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Abstract
We introduce block descent algorithms for pro-
jecting onto Minkowski sums of sets. Projection
onto such sets is a crucial step in many statistical
learning problems, and may regularize complexity
of solutions to an optimization problem or arise in
dual formulations of penalty methods. We show
that projecting onto the Minkowski sum admits
simple, efficient algorithms when complications
such as overlapping constraints pose challenges
to existing methods. We prove that our algorithm
converges linearly when sets are strongly convex
or satisfy an error bound condition, and extend
the theory and methods to encompass non-convex
sets as well. We demonstrate empirical advan-
tages in runtime and accuracy over competitors
in applications to `1,p-regularized learning, con-
strained lasso, and overlapping group lasso.

1. Introduction
One of the most prevalent approaches to estimation, predic-
tion, and inference problems arising in machine learning
is to frame the task as an optimization problem, possibly
subject to constraints. Examples of such constraints include
rank, sparsity, positivity, or sum-to-zero constraints. For
instance, consider the generic penalized estimation problem
of minimizing a measure of fit plus a penalty term regu-
larizing solution complexity. Regularizing the parameter
vector x by way of an `p or `1,p norm can be viewed as a set
constraint in the dual space. Projections onto the constraint
sets appear naturally in many algorithms for these problems.

When multiple constraint sets {Ci}Ni=1 are considered si-
multaneously, it is often straightforward to project onto their
intersection. These feasibility-seeking problems are well
studied (von Neumann, 1950; Dykstra, 1983; Bauschke &
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Borwein, 1993). In many tasks, however, the Minkowski
sum is a more appropriate or useful operation to consider.
The Minkowski sumA+B of two setsA andB in Euclidean
space Rd is defined to be the set {a + b : a ∈ A, b ∈ B}.
Many penalized or constrained estimation problems involve
a Minkowski sum of convex sets:

min
x∈Rd

f(x) + σC1+···+Ck
(x) = min

x∈Rd
f(x) +

k∑
i=1

σCi
(x),

(1)
where σC(x) = supy∈C〈x,y〉 is the support function of
set C, and f is a (closed and proper) convex function.
The equality above offers a more familiar form on the
right-hand side and holds since support functions are addi-
tive over Minkowski sums (Hiriart-Urruty & Lemaréchal,
2012). If C1 + · · · + Ck is closed, then σ∗C1+···+Ck

(y) =
ιC1+···+Ck

(y), where g∗(y) = supx〈x,y〉 − g(x) denotes
the Fenchel conjugate of function g, and ιS is the 0/∞ indi-
cator function of set S. This relation suggests the immediate
applications of Euclidean projection of a point in Rd onto
C1 + · · ·+ Ck featured below.

Multiple/overlapping norm penalties SupposeCi has the
form Ci = {y = (yi1,yi2) : ‖yi1‖q ≤ λ, yi2 = 0},
where yi1 is a vector of a predefined, coordinate-aligned
subspace of Rd and yi2 is the residual coordinates filling
in Rd. If q ≥ 1, then problem (1) corresponds to the well-
known `1,p group lasso problem, where p is the conjugate
exponent satisfying 1/p+ 1/q = 1 (Yuan & Lin, 2006):

min
x∈Rd

f(x) + λ

k∑
i=1

‖xi1‖p. (2)

While the standard group lasso formulation assumes no over-
lap between groups, the relation between (1) and (2) holds
whether or not the indices among Ci overlap. When overlap
is present, problem (2) is no longer separable, leading to
substantially more complicated routines (Yuan et al., 2011;
Yang & Zou, 2015). Fortunately, given a method for pro-
jecting onto the Minkowski sum, straightforward solution
methods remain unchanged regardless of overlap.

Conic constraints Let K∗ = {y : 〈x,y〉 ≤ 0,∀x ∈ K}
denote the polar cone of a cone K. If Ci is a closed convex
cone (e.g., a subspace), then σCi(x) = ιC∗

i
(x), so that

problem (1) also includes conically constrained problems.
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This includes the constrained lasso (James et al., 2013):

min
x∈Rd

f(x) + λ‖x‖1 subject to Bx = 0, Cx ≤ 0, (3)

which subsumes the generalized lasso (Tibshirani & Taylor,
2011) as a special case (Gaines et al., 2018). Problem (3) is
written as (1) with

C1 = {x : Bx = 0}∗ = {x : Bx = 0}⊥,
C2 = {x : Cx ≤ 0}∗, C3 = {x : ‖x‖∞ ≤ λ},

(4)

where V ⊥ is the orthogonal complement of subspace V .

Additional applications such as constraint relaxation are
discussed in the Supplement (Sect A).

To illustrate the utility of Minkowski projection, consider
the contemporary situation in which we seek to solve an `1,p
(possibly overlapping) group lasso (2) or constrained lasso
(3) problem using first-order methods such as proximal gra-
dient descent (Combettes & Wajs, 2005). A core subroutine
of these methods requires computing the proximity operator
of g = σC1+···+Ck

, that is,

proxγg(x) = argmin
u∈Rd

σC1+···+Ck
(u) +

1

2γ
‖u− x‖22

for γ > 0. Efficient computation of proxγg(x) is necessary
in rendering these methods practical. The connection to
projection onto the Minkowski sum begins with Moreau’s
decomposition

x = proxγg(x) + γ proxγ−1g∗(γ−1x), (M)

Because C1 + · · · + Ck is closed for both problems (see
Sect 2), we see that if a fast way to compute the Euclidean
projection PC1+···+Ck

(x) of x onto C1 + · · ·+Ck is given,
then problem (2) or (3) can be solved efficiently since

PC1+···+Ck
(x) = argmin

u∈C1+···+Ck

γ

2
‖u−x‖22 = proxγ−1g∗(x).

(P)
From this view, overlaps among Ci are automatically han-
dled without distinction from the non-overlapping case of
(2). In contrast, it is nontrivial to adapt algorithms for fitting
the standard group lasso to the overlapping case.

Motivated by these classes of problems, the theme of this
paper is to study an algorithm for solving (P), i.e., projecting
a point x onto a Minkowski sum of closed sets, when the
projections onto each set are computable. The exposition
focuses on the case of two sets; we first study projecting an
external point in the case that both sets are convex. For com-
pleteness, we also treat internal points in the Supplement
(Sect C). The algorithm and results immediately generalize
to sums of any finite collection of sets, and thus can be
applied to solve problem (1). We prove that our algorithm

Algorithm 1 Projection onto a Minkowski sum of sets
Input: Projection operator PCi

onto set Ci, i = 1, . . . , k;
initial value ai0, i = 1, . . . , k; viscosity parameter ρ ≥ 0.
Initialization: n← 0
repeat

for i = 1, 2, . . . , k do

a
(i)
n+1 =PCi

(
1

1+ρ

(
x−

∑i−1
j=1 a

(j)
n+1 −

∑k
j=i+1 a

(j)
n

)
+ ρ

1+ρa
(i)
n

)
// See §2 for ρ = 0; §3 for ρ > 0

end for
n← n+ 1

until convergence
Output:

∑k
i=1 a

(i)
N

converges linearly if either set is strongly convex. We then
proceed to analyze projections onto possibly nonconvex sets
(including convex but non-strongly convex sets). By adding
viscosity penalties, a simple modification of the algorithm
generates iterates that converge to a critical point for fairly
general classes of sets. Importantly, linear convergence is
attained globally for polyhedral sets. Finally, we showcase
the merits of our algorithm (highlighted as Algorithm 1) in
empirical studies with application to the constrained lasso
and overlapping group lasso problems. Compared to re-
cent methods tailored to each problem as well as highly
optimized generic solvers, our method is not only more
transparent and simple to code, but outperforms competitors
in terms of both accuracy and runtime.

2. Minkowski Projections for Convex Sets
We begin by recalling several elementary properties of the
Minkowski sum A + B ≡ {a + b : a ∈ A, b ∈ B}. It is
easy to show that A+B is convex whenever A and B are
both convex and is closed if at least one of the two sets is
compact and the other is closed. It is also closed when A
and B are both polyhedral (intersections of half spaces). In-
deed, any polyhedral set is closed, and the Minkowski-Weyl
representation of a polyhedral set (Lange, 2013) implies that
the Minkowski sum of two polyhedral sets is polyhedral.

Before studying how to project a point x onto A+B given
both convexity and closure, note that the two summands a ∈
A and b ∈ B in the representation a+b of the closest point
need not be unique. For instance, consider in dimension
d = 2 the sets A = B = [−1, 1] × {0} and the external
point e2 = (0, 1)T . The closest point can be represented
0 =

(−u
0

)
+
(
u
0

)
∈ A+B for any u ∈ [−1, 1]. On the other

hand, it is easy to verify that any valid pair a and b must be
boundary points from A, B.
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2.1. Block Descent Algorithm and Convergence

Suppose that the projection operators PA(a) and PB(b) are
both known and A+B is closed with A and B convex. In
this case, we employ a block descent algorithm for finding
the closest point to x, which consists of alternating

bn+1 = PB(x− an)

an+1 = PA(x− bn+1).
(5)

Our proof that the sequence an+bn converges to the closest
point makes use of the notion of a paracontractive operator.
A continuous operator P (a) on Rd is paracontractive if for
every fixed point ã of P (a), the inequality

‖P (a)− ã‖2 < ‖a− ã‖2

holds unless a itself is a fixed point. The theorem of Elsner,
Koltract, and Neumann (Elsner et al., 1992) states that when-
ever a paracontractive map P (a) possesses one or more
fixed points, then the sequence of iterates an+1 = P (an)
converges to a fixed point regardless of the initial value a0

of the sequence. In our case, the relevant map is

P (a) = PA[x− PB(x− a)],

corresponding to the a iterates of block descent.

Proposition 2.1. The map P (a) is nonexpansive and para-
contractive.

Proof. Because the set projections are nonexpansive,

‖PA[x− PB(x− a)]− PA[x− PB(x− ã)]‖2
≤ ‖PB(x− a)− PB(x− ã)‖2 ≤ ‖a− ã‖2.

(6)

This proves that P (a) is nonexpansive. Now suppose ã is a
fixed point and equality holds throughout these inequalities.
The standard proof that a convex set projection is paracon-
tractive (Lange, 2013, pp. 389–390) indicates that equality
is achieved in the previous two inequalities only if

PA[x− PB(x− a)]− [x− PB(x− a)]

= PA[x− PB(x− ã)]− [x− PB(x− ã)],

and PB(x− a)− (x− a) = PB(x− ã)− (x− ã).

Subtracting the second of these equalities from the first gives

PA[x−PB(x−a)]−a = PA[x−PB(x− ã)]− ã = 0.

It follows that equality in inequalities (6) is achieved only if
a is also a fixed point.

This paves the way for our next convergence proof:

Proposition 2.2. Assuming both A and B are closed and
convex, and A + B is closed, the block descent iterates
an + bn converge to the closest point in A + B to the
external point x.

Proof. It suffices to show that the map P (a) = PA[x −
PB(x − a)] possesses a fixed point, and any fixed point
furnishes a minimum of the convex function f(a, b) =
1
2‖x− a− b‖22 on the set A×B. Given the closedness of
A+B, there exists a closest point ã + b̃ to x. Since block
descent cannot improve f(a, b) starting from (ã, b̃), it is
clear that ã = P (ã). Now suppose ã is any fixed point,
and define b̃ = PB(x− ã). To prove that ã + b̃ minimizes
the distance to x, it suffices to show that for every tangent
vector v = a+b− ã− b̃ at ã+ b̃, the directional derivative

dv
1

2
‖x− ã− b̃‖22 = −(x− ã− b̃)Tv

= −(x− ã− b̃)T (a− ã)− (x− ã− b̃)T (b− b̃)

is nonnegative. However, the inequalities −(x − ã −
b̃)T (a − ã) ≥ 0 and −(x − ã − b̃)T (b − b̃) ≥ 0 hold
because ã minimizes a 7→ 1

2‖x−a− b̃‖22 and b̃ minimizes
b 7→ 1

2‖x− ã− b‖22.

For smooth sets, the local rate of convergence is determined
by the dominant eigenvalue of the differential

dP (a) = dPA[x− PB(x− a)]dPB(x− a)

= dPA(x− b)dPB(x− a),

at the fixed point a + b, provided these differentials exist.
Existence is guaranteed if either set is strongly convex:

Definition 2.1. A set C ⊂ Rd is α-strongly convex with
respect to norm ‖ · ‖ if there is a constant α > 0 such that
for any a and b in C and any γ ∈ [0, 1], C contains a ball
of radius r = γ(1−γ)α2 ‖a−b‖

2 centered at γa+(1−γ)b.
In other words, for any unit vector z ∈ Rd, we have

γa + (1− γ)b + γ(1− γ)
α

2
‖a− b‖2z ∈ C. (7)

For instance, an `p norm ball of radius r for 1 < p ≤ 2 is
(p− 1)/r-strongly convex with respect to ‖ · ‖p, which in
turn is (p− 1)d1/2−1/p/r-strongly convex with respect to
‖ · ‖2 (Garber & Hazan, 2015). We now show that when
C is strongly convex, projection onto C is locally strictly
contractive. A similar result is presented by Balashov &
Golubev (2012).

Lemma 2.1. If C ∈ Rd is α-strongly convex with respect to
‖ · ‖2, then on the complement of C the projection operator
PC(x) is a strict contraction. In particular, for a, b ∈
Rd \C, we have

‖PC(a)− PC(b)‖22 ≤ κ‖a− b‖22,

where κ =
1

1 + α
4 ‖a− PC(a)‖2 + α

4 ‖b− PC(b)‖2
< 1.

Proof. Consider the midpoint of the line segment between
PC(a) and PC(b) corresponding to the choice γ = 1

2 in
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condition (7). Given the strong convexity of C, the obtuse
angle property of convex set projection implies〈

ā +
α

8
‖PC(a)− PC(b)‖2za,a− PC(a)

〉
≤ 0〈

b̄ +
α

8
‖PC(a)− PC(b)‖2zb, b− PC(b)

〉
≤ 0,

where ā = 1
2PC(a)+ 1

2PC(b)−PC(a) and b̄ = 1
2PC(a)+

1
2PC(b) − PC(b). Adding these two inequalities, putting
za = a−PC(a)

‖a−PC(a)‖2 and zb = b−PC(b)
‖b−PC(b)‖2 , and rearranging

produce

‖PC(a)− PC(b)‖22
[
1 +

α

4
‖a− PC(a)‖2

+
α

4
‖b− PC(b)‖2

]
≤

〈
PC(a)− PC(b),a− b

〉
.

Replacing the left-hand side by its Cauchy-Schwarz upper
bound, then we find that

‖PC(a)− PC(b)‖22
[
1 +

α

4
‖a− PC(a)‖2 +

α

4
‖b− PC(b)‖2

]
≤ ‖PC(a)− PC(b)‖2 · ‖a− b‖2.

A simple cross division completes the proof.

We are now ready to establish the linear convergence rate.

Theorem 2.1. For any exterior point, the block descent
algorithm (5) converges at a linear rate if either of the sets
A and B is strongly convex with respect to ‖ · ‖2.

Proof. First note that x /∈ A+B implies that x− a /∈ B
and x − b /∈ A whenever a ∈ A and b ∈ B. Given
that the algorithm converges, denote its limiting values by
limn→∞ an = a∗ and limn→∞ bn = b∗. In view of the
nonexpansiveness of the two projection operators,

‖PA[x− PB(x− an)]− a∗‖2

= ‖PA[x−

bn+1︷ ︸︸ ︷
PB(x− an)]− PA[x−

b∗︷ ︸︸ ︷
PB(x− a∗)]‖2

≤ κ1‖x− PB(x− an)− x + PB(x− a∗)‖2
≤ κ1‖PB(x− a∗)− PB(x− an)‖2
≤ κ1κ2‖an − a∗‖2

for κ1 and κ2 belonging to [0, 1]. In a neighborhood of the
limit, Lemma 2.1 indicates that κ1 < 1 (or κ2 < 1) when-
ever A (or B) is a strongly convex set. Furthermore, the
inequalities hold uniformly, and a linear rate of convergence
is achieved.

3. Modification for Possibly Nonconvex Sets
For closed, nonconvex sets A and B, establishing conver-
gence is more delicate. (This includes convergence rate

analysis for convex but not strongly convex sets, e.g., poly-
hedra.) To this end, we assume either A or B is compact
and equivalently pose the projection problem as minimizing
the objective

φ(a, b) =
1

2
‖x− a− b‖22 + ιA(a) + ιB(b). (8)

Toward defining the update of b, it will be useful to define
a surrogate function which majorizes or lies above φ(a, b)
via adding a viscosity penalty of the form ρ

2‖b− bn‖22 with
ρ > 0. In view of the identity

1

2
‖x− an − b‖22 +

ρ

2
‖b− bn‖22

=
1 + ρ

2

∥∥∥ 1

1 + ρ
(x− an) +

ρ

1 + ρ
bn − b

∥∥∥2
2

+ cn,

where cn is an irrelevant constant that depends only on bn,
we derive a viscosity-modified update by minimizing this
surrogate. The resulting majorization-minimization (MM)
update is given by any instance of the set-valued map

bn+1 ∈ PB

[ 1

1 + ρ
(x− an) +

ρ

1 + ρ
bn

]
. (9)

By the MM principle (Lange, 2016), this update is guaran-
teed to decrease the original objective φ(a, b); more details
on MM are included in the Supplement (Sect D). Like-
wise, we include the analogous non-negative penalty term
ρ
2‖a− an‖22 to the objective in updating a, yielding

an+1 ∈ PA

[ 1

1 + ρ
(x− bn+1) +

ρ

1 + ρ
an

]
. (10)

Because the norm ‖x− a− b‖2 consistently decreases and
at least one of the sets A, B is compact, the sequences an
and bn are bounded, and the sequence φ(an, bn) possesses
a finite limit φ̄. The next lemma formalizes the value of
adding the viscosity penalties.

Lemma 3.1. The modified block descent steps (9),(10) sat-
isfy

‖an+1 − an‖22 + ‖bn+1 − bn‖22

≤ 2

ρ

[
φ(an, bn)− φ(an+1, bn+1)

]
.

(11)

Hence, limn→∞ ‖bn+1− bn‖2 = 0 and limn→∞ ‖an+1−
an‖2 = 0. If φ(an, bn) = φ̄ for any n, then (am, bm) =
(an, bn) for all m ≥ n.

Proof. The inequality (due to the MM principle)

φ(an, bn+1) +
ρ

2
‖bn+1 − bn‖22 ≤ φ(an, bn)

implies ‖bn+1 − bn‖22 ≤ 2
ρ

[
φ(an, bn)− φ(an, bn+1)

]
. A

similar inequality exists for the a update, and adding these
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gives inequality (11). Since the difference in objective val-
ues on the right of inequality (11) tends to 0, the stated limits
follow. The second assertion is an obvious consequence of
these considerations.

To establish convergence of this modified algorithm, we
must define a few additional concepts which are explored in
more detail in the references (Attouch et al., 2010; Kruger,
2003; Rockafellar & Wets, 2009).

Definition 3.1. ((Limiting) Fréchet subdifferential). A vec-
tor g ∈ Rd is a Fréchet subgradient of a lower semicontinu-
ous function ψ at the point x ∈ dom(ψ) if

lim inf
y→x

ψ(y)− ψ(x)− 〈g,y − x〉
‖y − x‖

≥ 0

for some norm ‖ · ‖. The set ∂Fψ(x) of Fréchet sub-
gradients of ψ at x is called the Fréchet subdifferential.
For any x 6∈ dom(ψ), ∂Fψ(x) = ∅. The limiting
Fréchet subdifferential, or simply subdifferential, is defined
by ∂ψ(x) = {g : ∃xn → x, ψ(xn) → ψ(x), gn ∈
∂Fψ(xn) and gn → g}. The set ∂ψ(x) is closed, con-
vex, and possibly empty. If ψ is convex, then ∂ψ(x) reduces
to its convex subdifferential. If ψ is differentiable, then
∂ψ(x) reduces to its ordinary differential.

The domain dom(ψ) of an extended real-valued function
ψ and properness thereof are defined in the Supplement
(Def. B.2). The following Global Convergence Theorem
(Zangwill, 1969) establishes subsequence convergence.

Lemma 3.2. Every limit point (ã, b̃) of the modified block
descent iterates (9) and (10) is a critical point of the objec-
tive φ(a, b) = 1

2‖x−a−b‖
2
2+ιA(a)+ιB(b). Furthermore,

limn→∞ dist(an + bn,W ) = 0, where W denotes the set
of limit points and dist(x,W ) = inf{‖x− y‖2 : y ∈W}.
The set W is compact and connected.

Proof. Fermat’s principle implies

0 = −(x− an−1 − bn) + ρ(bn − bn−1) + un (12)
0 = −(x− an − bn) + ρ(an − an−1) + vn, (13)

where un ∈ ∂F ιB(bn) and vn ∈ ∂F ιA(an). If we
take limits along a convergent subsequence (anm , bnm)→
(ã, b̃) and apply Lemma 3.1, then we can conclude that

0 = −(x− ã− b̃) + ũ

0 = −(x− ã− b̃) + ṽ,

where ũ = limm→∞ unm
and ṽ = limm→∞ vnm

neces-
sarily exist. Because ιB(bn) = ιA(an) = 0 for all n, and
A and B are closed, the definition of the limiting subdiffer-
ential implies ũ ∈ ∂ιB(b̃) and ṽ ∈ ∂ιA(ã). In view of the

the Cartesian product formula

∂φ(a, b) = {−(x− a− b) + ∂ιA(a)}
× {−(x− a− b) + ∂ιB(b)}

(14)

from Proposition 3 of (Attouch et al., 2010), it follows that
(0,0) ∈ ∂φ(ã, b̃).

To prove the second assertion, note that W is nonempty
because the sequence an + bn is bounded. If
limn→∞ dist(an + bn,W ) = 0 fails, then there exists an
ε > 0 such that dist(an+bn,W ) ≥ ε for infinitely many n.
The subsequence defined by this condition has a convergent
subsubsequence whose limit falls outside W , contradicting
the definition of W . The compactness and connectedness
of W follow from Proposition 7.3.4 of (Lange, 2016).

Finally, we will need to invoke the Kurdyka-Łojasiewicz
(KL) inequality (Bierstone & Milman, 1988; Bochnak et al.,
2013), which applies to all subanalytic functions, to show
that the whole sequence converges. For exposition we focus
on the subclass of semialgebraic functions. The class of
semialgebraic subsets of Rd is the smallest class that: a)
contains all sets of the form {x : q(x) > 0} for a polyno-
mial q(x) in p variables; b) is closed under the formation
of finite unions, finite intersections, and set complementa-
tion. A function a : Rd 7→ Rr is said to be semialgebraic
if its graph is a semialgebraic set of Rp+r. The class of
real-valued semialgebraic functions contains all polynomi-
als p(x) and all 0/∞ indicators of algebraic sets. It is closed
under the formation of sums, products, absolute values, re-
ciprocals when a(x) 6= 0, nth roots when a(x) ≥ 0, and
maxima max{a(x), b(x)} and minima min{a(x), b(x)}.
For our purposes, it is important to note that the Euclidean
distance dist(x, S) from vector x to a set S is a semialge-
braic function whenever S is a semialgebraic set.
Definition 3.2. (Kurdyka-Łojasiewicz inequality (Bolte
et al., 2007)) Let ψ(x) be a closed (lower semicontinu-
ous) and subanalytic function with a closed domain. If y is
a critical point of ψ(x), i.e., 0 ∈ ∂ψ(y), then

|ψ(x)− ψ(y)|θ ≤ c‖v‖ (15)

for the same norm ‖ ·‖ as in Definition 3.1, all x ∈ Br(y)∩
{x̃ : ∂ψ(x̃) 6= ∅} satisfying ψ(x) > ψ(y) and all v in
∂ψ(x). Here the exponent θ ∈ [0, 1), the radius r > 0, and
the constant c ≥ 0 depend on y.

We now apply the KL inequality to characterize the limit
points of our viscosity modified block descent algorithm
(Attouch et al., 2010; Bolte et al., 2007).
Theorem 3.1. Assume the two closed sets A and B are
subanalytic and at least one of them is bounded. Then the
modified block descent iterates (9) and (10) converge to a
critical point of the objective function φ(a, b) regardless of
their initial values.
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Proof. Lemmas 3.1 and 3.2 together imply the result if
φ(an, bn) = φ̄ for any n, so assume the contrary. The
optimality conditions (12) and (13) identify a vector un ∈
∂F ιB(bn) ⊂ ∂ιB(bn) and a vector vn ∈ ∂F ιA(an) ⊂
∂ιA(bn). Hence, the product formula (14) identifies the
limiting subgradient

wn =

(
−(x− an − bn) + 0 + (x− an−1 − bn)
−(x− an − bn) + 0 + (x− an − bn)

)
− ρ

(
bn − bn−1
an − an−1

)
=

(
an − an−1 − ρ(bn − bn−1)

−ρ(an − an−1)

)
.

For this choice of wn ∈ ∂φ(an, bn), we have

‖wn‖ ≤
∥∥∥(an − an−1

0

)∥∥∥+ ρ
∥∥∥(bn − bn−1

an − an−1

)∥∥∥
≤ (1 + ρ)

∥∥∥(an − an−1
bn − bn−1

)∥∥∥ (16)

for the norm ‖·‖ used in the KL inequality (15). We now set
y = (a, b) and consider the subanalytic function φ(y)− φ̄.
According to the KL inequality, around each limit point
z ∈W of the algorithm there exists an open ball Br(z)(z)
around z and an exponent θ(z) ∈ [0, 1) such that

|φ(y)−φ(z)|θ(z) = |φ(y)−φ̄−φ(z)+φ̄|θ(z) ≤ c(z)‖w‖
(17)

for all y ∈ Br(z)(z) and all w ∈ ∂(φ− φ̄)(y) = ∂(φ)(y).
We will apply this inequality to the sequence yn = (an, bn)
and the limiting subgradients wn identified above. In so do-
ing, we would like to assume that the exponent θ(z) and con-
stant c(z) do not depend on z. With this end in mind, cover
the compact set W by a finite number of balls Br(zi)(zi)
and take θ = maxi θ(zi) < 1 and c = maxi c(zi). For
a sufficiently large N , every yn with n ≥ N falls within
one of these balls and satisfies |φ(yn) − φ̄| < 1. Without
loss of generality assume N = 0. In combination with the
concavity of the function t1−θ on [0,∞), inequalities (11),
(16), and (17) imply

[φ(yn−1)− φ̄]1−θ − [φ(yn)− φ̄]1−θ

≥ 1− θ
[φ(yn)− φ̄]θ

[φ(yn−1)− φ(yn)]

≥ 1− θ
c‖wn‖

ρ

2
‖yn − yn−1‖22 ≥

(1− θ)ρ
2C(1 + ρ)

‖yn − yn−1‖,

where C > 0 is a scaled version of c due to the equivalence
of norms in Rd. Rearranging and summing over n yield
∞∑
n=1

‖yn − yn−1‖ ≤
2C(1 + ρ)

(1− θ)ρ
[φ(y0)− φ̄]1−θ.

Thus, the sequence yn is a fast Cauchy sequence and con-
verges to a unique limit in W .

Having established convergence of the viscosity-modified
algorithm even for non-convex sets, we note that the rate
of convergence will depend on the value of the exponent θ
appearing in (15). A prototypical result on the local conver-
gence rate of first-order algorithms (including ours) via the
KL inequality takes the following form (Li & Pong, 2018):

1. If θ = 0, then {xk} converges finitely.

2. If θ ∈ (0, 12 ], then {xk} converges locally linearly.

3. If θ ∈ ( 1
2 , 1), then {xk} converges locally sublinearly.

Fortunately, recent work provides a useful result for deter-
mining θ via an error bound condition:

Definition 3.3 (Luo-Tseng Error Bound). Let φ(x) =
f(x) + g(x), where f is proper and closed with Lipschitz
continuous gradient on its open domain, and g is proper,
closed and convex. Let W 6= 0 be the set of stationary
points of φ. We say the Luo-Tseng Error Bound holds if for
any η ≥ inf φ, there exist κ, ε > 0 such that

dist(x,W ) ≤ κ‖proxg[x−∇f(x)]− x‖ (18)

whenever ‖proxg[x−∇f(x)]− x‖ < ε and φ(x) < η.

Theorem 3.2 ((Li & Pong, 2018)). Let W 6= ∅ be the set of
stationary points of φ. Suppose that for any x̃ ∈W , there
exists δ > 0 so that φ(y) = φ(x̃) whenever y ∈ W and
‖y − x̃‖ < δ. Further assume the Luo-Tseng Error Bound
holds. Then φ satisfies KL with exponent θ = 1/2.

Theorem 3.2 provides a verifiable sufficient condition for de-
termining whether the viscosity-modified algorithm attains
a linear rate; the assumption that φ is locally constant within
the set of stationary points is satisfied, e.g., if f is convex.
Indeed, we see that the objective in (8) for projection onto a
Minkowski sum has the form φ(a, b) = f(a, b) + g(a, b)
with f(a, b) = h(M(a, b)), where h is a strongly convex
function, M is a linear map, and g is the sum of set indica-
tors. In fact, for such a function φ the Luo-Tseng inequality
(18) holds uniformly whenever the constraint set is polyhe-
dral (Karimi et al., 2018). In such cases, convergence of the
viscosity-modified algorithm is globally linear. This obser-
vation has a direct consequence to the `1,∞-(overlapping)
group lasso, as shown in Sect 5.1.

4. Alternative Algorithms
There are other ways problem (P) could be tackled, espe-
cially when the summand sets are convex. Splitting meth-
ods such as the ADMM (Boyd et al., 2010) or Davis-Yin
three-operator splitting (Davis & Yin, 2017) can be consid-
ered. However, we do not know whether these methods can
achieve a linear convergence rate under strong convexity of
a summand set as Algorithm 1 does. While the Davis-Yin
method enjoys a linear rate if one objective term is strongly
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convex and another smooth, the smooth term in objective (8)
is not strongly convex; the indicator of a strongly convex set
is neither smooth nor strongly convex. Sublinear rates for
non-strongly convex sets can be achieved with our viscosity
algorithm as well. Further, ADMM and Davis-Yin do not
produce descent algorithms, and introduce additional vari-
ables as well as intermediate steps. In recent related work,
Qin & An (2018) considered projection onto a Minkowski
sum of affine transforms of convex and compact sets. Their
approach differs in focus from ours, and appeals to a smooth
approximation to the dual, yielding a slower than O(1/n2)
rate. In practical settings (Qin & An, 2018, Table 1), oddly
it is slower than the base (Gilbert’s) algorithm. We expect
our simpler primal algorithm to be faster.

5. Applications and Empirical Results
5.1. `1,p-Overlapping Group Lasso

Including an `1,p penalty with the objective is a flexible and
popular approach to impose structured sparsity. Recall this
takes the general form (1) with `q-norm disks

Ci = {y ∈ Vi : ‖y‖q ≤ λ}, (1/p+ 1/q = 1),

where Vi = {y = (yi1,yi2) ∈ Rd : yi2 = 0} for an
appropriate coordinate-aligned splitting of vector y. The
resulting optimization problem is typically solved via first-
order methods. In particular, for proximal gradient descent
(assuming f is smooth), we require projection onto C1 +
· · · + Ck as discussed in Sect. 1, for which we can apply
Algorithm 1. A fast and reliable algorithm for projection
onto `q-norm disks is available (Liu & Ye, 2010). If p ∈
[2,∞), Ci is strongly convex with respect to ‖ · ‖2 due to
Lemma 3 of (Garber & Hazan, 2015), strong convexity of
‖·‖2q on subspace Vi (Shalev-Shwartz, 2007, p. 130), and the
fact that α-strongly convex sets w.r.t. ‖ · ‖q are αd1/q−1/2-
strongly convex w.r.t. ‖ · ‖2. Therefore, Algorithm 1 with
ρ = 0 (corresponding to Eq. (5)) achieves a linear rate. If
p =∞, then each Ci is polyhedral, and Algorithm 1 with
ρ > 0 (Eqs. (9)–(10)) converges linearly by the discussion
following Theorem 3.2. We re-emphasize that no special
considerations in the presence of overlaps are required.

We compare this Minkowski projection-based method with
a popular method by Yuan et al. (2011) developed for p = 2.
As both methods employ proximal gradient descent, it suf-
fices to compare the performance of computing the proximal
map argminu∈Rd

1
2‖u − x‖22 + λ

∑g
i=1 ‖ui1‖2 . Briefly,

this computation in Yuan et al. (2011) relies heavily on a
preprocessing step to screen out zero groups, followed by
dual projected gradient descent as well as a duality gap
computation to certify convergence. Our empirical study
follows their experimental setup: each group is of size 2d/g
and overlaps half of the previous group, where d is the di-
mension and g denotes the number of groups. For example,

if d = 100 and g = 10, group indices are {1, . . . , 20},
{11, . . . , 30}, . . . , {91, . . . , 100, 1, . . . , 10}. For each com-
bination of d = 103, 104, 105, 106 and g = 10, 20, 50, 100,
proximal maps were computed using both methods for 50
randomly generated inputs x; λ = 2.1 was used. We com-
pare a MATLAB implementation of our algorithm to the
competing method implemented in the MATLAB package
SLEP (Liu et al., 2011). The simulation was run on a Linux
machine with two Intel Xeon E5-2650v4 (2.20GHz) CPUs.

Results of the simulation study are summarized in Figure 1.
The Minkowski projection method is much faster than SLEP
when the dimension is high and the number of groups is
moderate (top left). The number of summands appearing in
the Minkowski sum grows is equal to the number of groups,
and we show that our method slows down if the number of
groups grows large (top right). Recall SLEP screens out
zero groups in a preprocessing step implemented in C, ex-
plaining its advantage in the top right of Figure 1. Except
for the d=1000, g=100 case, the algorithm terminated within
tens of iterations (mostly less than 10, bottom left). Recall
that in this experiment only the proximal operator was com-
puted, which means the iteration count is for the “inner”
iteration by the Minkowski projection. Thus the bottom left
plot shows that the linear rate is achieved in practice. We
observe that the accuracy of SLEP deteriorates when either
the dimension or number of groups is high (bottom right),
while Minkowski projections remain stable. That a naı̈ve
implementation of our method is already more accurate and
competitive in runtime with a highly optimized package
speaks to its promise. Further, our algorithm is both more
transparent and more general, applying to any p ≥ 1.

5.2. Constrained Lasso

Since the sets (4) involved with the constrained lasso (3) are
closed polyhedra, Algorithm 1 with ρ > 0 converges lin-
early. Again, efficient projections onto subspace C1 or C⊥1
and cone C2 or C∗2 are the key to success. Following Gaines
et al. (2018), we consider two important combinations of
C1 and C2. The first is the zero-sum constrained lasso,
which has been used in the analysis of compositional data
such as those arising in microbiome informatics (Lin et al.,
2014; Altenbuchinger et al., 2017). This case corresponds
to C1 = {x :

∑d
j=1 xj = 0}⊥ and C2 = {0}. Projection

onto C1 merely averages the input components. The second
is the nonnegative lasso (Efron et al., 2004; El-Arini et al.,
2013; Wu et al., 2014), which corresponds to C1 = {0} and
C2 = {x : −x ≤ 0}∗. Projection onto C2 corresponds to
taking the negative part of the input.

For both examples, we followed the simulation setup of
Gaines et al. (2018), and compare a MATLAB implementa-
tion of our method to a quadratic programming formulation
solved via Gurobi (Gurobi Optimization, LLC, 2018), the al-
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Figure 1. Comparison of the proposed Minkowski method and the
dual projected gradient method by Yuan et al. (2011) for fitting
the group lasso with overlap. Top left: runtime by dimension.
Top right: runtime by number of groups. Bottom left: number
of iterations until convergence by dimension and group. Bottom
right: difference in final objective values by dimension and group.
Additional timing results can be found in the Supplement.

ternating directions method of multipliers (ADMM), and the
path-following algorithm developed in Gaines et al. (2018)
as implemented in their MATLAB package. Note ADMM
iterations require solving a lasso subproblem by calling a
Fortran subroutine. We consider the regression objective
f(x) = ‖Ax − b‖22/2 for various combinations of sam-
ple size n and dimension d. Each setting is repeated over
20 trials with randomly sampled A and noisy response b.
Four sparsity levels were tried: λ/λmax = 0.2, 0.4, 0.6, 0.8,
where λmax is the maximal sparsity level found by solving
a linear program via Gurobi (Gaines et al., 2018, Sect. 3).
The simulation was run on a Linux machine with two Intel
Xeon E5-2680v2 (2.80GHz) CPUs with 256GB memory.

The average runtime of the methods are shown in Figure
2 for λ/λmax = 0.2 and 0.6. As the problem size (n, d)
grows, the Minkowski method outperformed all other meth-
ods. The runtime for the path-following algorithm was nor-
malized by the number of knots in the piecewise linear path
as it computes the entire solutions for all λ. Though the path
algorithm was the fastest up to (n, d) = (4000, 8000) in the
zero-sum lasso by this measure, together with the ADMM
and Gurobi it did not terminate within four days in the run
with (n, d) = (8000, 16000). This is because all of these
methods need to solve direct matrix inversion subproblems,
which do not scale well as the problem size grows. This
phenomenon becomes severe in the nonnegative lasso which
imposes d inequality constraints. All but the Minkowski
method hit a ceiling as early as (n, d) = (2000, 4000), and
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Figure 2. Comparison of the proposed Minkowski projection
method and the other methods considered by Gaines et al. (2018)
for fitting constrained lasso problems. Left: runtime for the zero-
sum constrained lasso. Right: runtime for the nonnegative lasso.

the path algorithm loses its edge by (500, 1000). It is worth
noting that the Minkowski method was also less sensitive
to the sparsity level than the ADMM, which slowed down
for smaller λ. The accuracy of both first-order methods
were similar (< 0.0001% difference relative to a Gurobi
baseline); these comparisons and additional timing results
for a range of λ values are detailed in the Supplement.

6. Discussion
We propose an efficient algorithm for projecting points onto
Minkowski sums of sets, and provide a thorough conver-
gence analysis in both convex and non-convex settings. In
particular, the method achieves a linear rate of convergence
whenever at least one summand is strongly convex or the
Luo-Tseng error bound condition is satisfied. The algorithm
can immediately be applied to several cornerstones of ma-
chine learning with competitive performances. Our method
equips researchers to reconsider problems where structural
complexities such as non-separability may now be handled
gracefully via formulations involving Minkowski sums.

We have demonstrated that converting structurally complex
penalties into set constraints via duality (M) can be effective
within algorithms such as proximal gradient methods. Since
we envision Algorithm 1 to serve as an inner loop in these
methods, our emphasis on fast convergence is warranted.

Finally, our algorithm does not require projections onto the
sets at hand to be exact. From the MM perspective (Sect 3),
each projection minimizes the surrogate, but doing so is not
necessary for convergence — any descent step is enough.
We observed similar success using inexact projections: for
instance, when the ball projection is computed via bisection
when p > 1 for `1,p minimization. In light of the analysis
by Schmidt et al. (2011), such approximate projections are
valid whenever errors are absolutely summable, and the
O(1/n) rate holds if they are square-root summable.
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