dx,α[ϕ(vl−1,α)] ≡ Ex,dx,α

[
ϕ(vl−1,α)ϕ(vl−1,α)T

]
,

Gx,dx,α[ϕ̂(vl−1,α)] ≡ Ex,dx,α

[
ϕ̂(vl−1,α)ϕ̂(vl−1,α)T

]
,

Gx,dx,α[ρ(vl−1,α)] ≡ Ex,dx,α

[
ρ(vl−1,α)ρ(vl−1,α)T

]
,

Gx,dx,α[ρ̂(vl−1,α)] ≡ Ex,dx,α

[
ρ̂(vl−1,α)ρ̂(vl−1,α)T

]
.

Then, the covariance matrices of ϕ(vl−1,α), ϕ̂(vl−1,α), ρ(vl−1,α), ρ̂(vl−1,α) are defined as

Cx,dx,α[ϕ(vl−1,α)] = Cx,dx,α[ϕ̂(vl−1,α)] = Gx,dx,α[ϕ̂(vl−1,α)],

Cx,dx,α[ρ(vl−1,α)] = Cx,dx,α[ρ̂(vl−1,α)] = Gx,dx,α[ρ̂(vl−1,α)].
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B.5. Statistics-Preserving Property

Statistics-Preserving Property. RF is statistics-preserving with respect to vl−1 if for any channel c and any index ic ∈ Ilc,
the random variables RF(vl−1)α,ic = ρ(vl−1,α)ic and vl−1

α,c = ϕ(vl−1,α)c, which depend on x, dx, α, have the same
distribution: RF(vl−1)α,ic = ρ(vl−1,α)ic ∼x,dx,α vl−1

α,c = ϕ(vl−1,α)c.

First we will prove that RF is statistics-preserving with respect to xl−1, dxl−1 when convolutions have periodic boundary
conditions and the global spatial extent n is constant. Afterwards, we will provide a possible relaxation of these assumptions.
The global spatial extent will be denoted as nl when it is non-constant.

B.5.1. CASE OF PERIODIC BOUNDARY CONDITIONS AND CONSTANT SPATIAL EXTENT nl = n

Lemma 1. If convolutions have periodic boundary conditions and the global spatial extent n is constant, then RF is
statistics-preserving with respect to any input vl−1 from layer l − 1.

Proof. Fix a channel c in vl−1, an index ic ∈ Ilc, and consider the tensors vl−1
:,c , RF(vl−1):,ic ∈ Rn×···×n. The

index ic corresponds to a given convolution kernel position κ ∈ {1, . . . ,Kl}d. Under periodic boundary conditions,
this fixed kernel position κ implies that each position α in RF(vl−1)α,ic originates from a different position α′ in
the tensor vl−1

α′,c. Therefore the index mapping f : α → α′ from {1, . . . , n}d to {1, . . . , n}d is bijective. We then
have RF(vl−1)α,ic = vl−1

f(α),c ∼α vl−1
α,c when vl−1 is deterministic and α is random. In turn, this implies that

RF(vl−1)α,ic ∼x,dx,α vl−1
α,c , when x,dx,α are random.

Proposition 2. If convolutions have periodic boundary conditions and the global spatial extent n is constant, then RF is
statistics-preserving with respect to xl−1 and dxl−1.

Proof. This follows immediately from Lemma 1.

Corollary 3. For any channel c and ic ∈ Ilc, we have ρ(xl−1,α)ic ∼x,α ϕ(xl−1,α)c and ρ(dxl−1,α)ic ∼x,dx,α

ϕ(dxl−1,α)c. Since the cardinality |Ilc| = Kd
l is the same for all channels c, it follows that

ν2(xl−1) =
1

Nl−1
TrGx,α[ϕ(xl−1,α)] =

1

Rl
TrGx,α[ρ(xl−1,α)],

µ2(xl−1) =
1

Nl−1
TrCx,α[ϕ(xl−1,α)] =

1

Rl
TrCx,α[ρ(xl−1,α)],

ν2(dxl−1) = µ2(dxl−1) =
1

Nl−1
TrCx,dx,α[ϕ(dxl−1,α)] =

1

Rl
TrCx,dx,α[ρ(dxl−1,α)].

Note that this result always holds in the fully-connected case nl = 1, characterized by ρ(xl−1,α) = ϕ(xl−1,α),
ρ(dxl−1,α) = ϕ(dxl−1,α) and Rl = Nl−1.

B.5.2. CASE OF LARGE SPATIAL EXTENT nl � Kl

Proposition 4. If the convolution stride is one (i.e. nl−1 = nl) in most layers and the global spatial extent is much larger
than the convolutional spatial extent (i.e. nl � Kl) in most layers, then, for any boundary conditions, RF is approximately
statistics-preserving with respect to xl−1 and dxl−1.

Proof. Fix a layer l − 1 such that nl−1 = nl and nl � Kl. Denote RF(p) the receptive field mapping associated
with periodic boundary conditions. Since nl−1 = nl � Kl the receptive fields RF(xl−1)α,:,RF(dxl−1)α,: and
RF(p)(xl−1)α,:,RF(p)(dxl−1)α,: do not intersect boundary regions for most α, implying for most α:

RF(xl−1)α,: = RF(p)(xl−1)α,:, RF(dxl−1)α,: = RF(p)(dxl−1)α,:.

This implies for any index ic that Px,α

[
RF(xl−1)α,ic

]
' Px,α

[
RF(p)(xl−1)α,ic

]
and Px,dx,α

[
RF(dxl−1)α,ic

]
'

Px,dx,α

[
RF(p)(dxl−1)α,ic

]
.
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Since RF(p) is statistics-preserving with respect to xl−1 and dxl−1 by Lemma 1, it follows for any channel c and
index ic ∈ Ilc that Px,α

[
RF(p)(xl−1)α,ic

]
= Px,α

[
xl−1
α,c

]
and Px,dx,α

[
RF(p)(dxl−1)α,ic

]
= Px,dx,α

[
dxl−1
α,c

]
. We then

deduce that Px,α

[
RF(xl−1)α,ic

]
' Px,α

[
xl−1
α,c

]
and Px,dx,α

[
RF(dxl−1)α,ic

]
' Px,dx,α

[
dxl−1
α,c

]
, meaning that RF is

approximately statistics-preserving with respect to xl−1 and dxl−1.

C. Details of Section 3 and Section 4
C.1. Approximation of Φl(x + dx)− Φl(x) by dxl

We use the definitions and notations from Section B in the context of the propagation of Eq. (1) and Eq. (2). We further
suppose that a.s. with respect to x: ∃r > 0 such that Φl is differentiable in the open ball Br(x) of radius r at point x (see
Section C.2 for the justification).

We will prove that

µ2(Φl(x + dx)− Φl(x)− dxl)

µ2(dxl)
→ 0 as σdx → 0 (with fixed distributions of x and dx/σdx). (27)

Due to the 1-Lipschitzness of φ = ReLU, under periodic boundary conditions, we have that ∀t,u,v,w:(
φ
(
W l

c,:ρ(t,α) + βl
)
− φ

(
W l

c,:ρ(u,α) + βl
))2

≤ ||W l||2 · ||ρ(t,α)− ρ(u,α)||22 ≤ ||W l||2 · ||vec(t− u)||22,(
φ′(vα,c) ·W l

c,:ρ(w,α)
)2

≤ ||W l||2 · ||ρ(w,α)||22 ≤ ||W l||2 · ||vec(w)||22,

with ||W l|| the spectral norm ofW l. It follows that ∀x,dx:

||vec(Φl(x + dx)− Φl(x))||22 ≤
(

l∏
k=1

ndNl||W l||2
)
· ||vec(dx)||22,

||vec(dxl)||22 ≤
(

l∏
k=1

ndNl||W l||2
)
· ||vec(dx)||22.

This gives:

||vec(Φl(x + dx)− Φl(x)− dxl)||22 ≤ 2||vec(Φl(x + dx)− Φl(x))||22 + 2||vec(dxl)||22

≤ 4

(
l∏

k=1

ndNl||W l||2
)
· ||vec(dx)||22

≤ C||vec(dx)||22,

with C = 4 ·∏l
k=1 n

dNl||W l||2.

The assumption on the differentiability of Φl implies that ∀ε > 0, ∃ηε > 0: Px

[
Φl is differentiable in Bηε(x)

]
≥ 1 − ε.

Markov’s inequality applied to ||vec(dx)||22 further implies that

Pdx

[
||vec(dx)||2 > ηε

]
= Pdx

[
||vec(dx)||22 > η2

ε

]
≤ ndN0σ

2
dx

η2
ε

.

It then follows that ∀ε > 0, ∃ηε, σε > 0 such that ∀σdx < σε:

Px,dx[Aε ] ≥ 1− 2ε,

with Aε =
{
||vec(dx)||2 ≤ ηε

}
∩
{

Φl is differentiable in Bηε(x)
}

.
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Denoting Ac
ε the complementary event of Aε, we deduce that ∀σdx < σε:

Ex,dx

[
1Ac

ε
||vec

(
Φl(x + dx)− Φl(x)− dxl

)
||22
]
≤ Ex,dx

[
1Ac

ε
C||vec(dx)||22

]
≤ Cσ2

dxEx,dx

[
1Ac

ε
||vec(dx/σdx)||22

]
≤ Cσ2

dxPx,dx[Ac
ε]

1
2Ex,dx

[
||vec(dx/σdx)||42

] 1
2 (28)

≤ Cσ2
dx(2ε)

1
2Ex,dx

[
||vec(dx/σdx)||42

] 1
2 ,

where we used Cauchy-Schwarz inequality in Eq. (28).

Since Φl(x + dx)− Φl(x)− dxl = 0 under Aε, it follows that ∀σdx < σε:

µ2

(
Φl(x + dx)− Φl(x)− dxl

)
µ2(dxl)

=
1

ndNl
Ex,dx

[
||vec

(
Φl(x + dx)− Φl(x)− dxl

)
||22
]

µ2(dx) · Ex,α,c
[
||vec(∇xxlα,c)||22

] (29)

≤
1

ndNl
C(2ε)

1
2Ex,dx

[
||vec(dx/σdx)||42

] 1
2

Ex,α,c
[
||vec(∇xxlα,c)||22

] ≤ C ′ε 1
2 ,

where we used Proposition 5 in Eq. (29) and appropriately defined the constant C ′.

Let us finally consider ε′ > 0 and ε such that C ′ε
1
2 = ε′. Then ∃σε > 0 such that ∀σdx < σε:

µ2

(
Φl(x + dx)− Φl(x)− dxl

)
µ2(dxl)

≤ ε′,

which proves Eq. (27).

C.2. Assumption that Φl is Differentiable a.s. with respect to x

The sensitivity equivalence detailed in Section C.3 relies on the assumption that Φl(x) is differentiable surely with respect
to x. If Φl(x) is differentiable a.s. with respect to x, this can be relaxed using subdifferentials by noting that moments with
respect to x,dx,α are left unchanged when ignoring zero-probability events.

Now let us justify the assumption that Φl(x) is differentiable a.s. with respect to x in the context of the propagation of Eq. (1)
and Eq. (2). We denote the receptive field vectors ρ(xk−1,α) as in Section B, and we denote Θl ≡ (ω1,β1, . . . ,ωl,βl) as
in Section 4. We further assume standard initialization.

Let A ≡
{
∃r > 0 such that Φl is differentiable in the open ball Br(x) of radius r at point x

}
be an event depending on x,

Θl, and let Ac be the complementary event. We will prove that Px|Θl [A] = 1 with probability 1 with respect to Θl.

For given x such that ∀α: xα,: 6= 0, it is easy to see that

Ac =⇒ ∃k ≤ l,∃α, c : ρ(xk−1,α) 6= 0 and xkα,c = 0.

Under standard initialization, this corresponds to a zero-probability event with respect to Θl, meaning that PΘl|x[A] =
1− PΘl|x[Ac] = 1.

Now considering x again as random, using Fubini’s Theorem and making the assumption that xα,: 6= 0 a.s. with respect to
x,α (which is the case e.g. if xα,: has well-defined probability density function):

EΘlPx|Θl [A] = EΘlEx|Θl [1A] = ExEΘl|x[1A] = ExPΘl|x[A] = 1. (30)

By contradiction, if there would be non-zero probability with respect to Θl that Px|Θl [A] 6= 1, then Eq. (30) would not hold.
Therefore with probability 1 with respect to Θl, Px|Θl [A] = 1, implying that with probability 1 with respect to Θl, Φl(x) is
differentiable a.s. with respect to x.
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C.3. Property of Normalized Sensitivity

Proposition 5. The noise tensor dxl and the vectorized version of the tensor ∇xx
l
α,c, containing for given α, c the

derivatives of xlα,c with respect to x = x0, are related by: Ex,α,c
[
||vec(∇xx

l
α,c)||22

] 1
2 =

√
µ2(dxl)/

√
µ2(dx) =√

µ2(dxl)/
√
µ2(dx0).

Proof. Due to the definition of dxl as the first-order approximation of Φl(x + dx)− Φl(x):

dxlα,c =
〈
vec(∇xx

l
α,c), vec(dx)

〉
=
〈
vec(∇xx

l
α,c), vec(dx0)

〉
,

with 〈 , 〉 the standard dot product in RndN0 .

Then due to the white noise property: Edx[dxidxj ] = σ2
dxδij = µ2(dx)δij = µ2(dx0)δij , we deduce that

Edx

[
(dxlα,c)

2
]

= µ2(dx) · ||vec(∇xx
l
α,c)||22,

Ex,dx,α,c
[
(dxlα,c)

2
]

= µ2(dx) · Ex,α,c
[
||vec(∇xx

l
α,c)||22

]
,(

µ2(dxl)

µ2(dx)

) 1
2

=

(
µ2(dxl)

µ2(dx0)

) 1
2

= Ex,α,c
[
||vec(∇xx

l
α,c)||22

] 1
2 .

Proposition 6. Denoting the neural network mapping xl = Φl(x) = Φl(x
0) and the constant rescaling

Ψl(x) =
√
µ2(xl)/

√
µ2(x0) ·x0 =

√
µ2(xl)/

√
µ2(x) ·x leading to the same signal variance: µ2(Ψl(x)) = µ2(Φl(x)),

the normalized sensitivity χl exactly measures the excess root mean square sensitivty of the neural network mapping Φl
relative to the constant rescaling Ψl:

χl =
Ex,α,c

[
||vec(∇xΦl(x)α,c)||22

] 1
2

Ex,α,c
[
||vec(∇xΨl(x)α,c)||22

] 1
2

=
Ex,α,c

[
||vec(∇xx

l
α,c)||22

] 1
2

Ex,α,c
[
||vec(∇xΨl(x)α,c)||22

] 1
2

.

Proof. This directly follows from: (i) the definition of χl; (ii) the result from Proposition 5; (iii) the fact that the constant

rescaling Ψl has root mean square sensitivitiy equal to Ex,α,c
[
||vec(∇xΨl(x)α,c)||22

] 1
2 =

√
µ2(xl)/

√
µ2(x0).

C.4. Characterizing Pathologies

We consider the following mean vectors and rescaling of the signal:

νl ≡ (ν1,c(x
l))1≤c≤Nl , x̃l ≡ 1

||νl||2
xl, ν̃l ≡ (ν1,c(x̃

l))1≤c≤Nl =
νl

||νl||2
.

We immediately have ||ν̃l||2 = 1. Furthermore we have

ν2(xl) =
1

Nl

∑
c

Ex,α

[
ϕ(xl,α)2

c

]
=

1

Nl

(∑
c

Varx,α
[
ϕ(xl,α)c

]
+ Ex,α

[
ϕ(xl,α)c

]2)
=

1

Nl

(∑
c

µ2,c(x
l) + ν1,c(x

l)2
)

= µ2(xl) +
1

Nl
||νl||22.

The pathology µ2(xl)/ν2(xl)
l→∞−−−→ 0 implies ||νl||22/

(
Nlν2(xl)

) l→∞−−−→ 1, which in turn implies µ2(xl)/||νl||22
l→∞−−−→ 0,

i.e. µ2(x̃l)
l→∞−−−→ 0. It follows that ϕ(x̃l,α) becomes point-like concentrated at point ν̃l of unit L2 norm.
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C.5. Derivation of Eq. (5), (6) and (7)

The quantities m[ν2(xk)], m[ν2(xk)] and s[ν2(xk)] are defined as

m[ν2(xk)] ≡ logEθk [δν2(xk)],

m[ν2(xk)] ≡ Eθk [log δν2(xk)]− logEθk [δν2(xk)],

s[ν2(xk)] ≡ log δν2(xk)− Eθk [log δν2(xk)].

Denoting δν2(xk) ≡ δν2(xk)/Eθk [δν2(xk)] the multiplicatively centered increments of ν2(xk), the term m[ν2(xk)] can be
expressed as

m[ν2(xk)] = Eθk
[

log
(
δν2(xk)Eθk [δν2(xk)]

)]
− logEθk [δν2(xk)]

= Eθk [log δν2(xk)] + logEθk [δν2(xk)]− logEθk [δν2(xk)] (31)

= Eθk [log δν2(xk)],

where we used Eθk [logEθk [δν2(xk)]] = logEθk [δν2(xk)] in Eq. (31). The term s[ν2(xk)] can be expressed as

s[ν2(xk)] = log
(
δν2(xk)Eθk [δν2(xk)]

)
− Eθk

[
log
(
δν2(xk)Eθk [δν2(xk)]

)]
= log δν2(xk) + logEθk [δν2(xk)]− Eθk [log δν2(xk)]− logEθk [δν2(xk)] (32)

= log δν2(xk)− Eθk [log δν2(xk)],

where we used again Eθk [logEθk [δν2(xk)]] = logEθk [δν2(xk)] in Eq. (32).

D. Details of Section 5
D.1. Lemmas on Weak Convergence

Weak Convergence. The sequence of random variables (Xk)k∈N converges weakly to the random variable X if
P[Xk ≤ a]

k→∞−−−−→ P[X ≤ a] for every continuity point a of the function x 7→ P[X ≤ x]. We then write Xk ⇒ X .

Tightness. The sequence of random variables (Xk)k∈N is tight if

∀ε,∃aε, bε ∈ R : infk P
[
Xk ∈]aε, bε]

]
≥ 1− ε.

Uniform Integrability. The sequence of random variables (Xk)k∈N is uniformly integrable if

supk E
[
1{|Xk|≥M}|Xk|

] M→∞−−−−→ 0.

Lemma 7 (Theorem 25.7 in Billingsley (1995)). Consider a real-valued function h, continuous everywhere apart from
a finite set of discontinuity points Dh = {x1, . . . , xp}. Then h is measurable and if Xk ⇒ X with P[X ∈ Dh] = 0, then
h(Xk)⇒ h(X).

Lemma 8 (Theorem 25.10 in Billingsley (1995), known as Prokhorov’s theorem). If the sequence of random variables
(Xk)k∈N is tight, then it admits a weakly convergent subsequence, i.e. there exists a sequence (ik)k∈N of strictly increasing
indices and a random variable X such that Xik ⇒ X .

Lemma 9 (Theorem 25.12 in Billingsley (1995)). If the sequence of random variables (Xk)k∈N is uniformly integrable and

if Xk ⇒ X , then X has well-defined expectation and E[Xk]
k→∞−−−−→ E[X].
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D.2. Lemma on the Sum of Increments

Lemma 10. Let us consider a sequence (Xk)k∈N of random variables and a decreasing sequence of events (Ak)k∈N,
which both depend on Θk. Let us suppose that Pθk|Ak−1

[Ak] does not depend on Θk−1 and let us denote under Ak:

Yk ≡ Eθk|Ak [Xk], Zk ≡ Xk − Eθk|Ak [Xk].

Let us further suppose that there exist constants mmin, mmax, vmin, vmax such that ∀k, under Ak:

mmin ≤ Yk ≤ mmax, vmin ≤ Varθk|Ak [Zk] ≤ vmax.

Then it follows that

(i) The random variables Zk are centered and non-correlated such that ∀k, ∀k′ 6= k:

EΘk|Ak [Zk] = 0, EΘmax(k,k′)|Amax(k,k′)
[ZkZk′ ] = 0.

(ii) There exist random variables ml and sl such that under Al:

l∑
k=1

Xk = lml +
√
lsl, mmin ≤ ml ≤ mmax, EΘl|Al [sl] = 0, vmin ≤ VarΘl|Al [sl] ≤ vmax.

Proof of (i). First we show that Zk is centered under Ak:

Eθk|Ak [Zk] = Eθk|Ak [Xk]− Eθk|Ak [Xk] = 0, (33)

EΘk|Ak [Zk] =
EΘk−1|Ak−1

[Eθk|Ak−1
[1AkZk]]

PΘk|Ak−1
[Ak]

= EΘk−1|Ak−1

[
Eθk|Ak−1

[1AkZk]

Pθk|Ak−1
[Ak]

]
= EΘk−1|Ak−1

[
Eθk|Ak [Zk]

]
= 0.

Now for k < k′, we have k ≤ k′ − 1 and thus Zk is fully determined by Θk′−1. Then we can write

EΘk′ |Ak′ [ZkZk
′ ] = EΘk′−1|Ak′−1

Eθk′ |Ak′ [ZkZk′ ] = EΘk′−1|Ak′−1

[
Zk Eθk′ |Ak′ [Zk′ ]

]
= 0,

where we used Eq. (33).

Proof of (ii). First we note that

VarΘk|Ak
[
Zk
]

= EΘk|Ak
[
Z2
k

]
= EΘk−1|Ak−1

Eθk|Ak
[
Z2
k

]
= EΘk−1|Ak−1

Varθk|Ak
[
Zk
]
.

Combined with the hypothesis that vmin ≤ Varθk|Ak [Zk] ≤ vmax, we deduce that

vmin ≤ VarΘk|Ak
[
Zk
]
≤ vmax. (34)

Now let us denote Ml ≡
∑l
k=1 Yk and Sl ≡

∑l
k=1 Zk. Then, using (i), we get that

EΘl|Al
[
Sl
]

=
∑

k
EΘl|Al [Zk] = 0,

VarΘl|Al
[
Sl
]

= EΘl|Al
[
S2
l

]
=
∑

k,k′
EΘl|Al

[
ZkZk′

]
=
∑

k
EΘk|Ak

[
Z2
k

]
=
∑

k
VarΘk|Ak

[
Zk
]
. (35)
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The hypothesis implies under Al that lmmin ≤ Ml ≤ lmmax, while Eq. (34) and Eq. (35) together imply that
lvmin ≤ VarΘl|Al [Sl] ≤ lvmax. If we define ml ≡ Ml/l and sl ≡ Sl/

√
l, then

∑l
k=1Xk =

∑l
k=1 Yk +

∑l
k=1 Zk can be

written as required under Al:

l∑
k=1

Xk = Ml + Sl = lml +
√
lsl, mmin ≤ ml ≤ mmax, EΘl|Al [sl] = 0, vmin ≤ VarΘl|Al [sl] ≤ vmax.

D.3. Proof of Theorem 1

Theorem 1 (moments of vanilla nets). There exist small constants 1 � mmin,mmax, vmin, vmax > 0, random variables
ml,m

′
l, sl, s

′
l and events Al, A′l of probabilities equal to

∏l
k=1(1− 2−Nk+1) such that

Under Al: log

(
ν2(xl)

ν2(x0)

)
= −lml +

√
lsl, mmin ≤ ml ≤ mmax, EΘl|Al

[
sl
]

= 0, vmin ≤ VarΘl|Al
[
sl
]
≤ vmax,

Under A′l: log

(
µ2(dxl)

µ2(dx0)

)
= −lm′l +

√
ls′l, mmin ≤ m′l ≤ mmax, EΘl|A′l

[
s′l
]

= 0, vmin ≤ VarΘl|A′l

[
s′l
]
≤ vmax.

D.3.1. PROOF INTRODUCTION

Using the definitions and notations from Section B, denoting (e1, . . . , eRl) and (λ1, . . . , λRl) respectively the orthogonal
eigenvectors and eigenvalues ofGx,α[ρ(xl−1,α)] and denoting Ŵ l ≡W l(e1, . . . , eRl), we get that ∀c:

ν2,c(y
l) = Ex,α

[
(ylα,c)

2
]

= Ex,α

[(
W l

c,:ρ(xl−1,α)
)2]

=
∑
i

(
Ŵ l

c,i

)2
λi = Rl ν2(xl−1)

∑
i

(
Ŵ l

c,i

)2
λ̂i,

where we defined λ̂i ≡ λi /
∑
j λj and used

∑
j λj = TrGx,α

[
ρ(xl−1,α)

]
= Rlν2(xl−1) by Corollary 3.

Let us further define

ulc ≡


ν2,c(xl)

ν2,c(xl)+ν2,c(x̄l)
if ν2,c(x

l) + ν2,c(x̄
l) > 0

1
2 otherwise.

Combined with ν2,c(y
l) = ν2,c(x

l) + ν2,c(x̄
l) by Eq. (17), we get that ∀c, under

{
ν2(xl−1) 6= 0

}
:

ν2,c(x
l) + ν2,c(x̄

l) = Rl ν2(xl−1)
∑
i

(
Ŵ l

c,i

)2
λ̂i, (36)

ν2,c(x
l) = ulc Rl ν2(xl−1)

∑
i

(
Ŵ l

c,i

)2
λ̂i. (37)

Now combining Eq. (36) with the symmetry of the propagation: ν2,c(x
l) ∼θl ν2,c(x̄

l), and the assumption of standard
initialization: W l

c,: ∼θl Ŵ l
c,: ∼θl N (0, 2 /RlI), we get that ∀c, under

{
ν2(xl−1) 6= 0

}
:

2Eθl
[
ν2,c(x

l)
]

= Eθl
[
ν2,c(x

l) + ν2,c(x̄
l)
]

= Eθl
[
Rlν2(xl−1)

∑
i

(
Ŵ l

c,i

)2
λ̂i

]
= Rlν2(xl−1)

2

Rl

∑
i

λ̂i = 2ν2(xl−1).
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Thus ∀c : Eθl [ν2,c(x
l)] = ν2(xl−1) and Eθl [ν2(xl)] = ν2(xl−1), i.e. that under

{
ν2(xl−1) 6= 0

}
:

Eθl [δν2(xl)] = 1. (38)

Next, let us define

vlc ≡


0 if ulc <

1
2

1 if ulc >
1
2 ,

ṽlc if ulc = 1
2

with ṽlc ∼ Bernouilli(1/2) independent of ωl and βl.

Conditionally on ulc = 1/2: vlc ∼ Bernouilli(1/2), independently of ν2,c(y
l) and ||W l

c,:||2. And conditionally on
ulc 6= 1/2: vlc ∼ Bernouilli(1/2), independently of ν2,c(y

l) and ||W l
c,:||2. It follows that vlc ∼ Bernouilli(1/2),

independently of ν2,c(y
l) and ||W l

c,:||2.

Defining Bl ≡ {∃c : vlc = 1} we get that Pθl [Bl] = 1− 2−Nl . We also get that Bl is independent of
(
||W l

c,:||2
)

1≤c≤Nl
and

thus of ||W l||F . This will be useful later in the course of this proof.

Denoting Al =
⋂l
k=1

(
Bk ∩

{
ν2(xk) 6= 0

})
, we have that

Pθl|Al−1

[
Al
]

= Pθl|Al−1

[
Bl ∩ {ν2(xl) 6= 0}

]
= Pθl|Al−1

[
Bl
]

= 1− 2−Nl ,

PΘl
[
Al
]

= PΘl

[⋂l

k=1
Ak

]
=
∏l

k=1
Pθk|Ak−1

[
Ak
]

=
∏l

k=1

(
1− 2−Nk

)
.

where we used Pθl|Al−1

[
Bl ∩

{
ν2(xl) 6= 0

}]
= Pθl|Al−1

[
Bl
]

due to Pθl|Bl∩Al−1

[
ν2(xl) 6= 0

]
= 1.

Now since (ν2,c(y
l))1≤c≤Nl and (vlc)1≤c≤Nl are independent, Eq. (37) implies that ∃(wi)1≤i≤Rl such that under

Bl ∩
{
ν2(xl−1) 6= 0

}
:

(wi)1≤i≤Rl ∼ N (0, 2 /RlI),
1

Nl

(
1

2

)
Rlν2(xl−1)

Rl∑
i=1

w2
i λ̂i ≤

1

Nl

Nl∑
c=1

ν2,c(x
l),

(wi)1≤i≤Rl ∼ N (0, 2 /RlI),
Rl
2Nl

Rl∑
i=1

w2
i λ̂i ≤ δν2(xl).

On the other hand, ∃(wi,j)1≤i≤Rl, 1≤j≤Nl such that under Bl ∩
{
ν2(xl−1) 6= 0

}
:

(wi,j)1≤i≤Rl, 1≤j≤Nl ∼ N (0, 2 /RlI) : δν2(xl) ≤ Rl
Nl

Nl∑
j=1

Rl∑
i=1

w2
i,j λ̂i ≤

Rl
Nl

Nl∑
j=1

Rl∑
i=1

w2
i,j .

Denoting Chi-Squared(1) and Chi-Squared(NlRl) the chi-squared distributions with 1 and NlRl degrees of freedom
respectively, ∃wmin, wmax such that under Bl ∩

{
ν2(xl−1) 6= 0

}
:

wmin ∼
Rl
2Nl

2

Rl

1

Rl
Chi-Squared(1), wmax ∼

Rl
Nl

2

Rl
Chi-Squared(NlRl), wmin ≤ δν2(xl) ≤ wmax,

wmin ∼
1

NlRl
Chi-Squared(1), wmax ∼

2

Nl
Chi-Squared(NlRl), wmin ≤ δν2(xl) ≤ wmax, (39)

where we used maxi λ̂i ≥ 1
Rl

.
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Simply replacing xl by dxl, yl by dyl,Gx,α byCx,dx,α, using Eq. (19) instead of Eq. (17) and the identity with µ2(dxl−1)

instead of ν2(xl−1) in Corollary 3, we get that under
{
µ2(dxl−1) 6= 0

}
:

Eθl [δµ2(dxl)] = 1. (40)

Furthermore ∃B′l , independent of ||W l||F , such that Pθl
[
B′l
]

= 1 − 2−Nl , and ∃w′min, w
′
max such that under

B′l ∩
{
µ2(dxl−1) 6= 0

}
:

w′min ∼
1

NlRl
Chi-Squared(1), w′max ∼

2

Nl
Chi-Squared(NlRl), w′min ≤ δµ2(dxl) ≤ w′max. (41)

Denoting A′l =
⋂l
k=1

(
B′k ∩

{
µ2(dxk) 6= 0

})
, we also have

PΘl
[
A′l
]

=
∏l

k=1

(
1− 2−Nk

)
.

Both log x and (log x)2 are integrable at 0 since
∫

log x dx = x log x− x and
∫

(log x)2dx = x(log x)2 − 2x log x+ 2x.
By Eq. (39) and Eq. (41), it then follows that log δν2(xl) and log δµ2(xl) have well-defined expectation and variance under
Al and A′l respectively.

Now, crucially, let us note that the distributions of δν2(xl) with respect to θl|Al and δµ2(xl) with respect to θl|A′l are fully
determined by: (i) the input distributions Px(x) = Px0(x0) and Pdx(dx) = Pdx0(dx0); (ii) the model parameters Θl−1

up to layer l − 1.

We are thus interested in the following infima and suprima:

inf
Px0 (x0),Pdx0 (dx0),Θl−1

Eθl|Al [− log δν2(xl)], sup
Px0 (x0),Pdx0 (dx0),Θl−1

Eθl|Al [− log δν2(xl)], (42)

inf
Px0 (x0),Pdx0 (dx0),Θl−1

Varθl|Al [log δν2(xl)], sup
Px0 (x0),Pdx0 (dx0),Θl−1

Varθl|Al [log δν2(xl)], (43)

inf
Px0 (x0),Pdx0 (dx0),Θl−1

Eθl|A′l [− log δµ2(dxl)], sup
Px0 (x0),Pdx0 (dx0),Θl−1

Eθl|A′l [− log δµ2(dxl)], (44)

inf
Px0 (x0),Pdx0 (dx0),Θl−1

Varθl|A′l [log δµ2(dxl)], sup
Px0 (x0),Pdx0 (dx0),Θl−1

Varθl|A′l [log δµ2(dxl)]. (45)

Our strategy is to consider:

– Sequences of random variables (x0,k)k∈N, (dx0,k)k∈N corresponding to deterministic distributions Px0,k(x0,k),
Pdx0,k(dx0,k);

– Sequences of deterministic model parameters (Θl−1,k)k∈N up to layer l − 1;

– Sequences of random variables (xl−1,k)k∈N and (dxl−1,k)k∈N obtained by the simultaneous propagation of
(x0,k,dx0,k) with parameters Θl−1,k up to layer l − 1;

– Sequences of random variables (xl,k)k∈N and (dxl,k)k∈N obtained by the simultaneous propagation at layer l of
(xl−1,k,dxl−1,k) with random parameters (ωl,k,βl,k);

– Sequences of geometric increments (δν2(xl,k))k∈N and (δµ2(dxl,k))k∈N, defined as δν2(xl,k) ≡ ν2(xl,k)
ν2(xl−1,k)

and

δµ2(dxl,k) ≡ µ2(dxl,k)

µ2(dxl−1,k)
;

– Sequences of events (Bl,k)k∈N, (B′l,k)k∈N, (Al,k)k∈N, (A′l,k)k∈N appropriately defined with respect to δν2(xl,k) and
δµ2(dxl,k).

We will finally consider sequences such that Eθl|Al,k [− log δν2(xl,k)], Varθl|Al,k [log δν2(xl,k)], Eθl|A′l,k [− log δµ2(dxl,k)],

Varθl|A′l,k [log δµ2(dxl,k)] converge to the infima and suprima of Eq. (42), Eq. (43), Eq. (44), Eq. (45) as k →∞.

We start by focusing on δν2(xl) and the reasoning will be easily extended to δµ2(dxl).
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D.3.2. WEAKLY CONVERGENT SUBSEQUENCE

By Eq. (39), under Bl,k ∩Al−1,k:

δν2(xl,k) /∈]a, b] =⇒
(
a ≥ wmin,k

)
∨
(
wmax,k > b

)
,

with ∧ the logical and, ∨ the logical or, and with wmin,k, wmax,k defined as in Eq. (39) with respect to δν2(xl,k). Then
Pθl|Al,k

[
δν2(xl,k) /∈]a, b]

]
= Pθl|Bl,k∩Al−1,k

[
δν2(xl,k) /∈]a, b]

]
can be bounded as

Pθl|Al,k
[
δν2(xl,k) /∈]a, b]

]
≤ Pw∼ 1

NlRl
Chi-Squared(1)

[
w ≤ a

]
+ Pw∼ 2

Nl
Chi-Squared(NlRl)

[
w > b

]
.

Thus ∀ε, ∃aε, bε such that

∀k : Pθl|Al,k
[
δν2(xl,k) /∈]aε, bε]

]
≤ ε,

infk Pθl|Al,k
[
δν2(xl,k) ∈]aε, bε]

]
≥ 1− ε,

which means that the sequence
(
δν2(xl,k)|Al,k

)
k∈N of random variables is tight. By Lemma 8, it follows that there exists a

sequence of strictly increasing indices (ik)k∈N and a random variable X such that
(
δν2(xl,ik)|Al,ik

)
k∈N converges weakly

to X: δν2(xl,ik)|Al,ik ⇒ X .

If Eθl|Al,k [− log δν2(xl,k)], Varθl|Al,k [log δν2(xl,k)] have well-defined limits equal to the infima and suprima of Eq. (42)
and Eq. (43), then Eθl|Al,ik [− log δν2(xl,ik)], Varθl|Al,ik [log δν2(xl,ik)] have the same limits. For simplicity of notations
and without loss of generality, (δν2(xl,ik))k∈N may thus be renamed as (δν2(xl,k))k∈N such that δν2(xl,k)|Al,k ⇒ X .

We have that for all continuity points a > 0 of the function x 7→ P[X ≤ x]:

Pθl|Al,k
[
δν2(xl,k) ≤ a

]
≤ Pw∼ 1

NlRl
Chi-Squared(1)

[
w ≤ a

]
,

P
[
X ≤ a

]
≤ Pw∼ 1

NlRl
Chi-Squared(1)

[
w ≤ a

]
, (46)

where we used the definition of weak convergence: Pθl|Al,k
[
δν2(xl,k) ≤ a

] k→∞−−−−→ P[X ≤ a].

Now let us show that the set of discontinuity points of the cumulative distribution function (c.d.f.) x 7→ P[X ≤ x] on
[0, 1] has Borel measure equal to 0. Since c.d.f. are always non-decreasing and right-continuous, the set of discontinuity
points is the set of non-left-continuity points, i.e. D =

{
x ∈ [0, 1] : limx′→x− P[X ≤ x′] < P[X ≤ x]

}
. Let us denote

Dp ≡
{
x ∈ [0, 1] : P[X ≤ x] − limx′→x− P[X ≤ x′] ≥ 1

p

}
. Then the function 1Dp converges point-wise to 1D, i.e.

∀x ∈ [0, 1]: 1Dp(x)
p→∞−−−→ 1D(x), and the dominated convergence theorem gives∫ 1

0

1Dp(x)dx
p→∞−−−→

∫ 1

0

1D(x)dx.

On the other hand, since x 7→ P[X ≤ x] is non-decreasing and 0 ≤ P[X ≤ x] ≤ 1, it follows that Dp is comprised of at
most p points, implying that

∫ 1

0
1Dp(x)dx = 0. We deduce that

∫ 1

0
1D(x) = 0, i.e. that D has Borel measure equal to 0.

It follows that we can find a sequence of continuity points ap > 0 of x 7→ P[X ≤ x] such that ap
p→∞−−−→ 0. We then obtain

P
[
X = 0

]
≤ P

[
X ≤ ap

] p→∞−−−→ 0 by Eq. (46), and thus P
[
X = 0

]
= 0. Without loss of generality, we may assume X > 0

surely (if this is not the case, simply replace X by a constant arbitrary value > 0 under the zero-probability event {X = 0}).
Now if we consider the function h such that h(x) = log x if x > 0, and h(x) = 0 otherwise, then Lemma 7 implies
that h(δν2(xl,k))|Al,k ⇒ h(X), i.e. log δν2(xl,k)|Al,k ⇒ logX . If we consider h(x) = x2, we further deduce that
δν2(xl,k)2|Al,k ⇒ X2 and that

(
log δν2(xl,k)

)2|Al,k ⇒ (logX)2.
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D.3.3. UNIFORM INTEGRABILITY

Since both x 7→ 1{x≥M}x and x 7→ 1{x2≥M}x
2 are non-decreasing for x > 0, Eq. (39) implies that

sup
k

Eθl|Al,k
[
1{δν2(xl,k)≥M}δν2(xl,k)

]
≤ Ew∼ 2

Nl
Chi-Squared(NlRl)

[
1{w≥M}w

] M→∞−−−−→ 0,

sup
k

Eθl|Al,k
[
1{δν2(xl,k)2≥M}δν2(xl,k)2

]
≤ Ew∼ 2

Nl
Chi-Squared(NlRl)

[
1{w2≥M}w

2
] M→∞−−−−→ 0.

Since δν2(xl,k) ≥ 0, it follows that both
(
δν2(xl,k)|Al,k

)
k∈N and

(
δν2(xl,k)2|Al,k

)
k∈N are uniformly integrable, implying

by Lemma 9 that

Eθl|Al,k
[
δν2(xl,k)

] k→∞−−−−→ E
[
X
]
, Eθl|Al,k

[
δν2(xl,k)2

] k→∞−−−−→ E
[
X2
]
.

Again since x 7→ 1{x≥M}x is non-decreasing for x > 0, Eq. (39) implies that under Bl,k ∩
{
wmin,k > 0

}
∩
{
wmax,k > 0

}
:

logwmin,k ≤ log δν2(xl,k) ≤ logwmax,k,∣∣ log δν2(xl,k)
∣∣ ≤ max

(∣∣ logwmin,k
∣∣, ∣∣ logwmax,k

∣∣),
1{| log δν2(xl,k)|≥M}

∣∣ log δν2(xl,k)
∣∣ ≤ max

(
1{| logwmin,k|≥M}

∣∣ logwmin,k
∣∣,1{| logwmax,k|≥M}

∣∣ logwmax,k
∣∣),

1{| log δν2(xl,k)|≥M}
∣∣ log δν2(xl,k)

∣∣ ≤ 1{| logwmin,k|≥M}
∣∣ logwmin,k

∣∣+ 1{| logwmax,k|≥M}
∣∣ logwmax,k

∣∣.
Similarly, we have that under Bl,k ∩

{
wmin,k > 0

}
∩
{
wmax,k > 0

}
:

1{(log δν2(xl,k))2≥M}
(

log δν2(xl,k)
)2 ≤ max

(
1{(logwmin,k)2≥M}

(
logwmin,k

)2
,1{(logwmax,k)2≥M}

(
logwmax,k

)2)
,

1{(log δν2(xl,k))2≥M}
(

log δν2(xl,k)
)2 ≤ 1{(logwmin,k)2≥M}

(
logwmin,k

)2
+ 1{(logwmax,k)2≥M}

(
logwmax,k

)2
.

Using Pθl [wmin,k = 0] = 0 and Pθl [wmax,k = 0] = 0, and denoting Chi-Squared(1)∗ and Chi-Squared(NlRl)
∗ the

chi-squared distributions excluding zero values, we get that

Eθl|Al,k
[
1{| log δν2(xl,k)|≥M}

∣∣ log δν2(xl,k)
∣∣]

≤ Ew∼ 1
NlRl

Chi-Squared(1)∗

[
1{| logw|≥M}

∣∣ logw
∣∣]+ Ew∼ 2

Nl
Chi-Squared(NlRl)∗

[
1{| logw|≥M}

∣∣ logw
∣∣],

Eθl|Al,k
[
1{(log δν2(xl,k))2≥M}

(
log δν2(xl,k)

)2]
≤ Ew∼ 1

NlRl
Chi-Squared(1)∗

[
1{(logw)2≥M}

(
logw

)2]
+ Ew∼ 2

Nl
Chi-Squared(NlRl)∗

[
1{(logw)2≥M}

(
logw

)2]
.

It follows that

sup
k

Eθl|Al,k
[
1{| log δν2(xl,k)|≥M}

∣∣ log δν2(xl,k)
∣∣] M→∞−−−−→ 0,

sup
k

Eθl|Al,k
[
1{(log δν2(xl,k))2≥M}

(
log δν2(xl,k)

)2] M→∞−−−−→ 0.

Thus both
(

log δν2(xl,k)|Al,k
)
k∈N and

(
(log δν2(xl,k))2|Al,k

)
k∈N are uniformly integrable, and by Lemma 9:

Eθl|Al,k
[

log δν2(xl,k)
] k→∞−−−−→ E

[
logX

]
, Eθl|Al,k

[(
log δν2(xl,k)

)2] k→∞−−−−→ E
[
(logX)2

]
.
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D.3.4. BOUNDING MOMENTS OF δν2(xl,k)

First let us bound Varθl|Al−1,k

[
δν2(xl,k)

]
from above. For each channel, the variance is bounded as

Varθl|Al−1,k

[
ν2,c(x

l,k)

ν2(xl−1,k)

]
≤ Eθl|Al−1,k

[
ν2,c(x

l,k)2

ν2(xl−1,k)2

]
≤ Eθl|Al−1,k

[
ν2,c(y

l,k)2

ν2(xl−1,k)2

]
≤ R2

l Eθl|Al−1,k

[∑
i6=i′

(
Ŵ l

c,i

)2(
Ŵ l

c,i′
)2
λ̂iλ̂i′ +

∑
i

(
Ŵ l

c,i

)4
λ̂2
i

]
≤ R2

l

∑
i,i′

(
2

Rl

)(
2

Rl

)
3λ̂iλ̂i′ = 12.

Since the different channels are independent, we get that

Varθl|Al−1,k

[
δν2(xl,k)

]
= Varθl|Al−1,k

[
1

Nl

∑
c

ν2,c(x
l,k)

ν2(xl−1,k)

]
=

1

N2
l

∑
c

Varθl|Al−1,k

[
ν2,c(x

l,k)

ν2(xl−1,k)

]
≤ 12

Nl
.

Next we bound
∣∣Eθl|Al,k[δν2(xl,k)

]
− 1
∣∣. Using Eθl|Al−1,k

[
δν2(xl,k)

]
= 1 by Eq. (38):∣∣Eθl|Al,k[δν2(xl,k)

]
− 1
∣∣

=
∣∣Eθl|Al,k[δν2(xl,k)

]
− Eθl|Al−1,k

[
δν2(xl,k)

]∣∣
=

∣∣∣∣∣
(

1

Pθl|Al−1,k
[Al,k]

− 1

)
Eθl|Al−1,k

[
1Al,kδν2(xl,k)

]
− Eθl|Al−1,k

[
1Ac

l,k
δν2(xl,k)

]∣∣∣∣∣
≤

Pθl|Al−1,k
[Ac
l,k]

Pθl|Al−1,k
[Al,k]

∣∣Eθl|Al−1,k

[
1Al,kδν2(xl,k)

]∣∣+ Pθl|Al−1,k

[
Ac
l,k

] 1
2Eθl|Al−1,k

[
δν2(xl,k)2

] 1
2 (47)

≤
(
Pθl|Al−1,k

[Ac
l,k]

Pθl|Al−1,k
[Al,k]

+ Pθl|Al−1,k

[
Ac
l,k

] 1
2

)
Eθl|Al−1,k

[
δν2(xl,k)2

] 1
2 (48)

≤
(

2−Nl

1− 2−Nl
+ 2−

Nl
2

)(
1 + Varθl|Al−1,k

[
δν2(xl,k)

]) 1
2 ≤ εl

(
1 +

12

Nl

) 1
2

≤ 2εl, (49)

where we applied Cauchy-Schwarz inequality in Eq. (47) and Eq. (48), defined εl ≡ 2−Nl

1−2−Nl
+ 2−

Nl
2 and used(

1 + 12
Nl

) 1
2 ≤ 2 under the large width assumption.

We are then able to bound Varθl|Al,k
[
δν2(xl,k)

]
from above:

Varθl|Al,k
[
δν2(xl,k)

]
= Eθl|Al,k

[
δν2(xl,k)2

]
− Eθl|Al,k

[
δν2(xl,k)

]2
≤

Eθl|Al−1,k

[
1Al,kδν2(xl,k)2

]
Pθl|Al−1,k

[Al,k]
− 1 + 1− Eθl|Al,k

[
δν2(xl,k)

]2
≤

Eθl|Al−1,k

[
δν2(xl,k)2

]
− 1

1− 2−Nl
+

1

1− 2−Nl
− 1 +

∣∣Eθl|Al,k[δν2(xl,k)
]
− 1
∣∣∣∣Eθl|Al,k[δν2(xl,k)

]
+ 1
∣∣

≤
Varθl|Al−1,k

[
δν2(xl,k)

]
1− 2−Nl

+
2−Nl

1− 2−Nl
+ 2εl

(
Eθl|Al−1,k

[
δν2(xl,k)

]
1− 2−Nl

+ 1

)

≤ 1

1− 2−Nl

(
12

Nl
+ 2−Nl

)
+ 2εl

(
1

1− 2−Nl
+ 1

)
≤ 24

Nl
, (50)

where we used again the fact that the terms in 2−Nl are negligible with respect to 12
Nl

under the large width assumption.



Characterizing Well-Behaved vs. Pathological Deep Neural Networks

Finally let us bound Varθl|Al,k
[
δν2(xl,k)

]
from below. In the remaining of this calculation, the conditionality on{

||W l||2F > 0
}

is assumed but omitted for simplicity of notation. This conditionality has no effect on expectations
and probabilities since

{
||W l||2F > 0

}
has probability one.

We first note that
(
1Bl,k , δν2(xl,k)

||W l||2F

)
is fully determined by

(
(ṽlc)1≤c≤Nl ,

W l

||W l||2F

)
, which is itself independent from

||W l||2F . It follows that
(
1Bl,k ,

δν2(xl,k)
||W l||2F

)
is independent from ||W l||2F , and thus that

Varθl|Al−1,k∩Bl,k
[
δν2(xl,k)

]
=

Eθl|Al−1,k

[
1Bl,k

δν2(xl,k)2

||W l||4F
||W l||4F

]
Pθl|Al−1,k

[Bl,k]
−

Eθl|Al−1,k

[
1Bl,k

δν2(xl,k)
||W l||2F

||W l||2F
]2

Pθl|Al−1,k
[Bl,k]2

=
Eθl|Al−1,k

[
1Bl,k

δν2(xl,k)2

||W l||4F

]
Pθl|Al−1,k

[Bl,k]
Eθl|Al−1,k

[
||W l||4F

]
−

Eθl|Al−1,k

[
1Bl,k

δν2(xl,k)
||W l||2F

]2
Pθl|Al−1,k

[Bl,k]2
Eθl|Al−1,k

[
||W l||2F

]2
= Eθl|Al−1,k∩Bl,k

[
δν2(xl,k)2

||W l||4F

]
Eθl|Al−1,k

[
||W l||4F

]
− Eθl|Al−1,k∩Bl,k

[
δν2(xl,k)

||W l||2F

]2

Eθl|Al−1,k

[
||W l||2F

]2
≥ Eθl|Al−1,k∩Bl,k

[
δν2(xl,k)

||W l||2F

]2(
Eθl|Al−1,k

[
||W l||4F

]
− Eθl|Al−1,k

[
||W l||2F

]2)

≥ Eθl|Al−1,k∩Bl,k

[
δν2(xl,k)

||W l||2F

]2

Varθl|Al−1,k

[
||W l||2F

]
.

Due to Pθl|Al−1,k∩Bl,k [Al,k] = 1 and Al,k ⊆ Al−1,k ∩ Bl,k, the conditionality on Al−1,k ∩ Bl,k can be replaced by the
conditionality on Al,k:

Varθl|Al,k
[
δν2(xl,k)

]
≥ Eθl|Al,k

[
δν2(xl,k)

||W l||2F

]2

Varθl|Al−1,k

[
||W l||2F

]
. (51)

It remains to bound the terms Eθl|Al,k
[
δν2(xl,k)
||W l||2F

]2
and Varθl|Al−1,k

[
||W l||2F

]
. A computation similar to Eq. (48) gives∣∣∣∣∣Eθl|Al,k

[
δν2(xl,k)

||W l||2F

]
− Eθl|Al−1,k

[
δν2(xl,k)

||W l||2F

]∣∣∣∣∣ ≤ εl Eθl|Al−1,k

[
δν2(xl,k)2

||W l||4F

] 1
2

. (52)

The term Eθl|Al−1,k

[
δν2(xl,k)2

||W l||4F

] 1
2

of Eq. (52) can be bounded using Eq. (37):

δν2(xl,k)

||W l||2F
=
Rl
Nl

∑
c

ulc
∑
i

(
Ŵ l

c,i

)2
λ̂i

1

||W l||2F
≤ Rl
Nl

∑
c

∑
i

(
Ŵ l

c,i

)2 1

||W l||2F
=
Rl
Nl
,

Eθl|Al−1,k

[
δν2(xl,k)2

||W l||4F

] 1
2

≤ Rl
Nl
.

As for the term Eθl|Al−1,k

[
δν2(xl,k)
||W l||2F

]
of Eq. (52), we get by independence of ||W l||F and δν2(xl,k)

||W l||2F
that

Eθl|Al−1,k

[
δν2(xl,k)

||W l||2F

]
Eθl|Al−1,k

[
||W l||2F

]
= Eθl|Al−1,k

[
δν2(xl,k)

]
= 1,

Eθl|Al−1,k

[
δν2(xl,k)

||W l||2F

]
=

1

Eθl|Al−1,k

[
||W l||2F

] =
1

2
Rl
NlRl

=
1

2Nl
.
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We have εl = 2−Nl

1−2−Nl
+ 2−

Nl
2 � 1

2Nl−1nd
≤ 1

2Rl
under the large width assumption. Then, by Eq. (52):∣∣∣∣∣Eθl|Al,k

[
δν2(xl,k)

||W l||2F

]
− 1

2Nl

∣∣∣∣∣� 1

2Rl

Rl
Nl

=
1

2Nl
, (53)

Eθl|Al,k

[
δν2(xl,k)

||W l||2F

]
≥ 1

4Nl
. (54)

The variance Varθl|Al−1,k

[
||W l||2F

]
is given by

Varθl|Al−1,k

[
||W l||2F

]
=

(
2

Rl

)2(
Eθl|Al−1,k

[∑
(c,i),(c′,i′)

(
2

Rl

)−1(
W l

c,i

)2( 2

Rl

)−1(
W l

c′,i′
)2]−N2

l R
2
l

)

=

(
2

Rl

)2((∑
(c,i) 6=(c′,i′)

1
)

+
(∑

(c,i)
3
)
−N2

l R
2
l

)
=

8Nl
Rl

. (55)

Finally combining Eq. (51), Eq. (54) and Eq. (55):

Varθl|Al,k
[
δν2(xl,k)

]
≥
(

1

4Nl

)2
8Nl
Rl

=
1

2NlRl
. (56)

D.3.5. CONSEQUENCE FOR mmin, mmax, vmin, vmax

Using Eq. (49) and taking the limit k →∞: ∣∣Eθl|Al,k[δν2(xl,k)
]
− 1
∣∣ ≤ 2εl,∣∣E[X]− 1
∣∣ ≤ 2εl.

Similarly, using Eq. (50) and Eq. (56) and taking the limit k →∞:

1

2NlRl
≤ Varθl|Al,k

[
δν2(xl,k)

]
= Eθl|Al,k

[
δν2(xl,k)2

]
− Eθl|Al,k

[
δν2(xl,k)

]2 ≤ 24

Nl
,

1

2NlRl
≤ Var

[
X
]

= E
[
X2
]
− E

[
X
]2 ≤ 24

Nl
.

Thus
∣∣E[X] − 1

∣∣ is exponentially small in Nl, while the standard deviation of X behaves as a power-law of Nl:
1√

2NlRl
≤ Var

[
X
] 1

2 ≤
√

24
Nl

. This means that
∣∣E[X]− 1

∣∣ is much smaller than the effect of the log-concavity:

∣∣E[X]− 1
∣∣� logE

[
X
]
− E

[
logX

]
≤ E

[
X
]
− 1− E

[
logX

]
=⇒

∣∣E[X]− 1
∣∣ < E

[
X
]
− 1− E

[
logX

]
=⇒

∣∣E[X]− 1
∣∣− (E[X]− 1

)
< −E

[
logX

]
=⇒ 0 < E

[
− logX

]
.

In addition, X has small standard deviation around E
[
X
]

since Var
[
X
] 1

2 � 1 under the large width assumption. This
implies that

0 < lim
k→∞

Eθl|Al,k [− log δν2(xl,k)] = E
[
− logX

]
� 1,

0 < lim
k→∞

Varθl|Al,k [log δν2(xl,k)] = Var
[

logX
]
� 1.
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Now if we alternately consider sequences
(
δν2(xl,k)|Al,k

)
k∈N corresponding to distributions Px0,k(x0,k), Pdx0,k(dx0,k),

and parameters Θl−1,k up to layer l − 1, such that

lim
k→∞

Eθl|Al,k [− log δν2(xl,k)] = inf
Px0 (x0),Pdx0 (dx0),Θl−1

Eθl|Al [− log δν2(xl)],

lim
k→∞

Eθl|Al,k [− log δν2(xl,k)] = sup
Px0 (x0),Pdx0 (dx0),Θl−1

Eθl|Al [− log δν2(xl)],

lim
k→∞

Varθl|Al,k [log δν2(xl,k)] = inf
Px0 (x0),Pdx0 (dx0),Θl−1

Varθl|Al [log δν2(xl)],

lim
k→∞

Varθl|Al,k [log δν2(xl,k)] = sup
Px0 (x0),Pdx0 (dx0),Θl−1

Varθl|Al [log δν2(xl)],

then we obtain that

0 < inf
Px0 (x0),Pdx0 (dx0),Θl−1

Eθl|Al [− log δν2(xl)]� 1,

0 < sup
Px0 (x0),Pdx0 (dx0),Θl−1

Eθl|Al [− log δν2(xl)]� 1,

0 < inf
Px0 (x0),Pdx0 (dx0),Θl−1

Varθl|Al [log δν2(xl)]� 1,

0 < sup
Px0 (x0),Pdx0 (dx0),Θl−1

Varθl|Al [log δν2(xl)]� 1.

The final remaining dependency is the dependency in Nl and Rl. Since Rl = Kd
l Nl−1 ≤ ndNl−1, and since (Nl)l∈N is

bounded, it follows that (Rl)l∈N is also bounded. If we denote

Nmin ≡ min
l
Nl, Nmax ≡ max

l
Nl, Rmin ≡ min

l
Rl, Rmax ≡ max

l
Rl,

IN ≡ {Nmin, . . . , Nmax}, IR ≡ {Rmin, . . . , Rmax},

then we finally get

0 < min
Nl∈IN ,Rl∈IR

inf
Px0 (x0),Pdx0 (dx0),Θl−1

Eθl|Al [− log δν2(xl)]� 1,

0 < max
Nl∈IN ,Rl∈IR

sup
Px0 (x0),Pdx0 (dx0),Θl−1

Eθl|Al [− log δν2(xl)]� 1,

0 < min
Nl∈IN ,Rl∈IR

inf
Px0 (x0),Pdx0 (dx0),Θl−1

Varθl|Al [log δν2(xl)]� 1,

0 < max
Nl∈IN ,Rl∈IR

sup
Px0 (x0),Pdx0 (dx0),Θl−1

Varθl|Al [log δν2(xl)]� 1.

The whole reasoning can immediately be transposed to µ2(dxl) to get

0 < min
Nl∈IN ,Rl∈IR

inf
Px0 (x0),Pdx0 (dx0),Θl−1

Eθl|A′l [− log δµ2(dxl)]� 1,

0 < max
Nl∈IN ,Rl∈IR

sup
Px0 (x0),Pdx0 (dx0),Θl−1

Eθl|A′l [− log δµ2(dxl)]� 1,

0 < min
Nl∈IN ,Rl∈IR

inf
Px0 (x0),Pdx0 (dx0),Θl−1

Varθl|A′l [log δµ2(dxl)]� 1,

0 < max
Nl∈IN ,Rl∈IR

sup
Px0 (x0),Pdx0 (dx0),Θl−1

Varθl|A′l [log δµ2(dxl)]� 1.

It follows that there exists small positive constants 1� mmin,mmax, vmin, vmax > 0 such that ∀l:

mmin ≤ Eθl|Al [− log δν2(xl)] ≤ mmax, vmin ≤ Varθl|Al [log δν2(xl)] ≤ vmax, (57)

mmin ≤ Eθl|A′l [− log δµ2(dxl)] ≤ mmax, vmin ≤ Varθl|A′l [log δµ2(dxl)] ≤ vmax. (58)
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D.3.6. PROOF CONCLUSION

Again we start by focusing on δν2(xl) and the reasoning will easily be extended to δµ2(dxl). Let us define under Ak:

Xk ≡ log δν2(xk), Yk ≡ Eθk|Ak [log δν2(xk)], Zk ≡ log δν2(xk)− Eθk|Ak [log δν2(xk)].

Using Eq. (57), we have that under Ak:

mmin ≤− Yk ≤ mmax, vmin ≤ Varθk|Ak [Zk] ≤ vmax,

−mmax ≤ Yk ≤ −mmin, vmin ≤ Varθk|Ak [Zk] ≤ vmax.

By Lemma 10, we deduce that there exist random variables ml, sl such that under Al:

l∑
k=1

log δν2(xk) = lml +
√
lsl, −mmax ≤ ml ≤ −mmin, EΘl|Al [sl] = 0, vmin ≤ VarΘl|Al [sl] ≤ vmax,

log

(
ν2(xl)

ν2(x0)

)
= lml +

√
lsl, −mmax ≤ ml ≤ −mmin, EΘl|Al [sl] = 0, vmin ≤ VarΘl|Al [sl] ≤ vmax.

Finally changing the variable ml to −ml, we get that under Al:

log

(
ν2(xl)

ν2(x0)

)
= −lml +

√
lsl, mmin ≤ ml ≤ mmax, EΘl|Al [sl] = 0, vmin ≤ VarΘl|Al [sl] ≤ vmax.

Applying the exact same reasoning to µ2(dxl), we deduce that there exist random variables m′l, s
′
l such that under A′l:

log

(
µ2(dxl)

µ2(dx0)

)
= −lm′l +

√
ls′l, mmin ≤ m′l ≤ mmax, EΘl|A′l [s

′
l] = 0, vmin ≤ VarΘl|A′l [s

′
l] ≤ vmax.

D.3.7. ILLUSTRATION

Let us give an illustration in the fully-connected case with constant width, Nl = N = 100 and Rl = N = 100. The bounds
mmin, mmax, vmin, vmax are obtained by considering the extreme cases for ulc and Rl

∑
i(Ŵ

l
c,i)

2λ̂i in Eq. (37):

– We obtain minimum bounds by considering ulc ∼ 1/2 and Rl
∑
i(Ŵ

l
c,i)

2λ̂i ∼ 2 Chi-Squared(N)/N , leading to
δν2(xl), δµ2(dxl) ∼ Chi-Squared(N2)/N2;

– We obtain maximum bounds by considering ulc ∼ Bernouilli(1/2) and Rl
∑
i(Ŵ

l
c,i)

2λ̂i ∼ 2 Chi-Squared(1).

We numerically find mmin ' 9.7×10−5 and vmin ' 2.0×10−4 as minimum bounds and mmax ' 2.5×10−2 and
vmax ' 5.2×10−2 as maximum bounds.

D.4. The Conditionality on Al is Highly Negligible

The events Al, A′l defined in Theorem 1 have probabilities equal to
∏l
k=1

(
1− 2−Nk

)
. Thus

−PΘl [A
c
l ] ' log

(
1− PΘl [A

c
l ]
)

= logPΘl [Al] =
∑l

k=1
log
(
1− 2−Nk

)
' −

∑l

k=1
2−Nk ,

implying that PΘl [A
c
l ] = PΘl [A

′c
l ] '∑l

k=1 2−Nk . It follows that PΘl [A
c
l ], PΘl [A

′c
l ] grow linearly in the depth but decay

exponentially in the width.

In practice, PΘl [A
c
l ], PΘl [A

′c
l ] are thus highly negligible and the conditionality on Al, A′l is also highly negli-

gible. For example, in the case of constant width Nl = 100 and total depth L = 200, we numerically find
PΘL [Ac

L] = PΘL [A′cL ] ' 3.2× 10−28.
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D.5. Relation to the Terms m, m, s of Section 4

Here we relate Theorem 1 to the terms m, m, s defined in Section 4, under the conditionality Ak, A′k. By Eq. (49), we have
that |Eθk|Ak [δν2(xk)]− 1| ≤ 2εk � 1. This implies that under Ak:

|m[ν2(xk)]| =
∣∣ logEθk|Ak [δν2(xk)]

∣∣ ' ∣∣Eθk|Ak [δν2(xk)]− 1
∣∣ ≤ 2εk.

Similarly, we have that |Eθk|A′k [δµ2(dxk)]− 1| ≤ 2εk � 1, and that under A′k:

|m[µ2(dxk)]| =
∣∣ logEθk|A′k [δµ2(dxk)]

∣∣ ' ∣∣Eθk|A′k [δµ2(dxk)]− 1
∣∣ ≤ 2εk.

The terms m[ν2(xk)], m[µ2(dxk)] are thus exponentially small in Nk, implying that the evolution with depth of
ν2(xl), µ2(dxl) is dominated by the negative drift terms: m[ν2(xl)] < 0, m[µ2(dxl)] < 0 and the diffusion terms:
s[ν2(xl)], s[µ2(dxl)].

D.6. Proof of Theorem 2

Theorem 2 (normalized sensitivity increments of vanilla nets). Denoting yl,± ≡ max
(
± yl, 0

)
, the dominating term

under {µ2(xl−1) > 0} in the evolution of χl is

δχl ' exp(m[χl]) =

(
1− Ec,θl

[
ν1,c
(
yl,+

)
ν1,c
(
yl,−

)
µ2(xl−1)

])− 1
2

.

︸ ︷︷ ︸
∈[1,
√

2]

Proof. The dominating term in the evolution of χl is given by

δχl ' exp(m[χl]) =

(
Eθl [δµ2(dxl)]

Eθl [δµ2(xl)]

) 1
2

. (59)

First we consider the term Eθl [δµ2(xl)]. Again we use the definitions and notations from Section B. We further denote
(e1, . . . , eRl) and (λ1, . . . , λRl) respectively the orthogonal eigenvectors and eigenvalues of Cx,α[ρ(xl−1,α)] and
Ŵ l ≡W l(e1, . . . , eRl). Using these notations, we get that ∀c:

µ2,c(y
l) = Ex,α

[
ϕ̂(yl,α)2

c

]
= Ex,α

[(
W l

c,:ρ̂(xl−1,α)
)2]

=
∑

i

(
Ŵ l

c,i

)2
λi. (60)

Then due toW l
c,: ∼θl Ŵ l

c,: ∼θl N (0, 2 /RlI):

Eθl [µ2,c(y
l)] =

2

Rl

∑
i
λi =

2

Rl
TrCx,α[ρ(xl−1,α)] = 2µ2(xl−1). (61)

where we used Corollary 3 in Eq. (61). The symmetric propagation gives

µ2,c(x
l) + µ2,c(x̄

l) = Ex,α

[
(yl,+α,c)

2
]
− Ex,α

[
yl,+α,c

]2
+ Ex,α

[
(yl,−α,c)

2
]
− Ex,α

[
yl,−α,c

]2
= ν2,c(y

l,+)− ν1,c(y
l,+)2 + ν2,c(y

l,−)− ν1,c(y
l,−)2

= ν2,c(y
l)−

(
ν1,c(y

l,+)2 + ν1,c(y
l,−)2

)
. (62)



Characterizing Well-Behaved vs. Pathological Deep Neural Networks

Since yl = yl,+ − yl,− and |yl| = yl,+ + yl,−, we can express ν1,c(y
l) and ν1,c(|yl|) as

ν1,c(y
l)2 =

(
ν1,c(y

l,+)− ν1,c(y
l,−)
)2

= ν1,c(y
l,+)2 + ν1,c(y

l,−)2 − 2ν1,c(y
l,+)ν1,c(y

l,−), (63)

ν1,c(|yl|)2 =
(
ν1,c(y

l,+) + ν1,c(y
l,−)
)2

= ν1,c(y
l,+)2 + ν1,c(y

l,−)2 + 2ν1,c(y
l,+)ν1,c(y

l,−). (64)

Using Eq. (63), we can then rewrite Eq. (62) as

µ2,c(x
l) + µ2,c(x̄

l) = ν2,c(y
l)− ν1,c(y

l)2 − 2ν1,c(y
l,+)ν1,c(y

l,−)

= µ2,c(y
l)− 2ν1,c(y

l,+)ν1,c(y
l,−). (65)

Combining Eq. (61) and Eq. (65):

Eθl [µ2,c(x
l) + µ2,c(x̄

l)] = 2µ2(xl−1)− 2Eθl [ν1,c(y
l,+)ν1,c(y

l,−)],

2Eθl [µ2,c(x
l)] = 2µ2(xl−1)− 2Eθl [ν1,c(y

l,+)ν1,c(y
l,−)], (66)

Eθl [µ2,c(x
l)] = µ2(xl−1)

(
1− Eθl

[
ν1,c(y

l,+)ν1,c(y
l,−)

µ2(xl−1)

])
.

where Eq. (66) was obtained by symmetry of the propagation. We then get

Eθl [µ2(xl)] = Ec
[
Eθl [µ2,c(x

l)]
]

= µ2(xl−1)

(
1− Ec,θl

[
ν1,c(y

l,+)ν1,c(y
l,−)

µ2(xl−1)

])
,

Eθl [δµ2(xl)] = 1− Ec,θl

[
ν1,c(y

l,+)ν1,c(y
l,−)

µ2(xl−1)

]
.

Combining with Eq. (59) and Eθl [δµ2(dxl)] = 1 by Eq. (40) in the proof of Theorem 1, we finally get

δχl ' exp(m[χl]) =

(
1− Ec,θl

[
ν1,c
(
yl,+

)
ν1,c
(
yl,−

)
µ2(xl−1)

])− 1
2

.

To obtain the bounds on exp(m[χl]), we use Eq. (63) and Eq. (64):

4ν1,c(y
l,+)ν1,c(y

l,−) + ν1,c(y
l)2 = ν1,c(|yl|)2 ≤ ν2,c(|yl|) = ν2,c(y

l),

4ν1,c(y
l,+)ν1,c(y

l,−) ≤ ν2,c(y
l)− ν1,c(y

l)2 = µ2,c(y
l). (67)

Given Eθl [µ2,c(y
l)] = 2µ2(xl−1) by Eq. (61), we deduce that 4Eθl [ν1,c(y

l,+)ν1,c(y
l,−)] ≤ 2µ2(xl−1), and thus that

Ec,θl

[
ν1,c
(
yl,+

)
ν1,c
(
yl,−

)
µ2(xl−1)

]
≤ 1

2
,

1 ≤ exp(m[χl]) =

(
1− Ec,θl

[
ν1,c
(
yl,+

)
ν1,c
(
yl,−

)
µ2(xl−1)

])− 1
2

≤
√

2.
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D.7. If the Drift of χl Is Larger than Diffusion and if ν2(xl), µ2(dxl) are Lognormal, then µ2(xl) / ν2(xl)→ 0 a.s.

Lemma 11. For a sequence of random variables (Xl)l∈N and a random variableX , if ∀ε > 0 :
∑∞
l=1 P[|Xl−X| > ε] <∞,

then

Xl
l→∞−−−→ X a.s.

Proof. For given ε > 0, denote Nε the number of times that the event {|Xl − X| > ε} occurs such that Nε =∑∞
l=1 1{|Xl−X|>ε}. Fubini’s theorem implies that E[Nε] =

∑∞
l=1 P[|Xl −X| > ε] <∞, implying that Nε is finite a.s.

Now let us reason by contradiction and suppose that ∃E with P[E] > 0 such that under E: Xl 6l→∞−−−→ X . Under E, ∃ε
random variable, and ∃(kl)l∈N random strictly increasing sequence such that ∀l: |Xkl −X| > ε. This implies in turn that
∃E′ with P[E′] > 0 and ∃ε′ > 0 non-random, such that under E′: ∃(kl)l∈N random strictly increasing sequence with ∀l:
|Xkl −X| > ε′. Thus Nε′ has non-zero probability to be infinite: P[Nε′ =∞] ≥ P[E′] > 0, which is a contradiction. We

deduce that Xl
l→∞−−−→ X a.s.

Proposition 12. Suppose that:

(i) We can neglect the events Al, A′l of probability exponentially small in the width (see Section D.4 for justification);

(ii) The event D under which χl has drift larger than diffusion has probability P[D] > 0;

(iii) ν2(xl), µ2(dxl) are lognormal.

Then, under D:

µ2(xl)

ν2(xl)

l→∞−−−→ 0 a.s.

Proof. Neglecting the events Al, A′l, Theorem 1 implies that ∃ml,m
′
l, sl, s

′
l such that

log ν2(xl) = −lml +
√
lsl + log ν2(x0), mmin ≤ ml ≤ mmax, EΘl [sl] = 0, vmin ≤ VarΘl [sl] ≤ vmax,

logµ2(dxl) = −lm′l +
√
ls′l + logµ2(dx0), mmin ≤ m′l ≤ mmax, EΘl [s

′
l] = 0, vmin ≤ VarΘl [s

′
l] ≤ vmax.

On the other hand, under standard initialization:

EΘl [ν2(xl)] = EΘl−1Eθl
[
ν2(xl−1) · δν2(xl)

]
= EΘl−1

[
ν2(xl−1) · Eθl [δν2(xl)]

]
= EΘl−1

[
ν2(xl−1)

]
,

EΘl [µ2(dxl)] = EΘl−1Eθl
[
µ2(dxl−1) · δµ2(dxl)

]
= EΘl−1

[
µ2(dxl−1) · Eθl [δµ2(dxl)]

]
= EΘl−1

[
µ2(dxl−1)

]
,

implying by induction that EΘl [ν2(xl)] = ν2(x0) and EΘl [µ2(dxl)] = µ2(dx0).

Since log ν2(xl), logµ2(dxl) are Gaussian by the assumption of lognormality, and since a logormal variable exp(X)
with X ∼ N (µ, σ2) has expectation equal to E[exp(X)] = exp(µ+ σ2/2), it follows that ∃Sl, S′l random variables and
∃Ml,M

′
l > 0 constants such that

log ν2(xl) = Sl −Ml + log ν2(x0), Sl ∼Θl N (0, 2Ml), lmmin ≤Ml ≤ lmmax,

logµ2(dxl) = S′l −M ′l + logµ2(dx0), S′l ∼Θl N (0, 2M ′l ), lmmin ≤M ′l ≤ lmmax.

Now let us make more precise the conditionality on D. We may assume that ∃m > 1
2

(
mmax −mmin

)
such that ∀l under D:

logχl ≥ lm.
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The ratio µ2(xl)/ν2(xl) can be expressed as

µ2(xl)

ν2(xl)
=

(
µ2(dx0)

µ2(x0)

µ2(xl)

µ2(dxl)

)(
µ2(x0)

µ2(dx0)

µ2(dxl)

ν2(xl)

)
=

1

(χl)2

µ2(x0)

µ2(dx0)

µ2(dxl)

ν2(xl)
.

This gives with logarithms that, under D:

logµ2(xl)− log ν2(xl) = −2 logχl + logµ2(dxl)− logµ2(dx0)− log ν2(xl) + log µ2(x0)

≤ −2lm+
(
S′l −M ′l

)
−
(
Sl −Ml + log ν2(x0)

)
+ logµ2(x0)

≤ −2lm+ lmmax − lmmin − log ν2(x0) + log µ2(x0) + S′l − Sl
≤ −lM + C + S′l − Sl,

where we defined M ≡ 2m−mmax +mmin > 0 and C ≡ − log ν2(x0) + log µ2(x0). Then for given ε, under D:

µ2(xl)

ν2(xl)
> ε =⇒ log ε < −lM + C + S′l − Sl

=⇒
(
S′l ≥

log ε+ lM − C
2

)
∨
(
− Sl ≥

log ε+ lM − C
2

)
=⇒

(
S̃′l ≥

log ε+ lM − C
2
√

2M ′l

)
∨
(
− S̃l ≥

log ε+ lM − C
2
√

2Ml

)
=⇒

(
S̃′l ≥

log ε+ lM − C
2
√

2lmmax

)
∨
(
− S̃l ≥

log ε+ lM − C
2
√

2lmmax

)
,

where we denoted ∨ the logical or, S̃l ≡ Sl/
√

2Ml and S̃′l ≡ S′l/
√

2M ′l , and supposed l large enough such that
log ε+ lM − C ≥ 0. Then ∃Cε > 0 such that for l large enough, under D:

µ2(xl)

ν2(xl)
> ε =⇒

(
S̃′l ≥

√
lCε

)
∨
(
− S̃l ≥

√
lCε

)
.

It follows that for l large enough:

PΘl|D

[
µ2(xl)

ν2(xl)
> ε

]
≤ PΘl|D

[
S̃′l ≥

√
lCε

]
+ PΘl|D

[
− S̃l ≥

√
lCε

]
≤ 1

PΘl [D]
PΘl

[
D ∩

{
S̃′l ≥

√
lCε
}]

+
1

PΘl [D]
PΘl

[
D ∩

{
− S̃l ≥

√
lCε
}]

≤ 1

PΘl [D]
erfc

(√
l

2
Cε

)
(68)

≤ 1

PΘl [D]
exp

(
− l

2
C2
ε

)
, (69)

where Eq. (68) is obtained using S̃l, S̃′l ∼Θl N (0, 1), while Eq. (69) is obtained using erfc (x) ≤ exp(−x2) (Chiani et al.,
2003). It follows from Eq. (69) that

∞∑
l=1

PD

[
µ2(xl)

ν2(xl)
> ε

]
=

∞∑
l=1

PΘl|D

[
µ2(xl)

ν2(xl)
> ε

]
<∞.

By Lemma 11, we finally deduce that, under D:

µ2(xl)

ν2(xl)

l→∞−−−→ 0 a.s.
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D.8. If exp
(
m[χl]

)
→ 1 and if Moments of x̃l Are Bounded, then xl Converges to One-Dimensional Signal

Pathology

Proposition 13. Again we adopt the notation: x̃l ≡ xl/
√
µ2(xl), and the usual notation:

Xl = O(Yl) ⇐⇒ ∃M > 0,∀l : Xl ≤MYl.

We further suppose that:

(i) x̃l is well-defined with bounded moments: νp(|x̃l|) = O(1), implying in particular ν2(xl)/µ2(xl) 6l→∞−−−→∞ and thus

µ2(xl)/ν2(xl) 6l→∞−−−→ 0 , i.e. that xl does not converge to zero-dimensional signal pathology;

(ii) δχl ' exp
(
m[χl]

) l→∞−−−→ 1.

Then xl converges to one-dimensional signal pathology.

Proof. Again we use the notations from Section B and we denote:

νlϕ ≡ Ex,α

[
ϕ(x̃l,α)

]
=
(
ν1,c(x̃

l)
)

1≤c≤Nl
,

νlρ ≡ Ex,α

[
ρ(x̃l,α)

]
.

The statistic-preserving property implies 1
Nl
||νlϕ||22 = 1

Rl
||νlρ||22, in turn implying that

ν2(x̃l) =
1

Nl

(∑
c

µ2,c(x̃
l) + ν1,c(x̃

l)2
)

= µ2(x̃l) +
1

Nl
||νlϕ||22

= 1 +
1

Nl
||νlϕ||22 = 1 +

1

Rl
||νlρ||22,

i.e. that ||νlρ||22 = Rl
(
ν2(x̃l)− 1

)
. Combined with ν2(x̃l) = O(1), we deduce that ||νlρ||2 = O(1).

Now let us reason by contradiction and suppose that reff(x
l) = reff(x̃

l) 6l→∞−−−→ 1, implying that ∃η > 0 and ∃(kl)l∈N strictly
increasing sequence with ∀l: reff(x̃

kl) ≥ 1 + η.

This directly implies that ∃η′ > 0 such that ∀l:

∃vklϕ ∈ RNkl ⊥ νklϕ , ||vklϕ ||2 = 1 : Varx,α
[
〈ϕ(x̃kl ,α),vklϕ 〉

]
= Ex,α

[
〈ϕ(x̃kl ,α),vklϕ 〉2

]
≥ η′,

i.e. that ϕ(x̃kl ,α) has a direction of variance > η′ which is orthogonal to its mean vector νklϕ . By padding this direction
appropriately with zeros, it follows that ∃η′ > 0 such that ∀l:

∃vklρ ∈ RRkl ⊥ νklρ , ||vklρ ||2 = 1 : Varx,α
[
〈ρ(x̃kl ,α),vklρ 〉

]
= Ex,α

[
〈ρ(x̃kl ,α),vklρ 〉2

]
≥ η′.

Let us denote W̃ kl+1 such that ∀c : W̃ kl+1
c,: ≡ W kl+1

c,: /||W kl+1
c,: ||2 and ν̃klρ ≡ νklρ /||νklρ ||2. Let us further decompose

W̃ kl+1
c,: as

W̃ kl+1
c,: = wv

(
vklρ
)T

+
√

1− w2
vw

T , w ⊥ vklρ , ||w|| = 1.
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Then we get

Ex,α

[(
W̃ kl+1

c,: ρ(x̃kl ,α)
)2]

= Ex,α

[
w2

v〈ρ(x̃kl ,α),vklρ 〉2 + (1− w2
v)〈ρ(x̃kl ,α),w〉2 + 2wv

√
1− w2

v〈ρ(x̃kl ,α),vklρ 〉〈ρ(x̃kl ,α),w〉
]

≥ w2
vη
′ + 2wv

√
1− w2

vEx,α

[
〈ρ(x̃kl ,α),vklρ 〉〈ρ(x̃kl ,α),w〉

]
≥ w2

vη
′ − 2wv

√
1− w2

vEx,α

[
〈ρ(x̃kl ,α),vklρ 〉2

] 1
2Ex,α

[
〈ρ(x̃kl ,α),w〉2

] 1
2

≥ w2
vη
′ − 2wv

√
1− w2

vEx,α

[〈
ρ(x̃kl ,α),

ρ(x̃kl ,α)

||ρ(x̃kl ,α)||
〉2
] 1

2

Ex,α

[〈
ρ(x̃kl ,α),

ρ(x̃kl ,α)

||ρ(x̃kl ,α)||
〉2
] 1

2

≥ w2
vη
′ − 2wv

√
1− w2

vEx,α

[∑
i
ρ(x̃kl ,α)2

i

]
≥ w2

vη
′ − 2wv

√
1− w2

vRklν2(x̃kl),

Ex,α

[
W̃ kl+1

c,: ρ(x̃kl ,α)
]2

= (1− w2
v)Ex,α

[
〈ρ(x̃kl ,α),w〉

]2
≤ (1− w2

v)Ex,α

[〈
ρ(x̃kl ,α),

ρ(x̃kl ,α)

||ρ(x̃kl ,α)||
〉2
]

≤ (1− w2
v)Rklν2(x̃kl).

Given that ν2(x̃kl) = O(1), this implies by spherical symmetry that ∀ε > 0, ∃pε > 0 such that ∀l:

Pθkl+1

[(
Ex,α

[(
W̃ kl+1

c,: ρ(x̃kl ,α)
)2]2 ≥ η′2 − ε) ∧ (Ex,α

[
W̃ kl+1

c,: ρ(x̃kl ,α)
]2
≤ ε
)]
≥ pε, (70)

with ∧ the logical and.

On the other hand, by Cauchy-Schwarz inequality:

Ex,α

[(
W̃ kl+1

c,: ρ(x̃kl ,α)
)2]2 ≤ Ex,α

[∣∣W̃ kl+1
c,: ρ(x̃kl ,α)

∣∣]Ex,α

[∣∣W̃ kl+1
c,: ρ(x̃kl ,α)

∣∣3]. (71)

The second term on the right-hand side can be bounded as

Ex,α

[∣∣W̃ kl+1
c,: ρ(x̃kl ,α)

∣∣3]
≤ Ex,α

[〈
ρ(x̃kl ,α),

ρ(x̃kl ,α)

||ρ(x̃kl ,α)||2

〉3
]

= Ex,α

[
||ρ(x̃kl ,α)||32

]
= Ex,α

[( Rkl∑
i=1

ρ(x̃kl ,α)2
i

)3/2
]

≤ Ex,α

[ ∑
i1,i2,i3

ρ(x̃kl ,α)2
i1ρ(x̃kl ,α)2

i2ρ(x̃kl ,α)2
i3

]1/2

(72)

≤
∑
i1,i2,i3

Ex,α

[
ρ(x̃kl ,α)4

i1

]1/4Ex,α

[
ρ(x̃kl ,α)8

i2

]1/8Ex,α

[
ρ(x̃kl ,α)8

i3

]1/8
(73)

≤ R3
kl
N

1/2
kl

ν4(x̃kl)1/4ν8(x̃kl)1/4, (74)

where Eq. (72) and Eq. (73) were obtained by applying Cauchy-Schwarz inequality, while Eq. (74) was obtained with ∀i,∀p:
Ex,α

[
ρ(x̃kl ,α)pi

]
≤
∑

c
Ex,α

[
ϕ(x̃kl ,α)pc

]
= Nklνp(x̃

kl).
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It then follows from Eq. (71) and the hypothesis that all moments are bounded νp(|x̃l|) = O(1) that

Ex,α

[(
W̃ kl+1

c,: ρ(x̃kl ,α)
)2]2

= O
(
Ex,α

[∣∣W̃ kl+1
c,: ρ(x̃kl ,α)

∣∣]). (75)

Combining Eq. (70) and Eq. (75), we deduce that ∃η′′ > 0 with ∀ε > 0, ∃p′ε > 0 such that ∀l:

Pθkl+1

[(
Ex,α

[∣∣W̃ kl+1
c,: ρ(x̃kl ,α)

∣∣] ≥ η′′ − ε) ∧ (Ex,α

[
W̃ kl+1

c,: ρ(x̃kl ,α)
]2
≤ ε
)]
≥ p′ε.

Under standard initialization: W kl+1
c,: ∼θkl+1 N (0, 2 /RklI), the variables W̃ kl+1

c,: and ||W kl+1
c,: ||2 are independent and

Pθkl+1

[
1 ≤ ||W kl+1

c,: ||2 ≤ 2
]
> 0 does not depend on l. Therefore ∀ε > 0, ∃p′′ε > 0 such that ∀l:

Pθkl+1

[(
Ex,α

[∣∣W kl+1
c,: ρ(x̃kl ,α)

∣∣] ≥ η′′ − ε) ∧ (Ex,α

[
W kl+1

c,: ρ(x̃kl ,α)
]2
≤ 4ε

)]
≥ p′′ε . (76)

Now by noting that

Ex,α

[∣∣W kl+1
c,: ρ(x̃kl ,α)

∣∣] = Ex,α

[(
W kl+1

c,: ρ(x̃kl ,α)
)+]

+ Ex,α

[(
W kl+1

c,: ρ(x̃kl ,α)
)−]

,

Ex,α

[
W kl+1

c,: ρ(x̃kl ,α)
]2

=
(
Ex,α

[(
W kl+1

c,: ρ(x̃kl ,α)
)+]− Ex,α

[(
W kl+1

c,: ρ(x̃kl ,α)
)−])2

,

we deduce that ∃η′′′ > 0, ∃p > 0 such that ∀l:

Pθkl+1

[(
Ex,α

[(
W kl+1

c,: ρ(x̃kl ,α)
)+] ≥ η′′′) ∧ (Ex,α

[(
W kl+1

c,: ρ(x̃kl ,α)
)−] ≥ η′′′)] ≥ p,

Pθkl+1

[(
ν1,c(y

kl+1,+) ≥ η′′′
√
µ2(xkl)

)
∧
(
ν1,c(y

kl+1,−) ≥ η′′′
√
µ2(xkl)

)]
≥ p,

Pθkl+1

[
ν1,c(y

kl+1,+)ν1,c(y
kl+1,−)

µ2(xkl)
≥ (η′′′)2

]
≥ p,

Ec,θkl+1

[
ν1,c(y

kl+1,+)ν1,c(y
kl+1,−)

µ2(xkl)

]
≥ p(η′′′)2.

Thus by Theorem 2, ∃η′′′′ > 0 such that ∀l: exp
(
m[χkl+1]

)
≥ 1 + η′′′′, contradicting the hypothesis exp

(
m[χl]

) l→∞−−−→ 1.

We deduce that reff(x
l)

l→∞−−−→ 1, i.e. that xl converges to one-dimensional signal pathology.

D.9. If exp
(
m[χl]

)
→ 1, then each Additional Layer l Becomes Arbitrarily Well Approximated by a Linear

Mapping

We suppose that ∀l: µ2(xl) > 0 and that exp
(
m[χl]

)
→ 1. Denoting ỹl = yl/

√
µ2(xl−1) and ỹl,± ≡ max

(
± ỹl, 0

)
,

Theorem 2 implies that

Ec,θl
[
ν1,c(ỹ

l,+)ν1,c(ỹ
l,−)
]
→ 0,

Ec,θl

[
min

(
ν1,c(ỹ

l,+), ν1,c(ỹ
l,−)
)2]→ 0,

∀ε > 0 : Pc,θl
[

min
(
ν1,c(ỹ

l,+), ν1,c(ỹ
l,−)
)
> ε
]
→ 0,

∀ε > 0 : Pθl
[
∃c : min

(
ν1,c(ỹ

l,+), ν1,c(ỹ
l,−)
)
> ε
]
→ 0,

∀ε > 0 : Pθl
[
∀c : min

(
ν1,c(ỹ

l,+), ν1,c(ỹ
l,−)
)
≤ ε
]
→ 1. (77)
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Now let us fix a channel c and suppose that min
(
ν1,c(ỹ

l,+)ν1,c(ỹ
l,−)
)
≤ ε. Given that ỹl,− = |ỹl,+ − ỹl|, we have that

min
(
ν1,c(ỹ

l,+)ν1,c(ỹ
l,−)
)

= min
(
ν1,c(|ỹl,+ − 0|), ν1,c(|ỹl,+ − ỹl|)

)
≤ ε.

Both ν1,c(|ỹl,+ − 0|) and ν1,c(|ỹl,+ − ỹl|) correspond to the mean absolute error incurred when approximating the
rescaled signal xl/µ2(xl−1) = yl,+/µ2(xl−1) = ỹl,+ in channel c by a linear function. So there exists a linear function
fc : Rn×···×n×Nl−1 → Rn×···×n such that

Ex,α

[
|ỹl,+α,c − fc(x

l−1)α|
]
≤ ε.

If ∀c: min
(
ν1,c(ỹ

l,+)ν1,c(ỹ
l,−)
)
≤ ε, and if we define the linear function f : Rn×···×n×Nl−1 → Rn×···×n×Nl such that

∀α, c: f(xl−1)α,c = fc(x
l−1)α, then we get

ν1(|ỹl,+ − f(xl−1)|) = Ex,α,c
[
|ỹl,+α,c − f(xl−1)α,c|

]
= EcEx,α

[
|ỹl,+α,c − fc(x

l−1)α|
]
≤ ε.

Combined with Eq. (77), this means that xl/µ2(xl−1) = ỹl,+ can be approximated arbitrarily well by a linear function of
xl−1 with probability arbitrarily close to 1 in θl.

We have shown that xl/µ2(xl−1) is arbitrarily well approximated by a linear function of xl−1 when normalizing with
respect to xl−1. Now let us show that x̃l = xl/µ2(xl) is arbitrarily well approximated by a linear function of xl−1 when
normalizing with respect to xl.

Let us denote (e1, . . . , eRl) and (λ1, . . . , λRl) respectively the orthogonal eigenvectors and eigenvalues ofCx,α[ρ(xl−1,α)]

and Ŵ l ≡ W l(e1, . . . , eRl). By Corollary 3 there is at least one eigenvalue λi such that λi ≥ µ2(xl−1), which gives
combined with Eq. (60) that ∀c:

µ2,c(ỹ
l) =

1

µ2(xl−1)

∑
i

(
Ŵ l

c,i

)2
λi,

µ2,c(ỹ
l) ≥ X, X ∼θl

2

Rl
Chi-Squared(1).

Using Eq. (65), we then get

µ2,c(x
l) + µ2,c(x̄

l) = µ2,c(y
l)− 2ν1,c(y

l,+)ν1,c(y
l,−) = µ2(xl−1)

(
µ2,c(ỹ

l)− 2ν1,c(ỹ
l,+)ν1,c(ỹ

l,−)
)
,

µ2,c(x
l) + µ2,c(x̄

l) ≥ µ2(xl−1)
(
X − Y

)
, X ∼θl

2

Rl
Chi-Squared(1), ∀ε : Pθl [|Y | > ε]

l→∞−−−→ 0. (78)

Similarly to the proof of Theorem 1, we define

wlc ≡


0 if µ2,c(x

l) < µ2,c(x̄
l)

1 if µ2,c(x
l) > µ2,c(x̄

l) ,

w̃lc if µ2,c(x
l) = µ2,c(x̄

l)

with w̃lc ∼ Bernouilli(1/2) independent of ωl and βl.

SinceCl is independent from µ2,c(x
l)+µ2,c(x̄

l), it follows from Eq. (78) that ∀p > 0,∃η, η′ > 0 such that for l large enough:

Pθl|Cl

[
µ2(xl) ≥ 1

2Nl
µ2(xl−1)η

]
> 1− p, (79)

Pθl|Cl

[
µ2(xl)

µ2(xl−1)
≥ η′

]
> 1− p. (80)
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Now let us fix p, ε > 0 and consider η′ as in Eq. (80). If we suppose that ∀c: min
(
ν1,c(ỹ

l,+)ν1,c(ỹ
l,−)
)
≤ √η′ε, and that

µ2(xl)
µ2(xl−1)

≥ η′, then there exists a linear function f : Rn×···×n×Nl−1 → Rn×···×n×Nl such that

ν1(|ỹl,+ − f(xl−1)|) ≤
√
η′ε,

ν1(|x̃l − f̃(xl−1)|) ≤
√
µ2(xl−1)

µ2(xl)

√
η′ε ≤ 1√

η′

√
η′ε = ε,

where we defined f̃(xl−1) =
√

µ2(xl−1)
µ2(xl)

f(xl−1). Given Eq. (77), this means that x̃l can be approximated with error

ε by a linear function of xl−1 with probability arbitrarily close to (1 − p)Pθl [Cl] = (1 − p)
(
1 − 2−Nl

)
. Thus x̃l can

be approximated arbitrarily well by a linear function of xl−1 with probability arbitrarily close to Pθl [Cl] = 1 − 2−Nl .
Furthermore Pθl [Cl] is itself nearly indistinguishable from 1.

E. Details of Section 6
E.1. Proof of Theorem 3

Theorem 3 (normalized sensitivity increments of batch-normalized feedforward nets). The dominating term in the evolution
of χl can be decomposed as

δχl = δBNχ
l · δφχl ' exp

(
m[χl]

)
= exp

(
mBN[χl]

)
· exp

(
mφ[χl]

)
,

exp
(
mBN[χl]

)
≡
(
µ2(dxl−1)

µ2(xl−1)

)− 1
2

Ec,θl

[
µ2,c(dy

l)

µ2,c(yl)

] 1
2

,

exp
(
mφ[χl]

)
≡
(

1− 2Ec,θl [ν1,c(z
l,+)ν1,c(z

l,−)]
)− 1

2

.︸ ︷︷ ︸
∈[1,
√

2]

Proof. First let us decompose δχl as the product of δBNχ
l and δφχl:

δBNχ
l ≡

(
µ2(dzl)

µ2(zl)

) 1
2
(
µ2(dxl−1)

µ2(xl−1)

)− 1
2

,

δφχ
l ≡

(
µ2(dxl)

µ2(xl)

) 1
2
(
µ2(dzl)

µ2(zl)

)− 1
2

,

δχl =

(
µ2(dxl)

µ2(xl)

) 1
2
(
µ2(dxl−1)

µ2(xl−1)

)− 1
2

= δBNχ
l · δφχl.

Next let us decompose exp
(
m[χl]

)
as the product of two terms:

exp
(
mBN

[
χl
])

=

(
Eθl [µ2(dzl)]

Eθl [µ2(zl)]

) 1
2
(
µ2(dxl−1)

µ2(xl−1)

)− 1
2

,

exp
(
mφ

[
χl
])

=

(
Eθl [µ2(dxl)]

Eθl [µ2(xl)]

) 1
2
(
Eθl [µ2(dzl)]

Eθl [µ2(zl)]

)− 1
2

,

exp
(
m[χl]

)
=

(
Eθl [µ2(dxl)]

Eθl [µ2(xl)]

) 1
2
(
µ2(dxl−1)

µ2(xl−1)

)− 1
2

= exp
(
mBN[χl]

)
· exp

(
mφ[χl]

)
.
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The term exp
(
mBN[χl]

)
approximates the geometric increment δBNχ

l from (xl−1,dxl−1) to (zl,dzl) such that
exp

(
mBN[χl]

)
' δBNχ

l, while the term exp
(
mφ[χl]

)
approximates the geometric increment δφχl from (zl,dzl) to

(xl,dxl) such that exp
(
mφ[χl]

)
' δφχl. These terms can be seen (slightly simplistically) as the direct contribution of

respectively batch normalization and the nonlinearity φ to δχl. Now let us explicitate both terms.

Term exp
(
mBN

[
χl
])

. First let us note that batch normalization directly gives µ2(zl) = 1, and thus Eθl [µ2(zl)] = 1. Next
let us explicitate Eθl [µ2(dzl)]:

∀c : dzl:,c =
dyl:,c√
µ2,c(yl)

, ∀c : µ2,c(dz
l) =

µ2,c(dy
l)

µ2,c(yl)
,

Eθl [µ2(dzl)] = Ec,θl [µ2,c(dz
l)] = Ec,θl

[
µ2,c(dy

l)

µ2,c(yl)

]
.

All together, we get that

exp
(
mBN

[
χl
])

=

(
µ2(dxl−1)

µ2(xl−1)

)− 1
2

Ec,θl

[
µ2,c(dy

l)

µ2,c(yl)

] 1
2

.

Term exp
(
mφ

[
χl
])

. We consider the symmetric propagation for batch-normalized feedforward nets, introduced in
Section B. From Eq. (26), we deduce that

Eθl [µ2(dxl)] + Eθl [µ2(dx̄l)] = Eθl [µ2(dzl)],

2Eθl [µ2(dxl)] = Eθl [µ2(dzl)], (81)

where Eq. (81) is obtained by symmetry of the propagation. Next we turn to the symmetric propagation of the signal:

µ2,c(x
l) + µ2,c(x̄

l) = Ex,α

[
(zl,+α,c)

2
]
− Ex,α

[
zl,+α,c

]2
+ Ex,α

[
(zl,−α,c)

2
]
− Ex,α

[
zl,−α,c

]2
(82)

= ν2,c(z
l,+)− ν1,c(z

l,+)2 + ν2,c(z
l,−)− ν1,c(z

l,−)2

= ν2,c(z
l)−

(
ν1,c(z

l,+)2 + ν1,c(z
l,−)2

)
,

where Eq. (82) follows from Eq. (23). Due to the constraints ν1,c(z
l) = 0 and ν2,c(z

l) = 1, imposed by batch normalization:

µ2,c(x
l) + µ2,c(x̄

l) = 1−
(
ν1,c(z

l,+)2 + ν1,c(z
l,−)2

)
, (83)

ν1,c(z
l) = ν1,c(z

l,+)− ν1,c(z
l,−) = 0,(

ν1,c(z
l,+)− ν1,c(z

l,−)
)2

= ν1,c(z
l,+)2 + ν1,c(z

l,−)2 − 2ν1,c(z
l,+)ν1,c(z

l,−) = 0. (84)

Using Eq. (83), Eq. (84) and the symmetry of the propagation:

µ2,c(x
l) + µ2,c(x̄

l) = 1− 2ν1,c(z
l,+)ν1,c(z

l,−),

2Eθl [µ2(xl)] = 1− 2Ec,θl [ν1,c
(
zl,+

)
ν1,c
(
zl,−

)
]. (85)

Finally combining Eq. (81), Eq. (85) and Eθl [µ2(zl)] = 1:

exp
(
mφ

[
χl
])

=

(
Eθl [µ2(dxl)]

Eθl [µ2(xl)]

) 1
2
(
Eθl [µ2(dzl)]

Eθl [µ2(zl)]

)− 1
2

=
(

1− 2Ec,θl [ν1,c
(
zl,+

)
ν1,c
(
zl,−

)
]
)− 1

2

.
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To obtain the bounds on exp
(
mφ

[
χl
])

, the same reasoning as Eq. (67) may be applied to zl instead of yl:

4ν1,c(z
l,+)ν1,c(z

l,−) ≤ µ2,c(z
l) = 1, 2Ec,θl [ν1,c(z

l,+)ν1,c(z
l,−)] ≤ 1

2
,

1 ≤ exp
(
mφ[χl]

)
=
(

1− 2Ec,θl [ν1,c(z
l,+)ν1,c(z

l,−)]
)− 1

2 ≤
√

2.

E.2. In the First Step of the Propagation, exp
(
mBN

[
χ1
])
≥ 1

Using again the notations from Section B, we may explicitate the second-order moment in channel c of dy1:

µ2,c(dy
1) = Ex,dx,α

[
ϕ̂(dy1,α)2

c

]
= Ex,dx,α

[
ϕ(dy1,α)2

c

]
= Ex,dx,α

[(
W 1

c,:ρ(dx,α)
)2]

(86)

=
∑

i,j
W 1

c,iW
1
c,jEdx,α[ρ(dx,α)iρ(dx,α)j ]

= µ2(dx0)
∑

i

(
W 1

c,i

)2
= µ2(dx0) ||W 1

c,:||22. (87)

where Eq. (86) follows from dy1 being centered, while Eq. (87) follows from the white noise property Edx[dxidxj ] =
σ2

dxδij = µ2(dx0) δij , implying ∀α: Edx[ρ(dx,α)iρ(dx,α)j ] = µ2(dx0) δij under periodic boundary conditions.

Now we turn to the second-order moment in channel c of y1. Denoting (e1, . . . , eR1) and (λ1, . . . , λR1) respectively the
orthogonal eigenvectors and eigenvalues of Cx,α[ρ(x,α)] and Ŵ 1 = W 1(e1, . . . , eR1

), we get that

µ2,c(y
1) = Ex,α

[
ϕ̂(y1,α)2

c

]
= Ex,α

[(
W 1

c,:ρ̂(x,α)
)2]

=
∑

i

(
Ŵ 1

c,i

)2
λi

= ||W 1
c,:||22

∑
i

(
W̃ 1

c,i

)2
λi =

µ2,c(dy
1)

µ2(dx0)

∑
i

(
W̃ 1

c,i

)2
λi, (88)

where we defined W̃ 1 such that ∀c: W̃ 1
c,: = Ŵ 1

c,: / ||Ŵ 1
c,:|| and we used Eq. (87). Under standard initialization, the

distribution of Ŵ 1 is spherically symmetric, implying that for all channels c the distribution of W̃ 1
c,: is uniform on the unit

sphere of RR1 . In turn, this implies that

∀i : Eθ1

[(
W̃ 1

c,i

)2]
=

1

R1
,

∀c : Eθ1

[∑
i

(
W̃ 1

c,i

)2
λi

]
=

1

R1

∑
i
λi, Ec,θ1

[∑
i

(
W̃ 1

c,i

)2
λi

]
=

1

R1

∑
i
λi. (89)

Finally we can write exp
(
mBN

[
χ1
])

as

exp
(
mBN

[
χ1
])

=

(
µ2(dx0)

µ2(x0)

)− 1
2

Ec,θ1

[
µ2,c(dy

1)

µ2,c(y1)

] 1
2

=

(
µ2(dx0)
1
R1

∑
i λi

)− 1
2

Ec,θ1

[
µ2(dx0)∑
i

(
W̃ 1

c,i

)2
λi

] 1
2

(90)

=
( 1

R1

∑
i

λi

) 1
2Ec,θ1

[
1∑

i

(
W̃ 1

c,i

)2
λi

] 1
2

≥
( 1

R1

∑
i

λi

) 1
2

(
Ec,θ1

[∑
i

(
W̃ 1

c,i

)2
λi

]−1
) 1

2

= 1. (91)

where Eq. (90) was obtained using Eq. (88) and µ2(x0) = µ2(x) = 1
R1

TrCx,α[ρ(x,α)] = 1
R1

∑
i λi by Corollary 3,

while Eq. (91) was obtained using the convexity of x 7→ 1/x and Eq. (89).
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F. Details of Section 7
F.1. Adaptation of the Previous Setup to Resnets

Before proceeding to the analysis, slight adaptations and forewords are necessary. We denote

Θl,h ≡ (ω1,1,β1,1, . . . ,ω1,H ,β1,H , . . . ,ωl,1,βl,1, . . . ,ωl,h,βl,h), θl,h ≡ Θl,h|Θl,h−1,

Θl ≡ (ω1,1,β1,1, . . . ,ω1,H ,β1,H , . . . ,ωl,1,βl,1, . . . ,ωl,H ,βl,H), θl ≡ Θl|Θl−1.

In the pre-activation perspective, each residual layer starts with (yl,h−1,dyl,h−1) after the convolution and ends with
(yl,h,dyl,h) again after the convolution. The concrete effect is that BN and φ are completely deterministic conditionally
on Θl−1 in the first layer h = 1 of each residual unit l. This occurs again for h ≥ 2 since BN and φ are random
conditionally on Θl−1 but completely deterministic conditionally on Θl,h−1. At even larger granularity, due to the
aggregation (yl,dyl) =

∑l
k=0(yk,H ,dyk,H), the input (yl−1,dyl−1) of each residual unit becomes more and more

correlated between successive l, and less and less dependent on the random parameters θl−k of previous residual units.

Since the evolution of χl is mainly influenced by batch normalization and the nonlinearity φ, this shift can be thought as
attributing the parameters and thus the stochasticity of layer h to layer h − 1. A simple strategy to apply the results of
Section 6 is thus to shift back to the post-activation perspective by considering the parameters θl,h−1 and the evolution from
(xl,h−1,dxl,h−1) to (xl,h,dxl,h) for layers 2 ≤ h ≤ H . Theorem 3 strictly applies in this case.

It remains to understand the evolution from (yl,0,dyl,0) = (yl−1,dyl−1) to (xl,1,dxl,1) in layer h = 1, and the evolution
from (xl,H ,dxl,H) to (yl,H ,dyl,H) in layer h = H .

By considering the parameter Θl−1, the dominating term in the evolution from (yl−1,dyl−1) to (zl,1,dzl,1) is(
EΘl−1 [µ2(dzl,1)]

EΘl−1 [µ2(zl,1)]

) 1
2
(
EΘl−1 [µ2(dyl−1)]

EΘl−1 [µ2(yl−1)]

)− 1
2

=

(
EΘl−1 [µ2(dyl−1)]

EΘl−1 [µ2(yl−1)]

)− 1
2

Ec,Θl−1

[
µ2,c(dy

l−1)

µ2,c(yl−1)

] 1
2

.

Under the assumption of well-conditioned noise, this term is again & 1 by convexity of x 7→ 1/x. For the nonlinearity term,
the symmetric propagation with respect to Θl−1 applies for all terms in the sum (yl−1,dyl−1) =

∑l−1
k=0(yk,H ,dyk,H),

except for (y0,H ,dy0,H) = (y,dy). The expression of the nonlinearity term exp
(
mφ[χl]

)
in Theorem 3 thus remains

approximately valid.

Finally by spherical symmetry, the evolution from (xl,H ,dxl,H) to (yl,H ,dyl,H) in layer h = H has dominating term(
µ2(dxl,H)

µ2(xl,H)

)− 1
2
(
Eθl,H [µ2(dyl,H)]

Eθl,H [µ2(yl,H)]

) 1
2

= 1.

In summary, Theorem 3 remains approximately valid during the feedforward evolution inside residual units.

F.2. Lemma on Dot-Products

Lemma 14. It holds that:

Eθl
[
Ey,α,c

[
ϕ̂(yl−1)c ϕ̂(yl,H ,α)c

]]
= 0,

Eθl
[
Ey,α,c

[
ϕ̂(yl−1)c ϕ̂(yl,H ,α)c

]2] ≤ 1

Nreff(yl−1)
µ2(yl−1)Eθl [µ2(yl,H)],

Eθl
[
Ey,dy,α,c

[
ϕ̂(dyl−1)c ϕ̂(dyl,H ,α)c

]]
= 0,

Eθl
[
Ey,dy,α,c

[
ϕ̂(dyl−1)c ϕ̂(dyl,H ,α)c

]2] ≤ 1

Nreff(dy
l−1)

µ2(dyl−1)Eθl [µ2(dyl,H)].

Proof. By spherical symmetry, the moments of ϕ̂(yl,H ,α)c and ϕ̂(−yl,H ,α)c = −ϕ̂(yl,H ,α)c have the same distribution
with respect to θl.
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It follows that

Eθl
[
Ey,α,c

[
ϕ̂(yl−1,α)c ϕ̂(yl,H ,α)c

]]
= Eθl

[
Ey,α,c

[
ϕ̂(yl−1,α)c

(
− ϕ̂(yl,H ,α)c

)]]
,

Eθl
[
Ey,α,c

[
ϕ̂(yl−1,α)c ϕ̂(yl,H ,α)c

]]
= 0.

Next we note that

Ey,α,c
[
ϕ̂(yl−1,α)c ϕ̂(yl,H ,α)c

]
=

1

N

∑
c
Ey,α

[
ϕ̂(yl−1,α)c ϕ̂(yl,H ,α)c

]
=

1

N
Ey,α

[〈
ϕ̂(yl−1,α), ϕ̂(yl,H ,α)

〉]
, (92)

with 〈 , 〉 the standard dot product in RN .

Let us denote (e1, . . . , eN ) and (λ1, . . . , λN ) respectively the orthogonal eigenvectors and eigenvalues ofCy,α[ϕ(yl−1,α)].
Let us further denote ui the unit-variance components of ϕ̂(yl−1,α) in the basis (e1, . . . , eN ) and yi the components of
ϕ̂(yl,H ,α) in the basis (e1, . . . , eN ). Then we get that

ϕ̂(yl−1,α) =
∑

i

√
λiuiei, ∀i : Ey,α

[
u2
i

]
= 1, ∀j 6= i : Ey,α

[
uiuj

]
= 0,

ϕ̂(yl,H ,α) =
∑

i
yiei.

Now we decompose each component yi of yl,H as

∀j : αi,j ≡ Ey,α[yiuj ], yi =
∑

j
αi,juj + zi.

From this definition, we get that

∀j : Ey,α

[
ziuj

]
= 0, Ey,α

[
yiui

]
= αi,i, Ey,α

[
y2
i

]
=
∑

j
α2
i,j + Ey,α

[
z2
i

]
,

µ2(yl,H) =
1

N
Ey,α

[〈
ϕ̂(yl,H ,α), ϕ̂(yl,H ,α)

〉]
=

1

N

∑
i
Ey,α

[
y2
i

]
=

1

N

(∑
i,j
α2
i,j +

∑
i
Ey,α

[
z2
i

])
, (93)

where the dot product in Eq. (93) was computed in the orthogonal basis (e1, . . . , eN ).

Now computing the dot product of ϕ̂(yl−1,α) and ϕ̂(yl,H ,α) in the orthogonal basis (e1, . . . , eN ):

Ey,α

[〈
ϕ̂(yl−1,α)ϕ̂(yl,H ,α)

〉]
=
∑

i

√
λiEy,α[yiui] =

∑
i

√
λiαi,i.

Spherical symmetry implies that the moments of y1e1 + · · ·+ yiei + · · ·+ yNeN and y1e1 + · · · − yiei + · · ·+ yNeN
have the same distribution with respect to θl. Thus ∀j 6= i:

Ey,α

[
yiui

]
Ey,α

[
yjuj

]
∼θl Ey,α

[
− yiui

]
Ey,α

[
yjuj

]
,

αi,iαj,j ∼θl (−αi,i)αj,j ,
Eθl
[
αi,iαj,j

]
= 0.

We deduce that

Eθl

[
Ey,α

[〈
ϕ̂(yl−1,α)ϕ̂(yl,H ,α)

〉]2]
=
∑

i
λiEθl

[
α2
i,i

]
.
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Spherical symmetry also implies that the distribution of αi,j with respect to θl does not depend on i. Denoting (βj) such
that ∀i, j: βj ≡ Eθl

[
α2
i,j

]
, we get combined with Eq. (93):

Eθl
[
µ2(yl,H)

]
≥ 1

N

∑
i,j

Eθl
[
α2
i,j

]
=

1

N

∑
i,j
βj ≥

∑
i
βi,

Eθl

[
Ey,α

[〈
ϕ̂(yl−1,α)ϕ̂(yl,H ,α)

〉]2]
=
∑

i
λiβi ≤ λmax

(∑
i
βi

)
≤ λmaxEθl

[
µ2(yl,H)

]
.

Finally combining with Eq. (92):

Eθl

[
Ey,α,c

[
ϕ̂(yl−1,α)c ϕ̂(yl,H ,α)c

]2]
=

1

N2
Eθl

[
Ey,α

[〈
ϕ̂(yl−1,α)ϕ̂(yl,H ,α)

〉]2]

≤ 1

N2
λmaxEθl

[
µ2(yl,H)

]
(94)

≤ 1

Nreff(yl−1)
µ2(yl−1)Eθl

[
µ2(yl,H)

]
,

where we used λmaxreff(y
l−1) =

∑
i λi = Nµ2(yl−1).

The same analysis immediately applies to ϕ̂(dyl−1,α) and ϕ̂(dyl,H ,α).

Corollary 15. Let us denote the dot products:

Yl ≡ Ey,α,c
[
ϕ̂(yl−1,α)c ϕ̂(yl,H ,α)c

]
,

Tl ≡ Ey,dy,α,c
[
ϕ̂(dyl−1,α)c ϕ̂(dyl,H ,α)c

]
,

Yl,l ≡ Ey,α,c
[
ϕ̂(yl,H ,α)c ϕ̂(yl,H ,α)c

]
= µ2(yl,H),

Tl,l ≡ Ey,dy,α,c
[
ϕ̂(dyl,H ,α)c ϕ̂(dyl,H ,α)c

]
= µ2(dyl,H).

Then by spherical symmetry ∀l, ∀l′ 6= l:

EΘl [Yl] = 0, EΘmax(l,l′) [YlYl′ ] = 0,

EΘl [Tl] = 0, EΘmax(l,l′) [TlTl′ ] = 0.

Furthermore given Lemma 14 and given reff(y
l−1), reff(dy

l−1) ≥ 1, we deduce that

EΘl
[
Y 2
l

]
≤ 1

N
EΘl−1

[
µ2(yl−1)Eθl [µ2(yl,H)]

]
≤ 1

N
EΘl−1

[
µ2(yl−1)Eθl [Yl,l]

]
,

EΘl

[( µ2(y0)

µ2(dy0)(χl−1)2
Tl

)2
]
≤ 1

N
EΘl−1

[
µ2(y0)

µ2(dy0)(χl−1)2
µ2(dyl−1)Eθl

[
µ2(y0)

µ2(dy0)(χl−1)2
µ2(dyl,H)

]]

≤ 1

N
EΘl−1

[
µ2(yl−1)Eθl

[
µ2(y0)

µ2(dy0)(χl−1)2
Tl,l

]]
.

These inequalities will be useful in the proof of Theorem 4.
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F.3. Proof of Theorem 4

Theorem 4 (normalized sensitivity increments of batch-normalized resnets). Suppose that we can bound signal
variances: µ2,min . µ2(yl,H) . µ2,max and feedforward increments: δmin . δχl,h . δmax for all l, h. Further denote
ηmin ≡

(
(δmin)2Hµ2,min − µ2,max

)
/µ2,max and ηmax ≡

(
(δmax)2Hµ2,max − µ2,min

)
/µ2,min, as well as τmin ≡ ηmin/2 and

τmax ≡ ηmax/2. Then there exist positive constants Cmin, Cmax > 0 such that(
1 +

ηmin

l + 1

) 1
2

. δχl .
(

1 +
ηmax

l + 1

) 1
2

,

Cminl
τmin . χl . Cmaxl

τmax .

Proof. First we introduce the additional constants γmin ≡ (δmin)2H and γmax ≡ (δmax)2H such that we can write
ηmin =

(
γminµ2,min − µ2,max

)
/ µ2,max and ηmax =

(
γmaxµ2,max − µ2,min

)
/ µ2,min.

We also remind that we write a . b when a(1 + εa) ≤ b(1 + εb) with |εa| � 1, |εb| � 1 with high probability. And we
write a ' b when a(1 + εa) = b(1 + εb) with |εa| � 1, |εb| � 1 with high probability. Denoting ∧ the logical and, ∨ the
logical or, the following rules are easily verified:

(a . b) ∧ (b . a) ⇐⇒ (a ' b),
(a . b) ⇐⇒ (−a & −b),

(a . b) ∧ (b . c) =⇒ (a . c),

(a . b) ∧ (c . d) ∧ (a > 0) ∧ (c > 0) =⇒ (ac . bd),

(a . b) ∧ (c . d) ∧ (a > 0) ∧ (c > 0) =⇒ (a+ c . b+ d),

(a . b) ∧ (a > 0) ∧ (b > 0) =⇒ (
√
a .
√
b),

(a . b) ∧ (a > 0) ∧ (b > 0) =⇒ (1/a & 1/b).

Finally let a be a random variable depending on Θl with well-defined moments and let b be a constant. Let us prove that

(a . b) =⇒
(
Eθl [a] . b

)
∧
(
EΘl [a] . b

)
.

Given the assumption (a . b), there exists an event A with PΘl [A] ' 1 such that under A: a(1 + εa) ≤ b(1 + εb) with
|εa| � 1, |εb| � 1. Furthermore, using Cauchy-Schwarz inequality:

1

Eθl [a]2

(
Eθl [a]− Eθl [1Aa]

)2

=
1

Eθl [a]2
Eθl [1Aca]2 ≤ Pθl [Ac]

Eθl [a2]

Eθl [a]2
. (95)

Since PΘl [A] ' 1, the complementary event Ac has probability PΘl [A
c] � 1. Now by contradiction, if there would be

non negligible probability with respect to Θl−1 that Pθl [Ac] = PΘl|Θl−1 [Ac] is non negligible, then we would not have that
PΘl [A

c] = EΘl−1EΘl|Θl−1 [1Ac ] = EΘl−1PΘl|Θl−1 [Ac] is negligible. It follows that Pθl [Ac]� 1 with high probability with
respect to Θl−1.

Combined with Eq. (95) and the definition of A, we get

Eθl [a] ' Eθl [1Aa] . b.

A similar reasoning gives

1

EΘl [a]2

(
EΘl [a]− EΘl [1Aa]

)2

≤ PΘl [A
c]
EΘl [a

2]

EΘl [a]2
, EΘl [a] ' EΘl [1Aa] . b.

We keep all these rules in mind in the course of this proof.
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Proof of Eq. (14). Adopting the notations of Corollary 15 and using yl = yl−1 + yl,H by Eq. (12), we get that

µ2(yl) = Ey,α,c

[(
ϕ̂(yl−1,α)c + ϕ̂(yl,H ,α)c

)2
]

= µ2(yl−1) + Yl,l + 2Yl, (96)

µ2(dyl) = Ey,dy,α,c

[(
ϕ̂(dyl−1,α)c + ϕ̂(dyl,H ,α)c

)2
]

= µ2(dyl−1) + Tl,l + 2Tl.

Due to the hypothesis µ2,min . Yl,l = µ2(yl,H) . µ2,max, we have µ2,min . µ2(y0) = µ2(y0,H) . µ2,max.

Now let us reason by induction and suppose that lµ2,min . µ2(yl−1) . lµ2,max. Combined with Eq. (96), we get that

lµ2,min + µ2,min + 2Yl . µ2(yl) . lµ2,max + µ2,max + 2Yl.

On the other hand, Corollary 15 implies that

EΘl
[
Y 2
l

]
.

1

N
lµ2

2,max ≤
1

N

1

l + 1
(l + 1)2µ2

2,max.

Further using Chebyshev’s inequality, we deduce that

PΘl

[∣∣Yl∣∣ > k
1√
N

1√
l + 1

(l + 1)µ2,max

]
.

1

k2
. (97)

For large width N � 1, it follows that
∣∣Yl∣∣� (l + 1)µ2,min and

∣∣Yl∣∣� (l + 1)µ2,max with high probability, and thus that

(l + 1)µ2,min . µ2(yl) . (l + 1)µ2,max. (98)

Then Eq. (98) holds for all l, and furthermore
∣∣Yl∣∣� µ2(yl−1) with high probability. Now let us write (χl)2 as

(χl)2 =

(
µ2(y0)

µ2(dy0)

)(
µ2(dyl)

µ2(yl)

)
=

µ2(y0)

µ2(dy0)

µ2(dyl−1) + Tl,l + 2Tl
µ2(yl−1) + Yl,l + 2Yl

,

(χl)2 = (χl−1)2
µ2(yl−1) + µ2(y0)

µ2(dy0)(χl−1)2Tl,l + 2 µ2(y0)
µ2(dy0)(χl−1)2Tl

µ2(yl−1) + Yl,l + 2Yl
.

Denoting T̃l,l ≡ µ2(y0)
µ2(dy0)(χl−1)2Tl,l and T̃l ≡ µ2(y0)

µ2(dy0)(χl−1)2Tl, we then get

(δχl)2 =
(χl)2

(χl−1)2
=
µ2(yl−1) + T̃l,l + 2T̃l
µ2(yl−1) + Yl,l + 2Yl

. (99)

We can bound T̃l,l as

T̃l,l =
µ2(y0)

µ2(dy0)(χl−1)2
µ2(dyl,H) =

µ2(y0)

µ2(dy0)(χl−1)2
(χl−1)2

∏
h
(δχl,h)2µ2(yl,H)

µ2(dy0)

µ2(y0)
,

γminµ2,min . T̃l,l . γmaxµ2,max. (100)

By Corollary 15, the variance of T̃l is bounded as

EΘl
[
T̃ 2
l

]
.

1

N
EΘl−1

[
µ2(yl−1)Eθl

[
T̃l,l
]]

.
1

N
γmaxlµ

2
2,max.
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The same reasoning as Eq. (97) implies both
∣∣Yl∣∣ � µ2(yl−1) and

∣∣T̃l∣∣ � µ2(yl−1) with high probability. Finally
combining Eq. (99), Eq. (100) and the hypothesis µ2,min . Yl,l . µ2,max:

µ2(yl−1) + γminµ2,min

µ2(yl−1) + µ2,max
. (δχl)2 .

µ2(yl−1) + γmaxµ2,max

µ2(yl−1) + µ2,min
,

1 +
γminµ2,min − µ2,max

µ2(yl−1) + µ2,max
. (δχl)2 . 1 +

γmaxµ2,max − µ2,min

µ2(yl−1) + µ2,min
,

1 +
γminµ2,min − µ2,max

(l + 1)µ2,max
. (δχl)2 . 1 +

γmaxµ2,max − µ2,min

(l + 1)µ2,min
,(

1 +
ηmin

l + 1

) 1
2

. δχl .
(

1 +
ηmax

l + 1

) 1
2

,

where we supposed
(
γminµ2,min − µ2,max

)
≥ 0 (see Section F.1 and the evolution of Fig. 4 for the justification).

Proof of Eq. (15). Expanding Eq. (14), we get that

l∏
k=1

(
1 +

ηmin

k + 1

) 1
2

. χl =

l∏
k=1

δχk .
l∏

k=1

(
1 +

ηmax

k + 1

) 1
2

.

We can further explicitate the bounds:

l∑
k=1

log
(

1 +
ηmax

k + 1

)
≤
∫ l+1

1

log
(

1 +
ηmax

x

)
dx

≤
∫ l+1

1

log(x+ ηmax)dx−
∫ l+1

1

log x dx

≤
[
x log x− x

]l+1+ηmax

1+ηmax

−
[
x log x− x

]l+1

1

≤ (l + 1 + ηmax) log(l + 1 + ηmax)− (1 + ηmax) log(1 + ηmax)− (l + 1) log(l + 1)

≤ ηmax log(l + 1 + ηmax) + (l + 1) log
(

1 +
ηmax

l + 1

)
− (1 + ηmax) log(1 + ηmax)

≤ ηmax log(l + 1 + ηmax) + ηmax − (1 + ηmax) log(1 + ηmax), (101)

where we used log(1 + x) ≤ x in Eq. (101). Considering the integration between 2 and l + 2, we similarly get:

l∑
k=1

log
(

1 +
ηmin

k + 1

)
≥ ηmin log(l + 2 + ηmin) + (l + 2) log

(
1 +

ηmin

l + 2

)
− (2 + ηmin) log(2 + ηmin) + 2 log 2

≥ ηmin log(l + 2 + ηmin)− (2 + ηmin) log(2 + ηmin) + 2 log 2.

Let cmax ≡ exp
(
ηmax − (1 + ηmax) log(1 + ηmax)

)
and cmin ≡ exp

(
− (2 + ηmin) log(2 + ηmin) + 2 log 2

)
. Then:

l∏
k=1

(
1 +

ηmax

k + 1

)
≤ cmax(l + 1 + ηmax)ηmax ,

l∏
k=1

(
1 +

ηmin

k + 1

)
≥ cmin(l + 2 + ηmin)ηmin ,

√
cmin(l + 2 + ηmin)ηmin/2 . χl .

√
cmax(l + 1 + ηmax)ηmax/2,

√
cmin(l + 2 + ηmin)τmin . χl .

√
cmax(l + 1 + ηmax)τmax .



Characterizing Well-Behaved vs. Pathological Deep Neural Networks

Since x 7→
(
x+2+ηmin

x

)τmin

and x 7→
(
x+1+ηmax

x

)τmax

are lower-bounded and upper-bounded for x ≥ 1, there exist positive
constants Cmin, Cmax > 0 such that

Cminl
τmin . χl . Cmaxl

τmax .

F.4. Theorem 4 Holds for any Choice of φ, with and without Batch Normalization, as long as the Existence of µ2,min,
µ2,max, δmin, δmax is Ensured

The proof of Lemma 14 neither requires batch normalization nor does it require any assumption on φ. In addition, the proof
still holds up to Eq. (94) when replacing ϕ̂(yl−1), ϕ̂(yl,H), µ2(yl−1), µ2(yl,H) by ϕ(yl−1), ϕ(yl,H), ν2(yl−1), ν2(yl,H)
and eigenvalues of Cy,α[ϕ(yl−1,α)] by eigenvalues ofGy,α[ϕ(yl−1,α)]. This gives

Eθl

[
Ey,α,c

[
ϕ(yl−1,α)cϕ(yl,H ,α)c

]2]
≤ 1

N2
λmaxEθl

[
ν2(yl,H)

]
≤ 1

N
ν2(yl−1)Eθl

[
ν2(yl,H)

]
. (102)

Similarly, the proof of Theorem 4 only depends on batch normalization and the choice of φ through the constants µ2,min,
µ2,max, δmin, δmax. As a consequence, Theorem 4 holds for any choice of φ, with and without batch normalization, as long as
the existence of µ2,min, µ2,max, δmin, δmax is ensured.

It is therefore interesting to determine in which cases the constants µ2,min, µ2,max, δmin, δmax exist. In the forthcoming
analysis, we will consider the common cases φ = tanh and φ = ReLU, with and without batch normalization, relating our
results and providing extensions to Yang & Schoenholz (2017).

For the sake of brevity, some results will be established only with an informal proof.

F.4.1. CASE φ = tanh, WITHOUT BATCH NORMALIZATION

From xl,H = φ(yl,H−1), we deduce that ν2(xl,H), µ2(xl,H) are bounded as

µ2(xl,H) ≤ ν2(xl,H) = Ex,α

[
φ(yl,H−1)2

]
≤ 1.

Since yl,H is obtained from xl,H only after a single single convolution step, it follows that ν2(yl,H), µ2(yl,H) are bounded
from above. Let us further admit that ν2(yl,H), µ2(yl,H) are bounded from below so that the existence of µ2,min, µ2,max is
ensured.

Now let us see whether δmin, δmax exist in the mean-field limit: N → ∞, where yl becomes a Gaussian process and all
moment-related quantities become deterministic with the expectation over Θl equivalent to the average over channels. Using
Lemma 14 as well as Eq. (102), combined with the reasoning of Eq. (98) on ν2(yl) and µ2(yl) for large N � 1:

ν2(yl−1) ∝ l, µ2(yl−1) ∝ l.

The probability of non-negligible φ′(yl,0)2 = φ′(yl−1)2 is equal to the probability that yl−1 is roughly O(1), which scales
as 1√

ν2(yl−1)

1√
2π
∝ 1√

l
for large l. Combined with dxl,1 = φ′(yl,0)� dyl,0, this implies that

µ2(dxl,1)

µ2(dyl,0)
∝ 1√

l
.

Given µ2(xl,1) ≤ ν2(xl,1) = Ex,α

[
φ(yl,0)2

]
≤ 1, we get for the ratio of signal variances:

µ2(yl,0)

µ2(xl,1)
≥ µ2(yl−1) ∝ l.
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This gives for the squared geometric increment during the nonlinearity step from (yl,0,dyl,0) to (xl,1,dxl,1):(
µ2(dxl,1)

µ2(xl,1)

)(
µ2(dyl,0)

µ2(yl,0)

)−1

≥ µ2(yl−1)
µ2(dxl,1)

µ2(dyl,0)
∝
√
l.

It follows that δχl,1 and thus δχl,h are not bounded from above and that the existence of δmax is not ensured. Now if we
replace ηmin, ηmax by A2

√
l + 1 ∝

√
l in Eq. (14):

δχl '
(

1 +
A

2
√
l + 1

) 1
2

.

Given 1
2 log(1 + A

2
√
x

) ' A
4
√
x

and
∫ x
x0

A
4
√
x′
dx′ ' A

2

√
x for x� 1, we get that χl =

∏
k δχ

k = exp
(∑

k log δχl
)
∝

exp
(A

2

√
l
)
. Combined with µ2(yl−1) ∝ l and the definition of χl, we deduce that µ2(dyl−1) ∝ exp

(
A
√
l
)
, which is

exactly the scaling found in Yang & Schoenholz (2017) for the corresponding quantity.

In summary, the growth of χl is slightly subexponential but still far from power-law.

F.4.2. CASE φ = tanh, WITH BATCH NORMALIZATION

Batch normalization controls signal variance inside residual units: µ2(zl,H) = 1. Since yl,H is obtained from zl,H only
after a single nonlinearity step and a single convolution step, the existence of µ2,min, µ2,max is ensured.

Now let us see whether δmin, δmax exist and let us first limit our reasoning to the feedforward evolution of Section 6. Since the
reasoning of Section 6 on the effect of batch normalization applies for any choice of φ, the assumption of well-conditioned
noise implies that exp(mBN[χl]) is bounded: (i) from above by considering the signal with worst possible conditioning; (ii)
from below by 1.

Regarding exp(mφ[χl]), let us consider again the mean-field limit: N →∞ such that zl is Gaussian with variance equal to
ν2(zl) = µ2(zl) = 1. Then exp(mφ[χl]) is deterministic and constant, implying that exp(mφ[χl]) is bounded by constants
from above and below.

Since the evolution inside residual units is well approximated by the feedforward evolution of Section 6, it follows that
δχl,h is bounded from above and below.

In summary, Theorem 4 applies and χl has power-law growth.

F.4.3. CASE φ = ReLU, WITHOUT BATCH NORMALIZATION

Since the evolution inside residual units is well approximated by the feedforward evolution of Section 5, it follows that
ν2(yl,h), µ2(dyl,h) are roughly stable and that the increments δχl,h are limited inside residual units. This implies that
ν2(yl,H) ' ν2(yl,0) = ν2(yl−1) and µ2(yl,H) ' µ2(yl,0) = µ2(yl−1). Combined with Eq. (96) and the fact that
Yl,l = µ2(yl,H) and that Yl � µ2(yl−1) with high probability for N � 1, we deduce that

µ2(yl) ' µ2(yl−1) + µ2(yl,H) ' 2µ2(yl−1).

Using Eq. (102), the same reasoning for non-central moments gives

ν2(yl) ' ν2(yl−1) + ν2(yl,H) ' 2ν2(yl−1).

This means that both µ2(yl) and ν2(yl) have exponential growth and that the existence of µ2,max is not ensured. The
exponential growth of ν2(yl) agrees with the scaling found for the corresponding quantity in Yang & Schoenholz (2017).

Now let us see whether δmin, δmax exist. In the feedforward evolution of Section 5, Theorem 2 directly ensures that
1 . δχl .

√
2.

Again since the evolution inside residual units is well approximated by the feedforward evolution of Section 5, we deduce
that δχl,h is bounded from above and below.
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In summary, the existence of µ2,max is not ensured and Theorem 4 does not apply. No conclusion can be made regarding the
growth of χl.

F.4.4. CASE φ = ReLU, WITH BATCH NORMALIZATION

As in Section F.4.2, the existence of µ2,min, µ2,max is ensured by the fact that batch normalization controls signal variance:
µ2(zl,H) = 1 and that yl,H is obtained from zl,H only after a single nonlinearity step and a single convolution step.

Now let us see whether δmin, δmax exist and again let us first reason in the feedforward evolution of Section 6. Similarly to
Section F.4.2, the term exp(mBN[χl]) is bounded: (i) from above by considering the signal with worst possible conditioning;
(ii) from below by 1.

Theorem 3 further ensures that 1 ≤ exp(mφ[χl]) ≤
√

2.

Since the evolution inside residual units is well approximated by the feedforward evolution of Section 6, we deduce that
δχl,h is bounded from above and below.

In summary, Theorem 4 applies and χl has power-law growth.


