
A Recurrent Neural Cascade-based Model for Continuous-Time Diffusion
Supplementary Material

Sylvain Lamprier 1

Abstract

This is the supplementary material that serves as
an appendix to the paper ”A Recurrent Neural
Cascade-based Model for Continuous-Time Dif-
fusion”.

1. Joint Probability
In this section, we detail the derivation of the equation 10
from the paper, which states that, using the bayesian chain
rule, the joint probability p(D, I) can be written as:

p(D, I) =

|D|−1∏
i=1

p(Di|D<i, I<i) p(Ii|D≤i, I<i)

×
∏
v 6∈UD

p(v 6∈ UD|D≤|D|−1, I) (1)

where D<i = (Dj)j∈{0,...,i−1} corresponds to the se-
quence of the i first components of D (the i first com-
ponents in UD with their associated time-stamps) and
I<i = (Ij)j∈{0,...,i−1} stands for the vector containing the
i first components of I . This comes from the fact that, for
each infected node at any position i, we need to compute:

• p(Di|D<i, z
D
<i): the probability for UDi for being in-

fected at its time of infection given the nodes D<i

previously infected in D and the states associated to
these nodes;

• p(Ii|D≤i, zD<i): the probability of the ancestor index Ii
given the i-th infection Di, and the previous infections
D<i associated to their states zD<i;

• the probability that not infected nodes are actually not
infected by the i-th infected node given its state.

1Sorbonne Université, LIP6, F-75005, Paris, France. Corre-
spondence to: Sylvain Lamprier <Sylvain.Lamprier@lip6.fr>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

This gives:

p(D, I) = p(D0|D<0, z
D
<0)p(I0|D≤0, z

D
<0)∏

v 6∈UD
p(v 6∈ UD|D0, z

D
0)

× p(D1|D<1, z
D
<1)p(I1|D≤1, z

D
<1)∏

v 6∈UD
p(v 6∈ UD|D2, z

D
2)

...

× p(D|D|−1|D<|D|−1, z
D
<|D|−1)

p(I|D|−1|D≤|D|−1, z
D
<|D|−1)∏

v 6∈UD
p(v 6∈ UD|D|D|−1, z

D
|D|−1)

=

|D|−1∏
i=1

p(Di|D<i, I<i) p(Ii|D≤i, I<i)∏
v 6∈UD

p(v 6∈ UD|D≤|D|−1, I)

2. Generation Process
The generation process of our model is given in algorithm
1. The process iterates while there remains some nodes in
a set of infectious nodes (initialized with u0). ⊕ denotes
the concatenation between two lists. At each iteration, the
process selects the infectious node u with minimal time-
stamp of infection (all time-stamps but tDu0

are initialized
to ∞), removes it from the infectious set and records its
infector and infection time-stamp in the cascade. Then, for
each node v with time-stamp greater than the one of u, u
attempts to infects v according to the probability ku,v(zDu)
(computed with eq 3 from the paper). If it succeeds, v
is inserted in the set of infectious nodes and a time t is
sampled for v from an exponential law with parameter rDu,v .
If the new time t for v is lower than its stored time tDv , this
new time is stored in tDv , u is stored as the infector of v in
the from table (used to build ID) and the new state zDv is
computed according to its new infector u. The generation
process outputs a cascade structure (as described in section
2.1 of the paper). From the classical CTIC, the only changes
are at lines 1, 1 and 1, respectively for the computation of
ku,v , ru,v and zDv .

A Recurrent Neural Cascade-based Model for Diffusion (Supp. Mat.)

Algorithm 1 Cascade Generation Process
1: Input: Θ, U
2: for u ∈ U do
3: tDu =∞
4: end for
5: UD = (); ID = (); tDu0

= 0; fromu0 = 0;
6: Infectious = {u0};
7: while Infectious 6= ∅ do
8: u← arg min

x∈Infectious
tDx ;

9: Infectious← Infectious \ {u};
10: UD ← UD ⊕ u ;
11: ID ← ID ⊕ fromu ;
12: for v ∈ U : tDv > tDu do
13: x ∼ Bernouilli (ku,v(zu));
14: if x == 1 then
15: x ∼ Exp (ru,v);
16: t← tDu + t;
17: if t < tDv then
18: tDv ← t;
19: fromv ← |UD| − 1;
20: zv = fφ(zu, ω

(f)
v);

21: Infectious← Infectious ∪ {v};
22: end if
23: end if
24: end for
25: end while
26: Output: CD = (UD, (tDu)u∈U , I

D);

3. Learning Process
The learning process of our model is depicted in algorithm
2. In this algorithm, the function makeBins first creates
minibatches by ordering D in decreasing length and cut-
ting this ordered list in bins of batchSize episodes each.
Each bin contains 3 matrices with batchSize rows (except
in the last bin which contains matrices for the remaining
|D|%batchSize episodes):

• Inf : a matrix where the cell (i, j) contains the j-
infected node in the i-th episode of the bin, or −1
if the corresponding episode contains less than j in-
fected nodes. The width of the matrix is equal to the
number of infected nodes in the longest episode in the
bin (the episode in the first row of the matrix);

• Times: a matrix where the cell (i, j) contains the
infection time-stamp of the j-infected node in the i-th
episode of the bin, or −1 if the corresponding episode
contains less than j infected nodes. The width of the
matrix is equal to the number of infected nodes in the
longest episode in the bin (the episode in the first row
of the matrix);

• NotInf : a binary matrix with |U| columns where the
cell (i, j) equals 0 if the node j is infected in the i-the
episode of the bin, 1 otherwise;

At each epoch, the algorithm iterates on every bin. For
each bin, it first initializes the states of the infected nodes
using a function initStates which produces a tensor z of
nbRows(Inf) matrices nbCols(Inf)× d whose each row
is filled by z0 (with nbRows(X) and nbCols(X) respec-
tively the number of rows and columns in matrix X). For
every step t of infection in the bin, the process first deter-
mines in mask the rows of the matrices which correspond
to not ended episodes (Times[:, t] refers to the column t of
Times). Then, if the step is not the initial step t = 0, it uses
functions computeLogA and computeLogB with nodes
previously infected for each episode Inf [mask, : t] associ-
ated to their corresponding states z[mask, : t]. While the
function computeLogA returns a nbRow(Inf [mask])× t
matrix where the cell (i, j) contains the log-probability for
the j-th node in the i-th episode to infect Inf [i, t] at its
infection time-stamp (using a matrix version of equation
5 from the paper), the function computeLogB returns a
same shape matrix where the cell (i, j) contains the log-
probability that the j-th node in the i-th episode does not
infect Inf [i, t] before its infection time-stamp (using a ma-
trix version of equation 6 from the paper).

Then, ancestors at step t are sampled from categorial dis-
tributions parameterized by P (It|D≤t, I<t) (deduced from
logits A−B). From them, we compute the log-probability
for each infected at step t to be actually infected at their
time-stamp of infection by its corresponding sampled infec-
tor. (line 2, where sum(X, 1) is a function which returns
the vector of the sums of each row from X). This quantity
is added to the accumulator ll.

Line 2 then computes the states for the nodes infected at
step t according to the states of the sampled ancestors in u
(via the function computeStates which is a matrix version
of equation 2 from the paper).

At the end of each iteration t, the log-likelihood that not
infected nodes in NotInf [mask] are actually not infected
by infected nodes at step t is computed via computeLogG,
which is a matrix version of equation 8 from the paper. This
quantity is added to the accumulator ll.

At the end of the bin (when t == nbCols), a control variate
baseline is computed by maintaining a list bh of the quantity
vectors considered in ∇ΘL(D). The baseline b considered
in the stochastic gradient for any episode D is thus equal to
the average of (logp(D)− 1) for this specific episode taken
over the blength previous epochs.

Finally, the gradients are computed and the optimizer
ADAM is used to update the parameters of the model.
Note that this algorithm does not use the gradient up-

A Recurrent Neural Cascade-based Model for Diffusion (Supp. Mat.)

Algorithm 2 Learning Process
1: Input: D, U , batchSize, nbEpochs, Θ, b length
2: bins← makeBins(D,U , batchSize);
3: for epoch ∈ {1, ..., nbEpochs} do
4: ibin← 0;
5: for (Inf, ,Times, NotInf) in bins do
6: ll← (0)nbRows(Inf);
7: logq ← (0)nbRows(Inf);
8: z ← initStates(z0, nbRows(Inf), nbCols(Inf));
9: for t ∈ {0, ..., nbCols(Inf)} do

10: mask ← (Times[:, t] >= 0);
11: if t > 0 then
12: A← computeLogA(z[mask, : t], Inf [mask, : t], Inf [mask, t]);
13: B ← computeLogB(z[mask, : t], Inf [mask, : t], Inf [mask, t]);

Sample from P (It|D≤t, I<t)
14: u ∼ Categorical(logits = (A−B));
15: logq[mask]← logq[mask] + logP i[mask,u];

Compute P (Dt, It|D<t, I<t)
16: H ← A[mask,u]−B[mask,u] + sum(B, 1);
17: ll[mask]← ll[mask] +H

18: z[mask, t]← computeStates(u, z[mask, : t], Inf [mask, : t], Inf [mask, t]);
19: end if
20: ll[mask]← ll[mask] + computeLogG(z[mask, t], Inf [mask, t], NotInf [mask]);
21: end for
22: bh[ibin]← h[ibin]⊕ (ll − logq − 1);
23: if epoch ≥ b length then
24: bh[ibin].pop(0);
25: end if
26: b← sum(bh[ibin], 1)/min(epoch+ 1, b length);

27: ∇ΘL(D; Θ)← 1

nbRows(Inf)
[sum((ll − logq − 1− b)∇Θlogq +∇Θ log ll)];

28: Θ← ADAM(∇ΘL(D; Θ));

29: ibin← ibin+ 1;
30: end for
31: end for

date given in eq. 13 from the paper. It is based on
P (It|D≤t, I<t) and P (Dt, It|D<t, I<t) for every t ∈
{0, ..., nbCols(Inf)} (rather than based on the simplifi-
cation P (Dt|D<t, I<t) as given in eq. 12 from the pa-
per). This is equivalent but greatly more efficient since in
both cases P (It|D≤t, I<t) needs to be estimated for sam-
pling and P (Dt, It|D<t, I<t) is much easier to compute
than P (Dt|D<t, I<t) (P (Dt, It|D<t, I<t) involves a sim-
ple product while P (Dt|D<t, I<t) involves a sum of prod-
ucts).

4. Conditioned Models
Our experiments include results obtained with known starts
of episodes (columns 1, 2 and 3, for which τ > 1). For
these cases, one need to be able to condition the models
according to right-censored episodes, which we note Dτ in
the following (every infected node in u ∈ UD with tDu ≥ τ
is reported as not infected in Dτ). For the NLL measure,
one need to be able to compute the negative log-likelihood
of the end of any episode D given the beginning Dτ (which
means estimating p(D|Dτ)). For the CE measure, one need
to estimate the probabilities of final infections in any episode
D given its beginning Dτ (i.e., estimating p(u ∈ UD|Dτ)

A Recurrent Neural Cascade-based Model for Diffusion (Supp. Mat.)

via Monte-Carlo simulations).

For models RNN, CYAN and DAN which have deterministic
hidden representations, the conditioning on Dτ is direct:
it suffices to traverse the episode from the start to the last
infected node in Dτ to obtain the full representation of the
input. Then, the model can be normally used from it on the
remaining of the test episode for modeling or generation
purposes (except for the time-stamp of the first next event
for which one has to take into account that it cannot happen
before τ).

For CTIC and EmbCTIC, the conditioning is also easy since
future infections from τ only depend on time-stamps of in-
fections before τ without any need of trajectory modelling.
For simulation purposes and the CE measure, the algorithm
1 can be applied with the infection time-stamps and the
Infectious set initialized according to Dτ . Then, the only
difference is that infection delays are sampled from a trun-
cated exponential in order to ensure that new infections
can not occur before τ . For the NLL measure, one need
to reconsider the computation of the infection probabilities
from nodes infected before τ , which must take into account
that infections did not happened before τ . For each node
v which is not infected in Dτ , its probability aDu,v of being
infected by any infected node u in Dτ is divided by the
probability that u did not succeed in infecting v before τ :

aD|D
τ

u,v =


ku,vru,v exp−ru,v(tDv −t

D
u)

ku,v exp−ru,v(τ−tDu) +1− ku,v
if tDu < τ,

ku,vru,v exp−ru,v(tDv −t
D
u) otherwise.

(2)
Also, for every v with tDv ≥ τ and every u with tDu < tDv ,
we rewrite the probability bDu,v that u does not succeed in
infecting v at tDv as:

bD|D
τ

u,v =



If tDu < τ and tDv <∞ :

ku,v exp−ru,v(tDv −t
D
u) +1− ku,v

ku,v exp−ru,v(τ−tDu) +1− ku,v

If tDu < τ and tDv =∞ :
1− ku,v

ku,v exp−ru,v(τ−tDu) +1− ku,v

Otherwise:
ku,v exp−ru,v(tDv −t

D
u) +1− ku,v

(3)

These quantities are used to compute the conditionnal likeli-
hood p(D|Dτ):

p(D|Dτ) =
∏

v∈UD,tDv ≥τ

hD|D
τ

v

∏
v 6∈UD

gD|D
τ

v

where gD|D
τ

v =
∏
u∈UD b

D|Dτ
u,v and, similarly to eq.7 from

the paper without the dependency in states z for CTIC, the
conditionnal hD|D

τ

v is given as:

hD|D
τ

v =
∏

x∈U,tDx <tDv
b
D|Dτ
x,v

∑
u∈U,tDu <tDv

a
D|Dτ
u,v /b

D|Dτ
u,v (4)

At last, for the RINF measure, the only modification is that
the statistic is computed solely on nodes i ∈ UD such that
tDi ≥ τ .

For our model, beyond the use of conditionnal probabilities
(with similar definitions than those from eq.2, 3 and 4 but
with k a function depending on the state z of the emitter
such as in the section 3.2 from the paper), we must consider
the conditionnal distribution of the ancestors vector of nodes
infected before τ , hereafter noted Iτ , given the input Dτ .
As done for learning, Iτ is sampled from our propositional
distribution qD

τ

(Iτ) =
∏|Dτ |−1
i=1 p(Iτi |Dτ

≤i, I
τ
<i) and the

measures are simple averages on a set of sampled Iτ . Given
S samples of Iτ , the NLL is thus computed as:

NLL = − 1

|Dtest|
∑

D∈Dtest

log
1

S

S∑
s=1

p(D|Dτ , Iτ,(s)) (5)

= − 1

|Dtest|
∑

D∈Dtest

log
1

S

S∑
s=1

p(D, I(s)|Dτ , Iτ,(s))

qD(I(s)|Iτ,(s))

with qD(I(s)|Iτ,(s)) = qD(I(s))/qD
τ

(Iτ,(s)) and where
p(D, I(s)|Dτ , Iτ,(s)) is computed same manner as in sec-
tion 3.2 using conditionnal versions of probability formu-
lations (as given above for CTIC). The last derivation is
obtained according to samples of full ancestor vectors I ,
where I(s) is an ancestor vector starting with Iτ,(s) for the
infections before τ . Similarly, the CE measure considers
marginal probabilities p(u ∈ UD|Dτ) for every node u ∈ U
defined as averages on simulations performed given Dτ and
sampled Iτ,(s) as input of the generation algorithm 1. Lastly,
the INF measure is evaluated by considering:

INF =
∑

D∈Dtest

∑
i∈{1,...,|D|−1},

t
UD
i
≥τ

p(Ii = fr(i,D)|D≤i, I(s)<i)∑
D∈Dtest(|D| − |D

τ |)

(6)
where I(s) is an ancestor vector sampled from qD.

