Safe Policy Improvement with Baseline Bootstrapping

Romain Laroche! Paul Trichelair! Remi Tachet des Combes '

Abstract

This paper considers Safe Policy Improvement
(SPD) in Batch Reinforcement Learning (Batch
RL): from a fixed dataset and without direct ac-
cess to the true environment, train a policy that
is guaranteed to perform at least as well as the
baseline policy used to collect the data. Our ap-
proach, called SPI with Baseline Bootstrapping
(SPIBB), is inspired by the knows-what-it-knows
paradigm: it bootstraps the trained policy with
the baseline when the uncertainty is high. Our
first algorithm, II,-SPIBB, comes with SPI theo-
retical guarantees. We also implement a variant,
I1<;-SPIBB, that is even more efficient in prac-
tice. We apply our algorithms to a motivational
stochastic gridworld domain and further demon-
strate on randomly generated MDPs the supe-
riority of SPIBB with respect to existing algo-
rithms, not only in safety but also in mean perfor-
mance. Finally, we implement a model-free ver-
sion of SPIBB and show its benefits on a navi-
gation task with deep RL implementation called
SPIBB-DQN, which is, to the best of our knowl-
edge, the first RL algorithm relying on a neural
network representation able to train efficiently
and reliably from batch data, without any inter-
action with the environment.

1. Introduction

Most real-world Reinforcement Learning agents (Sutton &
Barto, 1998, RL) are to be deployed simultaneously on nu-
merous independent devices and cannot be patched quickly.
In other practical applications, such as crop management
or clinical tests, the outcome of a treatment can only be
assessed after several years. Consequently, a bad update
could be in effect for a long time, potentially hurting the
user’s trust and/or causing irreversible damages. Devising
safe algorithms with guarantees on the policy performance

"Microsoft Research, Montréal, Canada. Correspondence to:
Romain Laroche <romain.laroche @microsoft.com>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

is a key challenge of modern RL that needs to be tackled
before any wide-scale adoption.

Batch RL is an existing approach to such offline settings
and consists in training a policy on a fixed set of observa-
tions without access to the true environment (Lange et al.,
2012). It should not be mistaken with the multi-batch set-
ting where the learner trains successive policies from small
batches of interactions with the environment (Duan et al.,
2016). Current Batch RL algorithms are however either un-
safe or too costly computationally to be used in real-world
applications. Safety in RL (Garcia & Ferndndez, 2015) is
an overloaded term, as it may be considered with respect to
parametric uncertainty (Thomas et al., 2015a; Petrik et al.,
2016), internal uncertainty (Altman, 1999; Carrara et al.,
2019), interruptibility (Orseau & Armstrong, 2016; Guer-
raoui et al., 2017), or as exploration in a hazardous envi-
ronment (Schulman et al., 2015; 2017; Fatemi et al., 2019).
We focus on the former.

In this paper, we develop novel safe and efficient Batch RL
algorithms. Our methodology for Safe Policy Improvement
(SPI), called SPI with Baseline Bootstrapping (SPIBB), is
introduced in Section 2. It consists in bootstrapping the
trained policy with the behavioral policy, called baseline,
in the state-action pair transitions that were not probed
enough in the dataset. It therefore assumes access to the
baseline, an assumption already made in the SPI litera-
ture (Petrik et al., 2016). Other SPI algorithms assume
knowledge of the baseline performance instead (Thomas
et al., 2015a;b). We argue that our assumption is more nat-
ural since SPI aims to improve an existing policy. This sce-
nario is typically encountered when a policy is trained in a
simulator and then run in its real environment, for instance
in Transfer RL (Taylor & Stone, 2009); or when a system
is designed with expert knowledge and then optimized, for
example in Dialogue applications (Laroche et al., 2010).

Still in Section 2, we implement a computationally efficient
algorithm, II,-SPIBB, that provably approximately outper-
forms the baseline with high confidence. At the expense
of theoretical guarantees, we design a variant, II<,-SPIBB,
that is even more efficient in practice. Moreover, we im-
plement an equivalent model-free version. Coupled with
a pseudo-count implementation (Bellemare et al., 2016),
it allows applying SPIBB algorithms to tasks requiring a

Safe Policy Improvement with Baseline Bootstrapping

neural network representation. Finally, we position our al-
gorithm with respect to competing SPI algorithms found in
the literature.

Then, in Section 3, we motivate our approach on a small
stochastic gridworld domain and further demonstrate on
randomly generated MDPs the superiority of SPIBB com-
pared to existing algorithms, not only in safety but also in
mean performance. Furthermore, we apply the model-free
version to a continuous navigation task. It is, to the best of
our knowledge, the first RL algorithm relying on a neural
network representation able to train efficiently and reliably
from batch data, without any interaction with the environ-
ment (Duan et al., 2016).

Finally, Section 4 concludes the paper. The appendix
includes the proofs, thorough experiment details, and the
complete results of experiments. The code may be found at
https://github.com/RomainLaroche/SPIBB
and https://github.com/rems75/SPIBB-DQN.

2. SPI with Baseline Bootstrapping

A proper introduction to Markov Decision Processes (Bell-
man, 1957, MDPs) and Reinforcement Learning (Sutton
& Barto, 1998, RL) is available in Appendix A.1. Due to
space constraint, we only define our notations here.

An MDP is denoted by M = (X, A, R, P,v), where
X is the state space, A is the action space, R*(z,a) €
[~ Rimaz, Rmaz] is the bounded stochastic reward function,
P*(-|x, a) is the transition distribution, and v € [0,1) is
the discount factor. The true environment is modelled as
an unknown finite MDP M* = (X, A, R*, P*,~) with
R*(xz,a) € [—Rmaz, Rmaz]- I = {m : X — Au}is
the set of stochastic policies, where A 4 denotes the set of
probability distributions over the set of actions .A.

The state and state-action value functions are respectively
denoted by V() and Q7,(z,a). We define the perfor-
mance of a policy by its expected return, starting from
the initial state xo: p(m, M) = V] (x0). Given a policy
subset IT" C TI, a policy 7’ is said to be IT'-optimal for
an MDP M when it maximizes its performance on II':
p(r', M) = max e p(m, M). We will also make use of
the notation V., as a known upper bound of the return’s

absolute value: V4, < L{’j‘:f.

In this paper, we focus on the batch RL setting where
the algorithm does its best at learning a policy from a
fixed set of experience. Given a dataset of transitions D =
(zj,a5,7j,7%)jeq1,n], We denote by Np(z,a) the state-
action pair counts; and by M= (X, A, J?i, ﬁ,) the Max-
imum Likelihood Estimation (MLE) MDP of the environ-
ment, where R is the reward mean and P is the transition
statistics observed in the dataset. Vanilla batch RL, referred

hereinafter as Basic RL, looks for the optimal policy in M.
This policy may be found indifferently using dynamic pro-
gramming on the explicitly modelled MDP M. , Q-learning
with experience replay until convergence (Sutton & Barto,
1998), or Fitted-@) Iteration with a one-hot vector represen-
tation of the state space (Ernst et al., 2005).

2.1. Percentile criterion and Robust MDPs

We start from the percentile criterion (Delage & Mannor,
2010) on the safe policy improvement over the baseline 7:

To = argn%[axE [p(m, M) | M ~ Pype(:|D)], ()
TE

s.t. P(p(m, M) = p(mp, M) — C[M ~ Pype(-|D)) 2 1 =6,

where Pypp(-|D) is the posterior probability of the MDP
parameters, 1 — ¢ is the high probability meta-parameter,
and (is the approximation meta-parameter. (Petrik et al.,
2016) use Robust MDP (Iyengar, 2005; Nilim & El Ghaoui,
2005) to bound from below the constraint in (1) by consid-
ering a set of admissible MDPs = = E(J\//f ,€) defined as:

E(M,e) :={M = (X, A, R,P,y) stV(z,a)€X x A,

|1P(|e,a) = P(|z,a)l[s < e(x,a),
|R(z,a) — R(z,a)| < e(z,a) Rmax

2

where e : X x A — R is an error function depending on
D and 6. In place of the intractable expectation in Equa-
tion (1), Robust MDP classically consider optimizing the
policy performance p(m, M) of the worst-case scenario in

—
—.

mr = argmax min p(w, M). 3)
§el‘[MEEp()

In our benchmarks, we use the Robust MDP solver de-
scribed in Petrik et al. (2016). Petrik et al. (2016) also con-
template the policy improvement worst-case scenario:

g = argmax min (p(m, M) — p(mp, M)) . 4
rell MeE

They prove that this optimization is an NP-hard problem
and propose an algorithm approximating the solution with-
out any formal proof: Approximate Robust Baseline Regret
Minimization (ARBRM). There are three problems with
ARBRM. First, it assumes that there is no error in the tran-
sition probabilities of the baseline, which is very restrictive
and amounts to Basic RL when the support of the base-
line is the full action space in each state (as is the case
in all our experiments). Second, given its high complex-
ity, it is difficult to empirically assess its percentile crite-
rion safety except on simple tasks. Third, in order to retain
safety guarantees, ARBRM requires a conservative safety
test that consistently fails in our experiments. These are the
reasons why our benchmarks do not include ARBRM.

Safe Policy Improvement with Baseline Bootstrapping

2.2. SPIBB methodology

In this section, we reformulate the percentile criterion to
make searching for an efficient and provably-safe policy
tractable in terms of computer time. Our new criterion con-
sists in optimizing the policy with respect to its perfor-
mance in the MDP estimate 1. , while guaranteeing it to
be (-approximately at least as good as 7, in the admissible
MDP set =. Formally, we write it as follows:

maﬁ(p(ﬂ',M\), st.VM € 2, p(m, M) > p(mp, M) — (.
TE

4)
From Theorem 8 of Petrik et al. (2016), it is direct to guar-
antee that, if all the state-action pair counts satisfy:

2|X||Al21¥]
6 b

8V2
N > N — max 1
P) = N = g =y o8
and if M is the Maximum Likelihood Estimation (MLE)
MDP, then, with high probability 1 — §, the optimal policy
7@ = argmax_cp p(m, M) in M is (-approximately safe
with respect to the true environment M *:

(6)

p(x®, M*) > p(n*, M*) = C > plmy, M*) = (. (]

In the following, we extend this result by allowing con-
straint (6) to be violated on a subset of the state-action pairs
X x A, called the bootstrapped set and denoted by B. 5 is
the set of state-action pairs with counts smaller than N,.

2.3. 11,-SPIBB

In this section, we develop two novel algorithms based
on policy bootstrapping and prove associated SPI bounds.
More precisely, when a state-action pair (z,a) is rarely
seen in the dataset, we propose to rely on the baseline by
copying its probability to take action a:

w5 a(alz) = m(alz) if (z,a) € B. (8)

We let 11, denote the set of policies that verify (8) for all
state-action pairs. Our first algorithm, coined II,-SPIBB,
consists in the usual policy optimization of the expected
return p(, M) under constraint (8). In practice, it may be
achieved in a model-based manner by explicitly computing
the MDP model M , constructing the set of allowed policies

II, and finally searching for the II;-optimal policy ﬂ%ibb

in M using policy iteration over 11, (Howard, 1966; Puter-
man & Brumelle, 1979). In the policy evaluation step, the
current policy () is evaluated as Qg\i}. In the policy im-
provement step, ("1 is defined as the greedy policy with
respect to Q) under the constraint of belonging to IT; (Al-
gorithm 1 describes how to enforce this constraint in linear
time).

Algorithm 1 Greedy projection of Q(*) on IT,
Input: Baseline policy 7

Input: Last iteration value function Q)
Input: Set of bootstrapped state-action pairs B
Input: Current state « and action set A

Initialize 7, = 0

spib)

for (z,a) € B do ﬂg;)ibb(a\x) = mp(alz) ;

ngibb (m, argmax Q(i)(x,a)> = Z my(alz)
a|(z,a)¢B a|(z,a)¢B

©)
return 7 .,

The following theorems prove that IT,-SPIBB converges to
a Tl,-optimal policy 7y ;. and that 77 ;,, is a safe policy
improvement over the baseline in the true MDP M*.
Theorem 1 (Convergence). 11,-SPIBB converges to a pol-
icy 7rs®m.bb that is 11-optimal in the MLE MDP M.

Theorem 2 (Safe policy improvement). Let II, be the
set of policies under the constraint of following m, when
(z,a) € B. Then, W%ibb is a C-approximate safe policy im-
provement over the baseline Ty, with high probability 1 — 6,
where:

Wonae [2 2/X]| 4217 — _
T Y \/NAlog f_p(ﬂ-s@pibb?M)_Fp(ﬂ'ba M)

Proofs of both theorems are available in Appendix A.3.
Theorem 1 is a direct application of the classical policy iter-
ation theorem. Theorem 2 is a generalization of Theorem 8
in Petrik et al. (2016). The resulting bounds may look very
similar at first. The crucial difference is that, in our case,
N, is not a property of the dataset, but a hyper-parameter
of the algorithm. In all our experiments, ||¢||o, from The-
orem 8 would be equal to 2, leading to a trivial bound. In
comparison, [1,-SPIBB allows safe improvement if [V, is
chosen large enough to ensure safety and small enough to
ensure improvement.

SPIBB takes inspiration from Petrik et al. (2016)’s idea of
finding a policy that is guaranteed to be an improvement
for any realization of the uncertain parameters, and simi-
larly estimates the error on those parameters, as a function
of the state-action pair counts. But instead of searching for
the analytic optimum, SPIBB looks for a solution that im-
proves the baseline when it can guarantee improvement and
falls back on the baseline when the uncertainty is too high.
One can see it as a knows-what-it-knows algorithm, asking
for help from the baseline when it does not know whether it
knows (Li et al., 2008). As such, our algorithms can be seen
as pessimistic, the flip side of optimism in the face of un-
certainty (Szita & Lorincz, 2008). As a consequence, I1;-

Safe Policy Improvement with Baseline Bootstrapping

SPIBB is not optimal with respect to the criterion in Equa-
tion (5). But in return, it is inherently safe as it only allows
to search in a set of policies for which the improvement
over the baseline can be safely evaluated (Thomas et al.,
2017). It is also worth mentioning that SPIBB is compu-
tationally simple, which allows us to develop the SPIBB-
DOQN algorithm in the next section.

2.4. Model-free II,-SPIBB and SPIBB-DQN

The 1I,-SPIBB policy optimization may indifferently be
achieved in a model-free manner by fitting the ()-function

to the following target y]@ over the transition samples in
the dataset D = (z;, a;,7;, 7)) je[1,N]:

yj(’) =r;+ Z ﬂ'b(a/|569-)Q(i) (x;,a,) ©)
a’|(z),a’)€B
+ T, a’ x/, max Q(z) Il',(l/
! a/|(;p’,zaf)¢$3 b(| j) a'\(i?;,a’)g% (J)

The first term 7; is the immediate reward observed during
the recorded transition, the second term is the return esti-
mate of the bootstrapped actions (where the trained policy
is constrained to the baseline policy), and the third term is
the return estimate maximized over the non-bootstrapped
actions. SPIBB-DQN is the DQN algorithm fitted to these
targets y](»z) (Mnih et al., 2015). Note that computing the
SPIBB targets requires determining the bootstrapped set
B, which relies on an estimate of the state-action counts
Np(x,a), also called pseudo-counts (Bellemare et al.,
2016; Fox et al., 2018; Burda et al., 2019).

Theorem 3. In finite MDPs, Equation 9 admits a unique
fixed point that coincides with the QQ-value of the policy
trained with model-based 11,,-SPIBB.

2.5.11-,-SPIBB

In our empirical evaluation, we consider a variant of II;-
SPIBB: the space of policies to search is relaxed to II<y,
the set of policies that do not to give more weight than 7
to bootstrapped actions. As a consequence, in comparison
with I1,-SPIBB, it allows to cut off bad performing actions
even when their estimate is imprecise:

<, = {r € II|n(alz) < mp(alx) if (x,a) € B} (10)

The resulting algorithm is referred as II<,-SPIBB and
amounts, as for II;-SPIBB, to perform a policy iteration
under the policy constraint to belong to II<;. The conver-
gence guarantees of Theorem 1 still apply to 11<;,-SPIBB,
but we lose the SPI ones.

Algorithm 2 in Appendix A.4, describes the greedy projec-
tion of Q) on Tl<;. Appendix A.5 also includes a compre-

hensive example that illustrates the difference between the
I1,-SPIBB and I1<;-SPIBB policy improvement steps. De-
spite the lack of safety guarantees, our experiments show
I1<;-SPIBB to be even safer than 11,-SPIBB while outper-
forming it in most scenarios. Multi-batch settings — where
it may be better to keep exploring the bootstrapped pairs —
might be an exception (Lange et al., 2012).

2.6. Other related works

High-Confidence PI refers to the family of algorithms in-
troduced in Paduraru (2013); Mandel et al. (2014); Thomas
et al. (2015a), which rely on the ability to produce high-
confidence lower bound on the Importance Sampling (IS)
estimate of the trained policy performance. IS and SPIBB
approaches are very different in nature: IS provides fre-
quentist bounds, while SPIBB provides Bayesian bounds.
In comparison to SPIBB, IS has the advantage of not de-
pending on the MDP model and as a consequence may be
applied to infinite MDPs with guarantees. However, the IS
estimates are known to be high variance. Another drawback
of the IS approach is that it fails for long horizon problem.
Indeed, Guo et al. (2017) show that the amount of data
required by IS-based SPI algorithms scales exponentially
with the horizon of the MDP. Regarding the dependency in
the horizon of SPIBB algorithms, the discount factor + is
often translated as a planning horizon: H = 1% This is
the case in UCT for instance (Kocsis & Szepesvari, 2006).
As a consequence, Theorem 2 tells us that the safety is lin-
ear in the horizon (given a fixed V},,45).

In Kakade & Langford (2002), Conservative Policy Itera-
tion (CPI) not only assumes access to the environment, but
also to a pu-restart mechanism which can basically sample
at will from the environment according to a distribution .
This is used in step (2) of the CPI algorithm to build an es-
timate of the advantage function precise enough to ensure
policy improvement with high probability. SPIBB does not
have access to the true environment: all it sees are the finite
samples from the batch. Similarly, Pirotta et al. (2013a;b)
consider a single safe policy improvement in order to speed
up training of policy gradients (use less policy iterations).
These are however not safe in the sense of finding a pol-
icy that improves a previous policy with high confidence:
they will converge to the same policy asymptotically, the
optimal one in the MLE MDP. Additionally, they are not
considering the batch setting.

3. SPIBB Empirical Evaluation

The performance of Batch RL algorithms can vary greatly
from one dataset to another. To properly assess existing
and SPIBB algorithms, we evaluate their ability to gener-
ate policies that consistently outperform the baseline. Prac-
tically, we repeated 100k times the following procedure on

Safe Policy Improvement with Baseline Bootstrapping

—

—

100

200

000

500

Number of trajectories

e of the target policy 7: p = -

025

1000 2000 5000 10000 100 200 500

Number of trajectories

1000 2000 5000 10000

”=m

(c) 1%-CVaR heatmap: I1<;-SPIBB.

”=m

(b) 1%-CVaR heatmap: 11,-SPIBB.

/ / P
| e
050 } 7 =
© N i Pratiin Baseline
Soas e Optimal policy oz [KX 7 Optinal policy
£ —6— Basic RL mean £/ v -0~ Basic RL 1%-CVaR
00 e e AR s 2 00 gt e g R
" —9— Robust MDP mean P ~%- Robust MDP 1%-CVaR . —4— T1,-SPIBB mean
0¥ HCPI doubly robust mean 0 % & HCPI doubly robust 1%-CVaR 0 —<— T1,-SPIBB mean
050 —s— I1,-SPIBB mean wso ST T —b- I:SPIBB 1%-CVaR s —%- T,-SPIBB 1%-CVaR
—< I1,-SPIBB mean i~ ~S<.. I14-SPIBB 1%-CVaR —<- TI--SPIBB 1%-CVaR

0.25
10t 10%

10% 10* 10*

number of trajectories in dataset D

(d) Mean: benchmark with Ny = 5.

number of trajectories in dataset D

(e) 1%-CVaR: benchmark with Ny = 5.

~a.

10* 10% 10* 10*

number of trajectories in dataset D

(f) Mean & 1%-CVaR: SPIBB w. N, = 20.

0.25
10* 10t

Figure 1. Gridworld experiment: Figure (a) illustrates the domain with an optimal trajectory. Figures (b-c) are heatmaps of the 1%-CVaR
normalized performance of the SPIBB algorithms as a function of Na. Figures (d-e) show the benchmark for the mean and 1%-CVaR
performance. Figure (f) displays additional curves for another value of Nx.

various environments: randomly generate a dataset, train a
policy on that dataset using each algorithm and each hyper-
parameter in the benchmark and compute the performance
of the trained policy (with v = 0.95). We formalize this
experimental protocol in Appendix B.1.1. The algorithms
are then evaluated using the mean performance and con-
ditional value at risk performance (CVaR, also called ex-
pected shortfall) of the policies they produced. The X %-
CVaR is the mean performance over the X% worst runs.
Given the high number of runs, all the results that are visi-
ble to the naked eye are significant.

In addition to the SPIBB algorithms, our finite MDP bench-
mark contains four algorithms: Basic RL, HCPI (Thomas
et al., 2015a), Robust MDP, and RaMDP (Petrik et al.,
2016). RaMDP stands for Reward-adjusted MDP and ap-
plies an exploration penalty when performing actions rarely
observed in the dataset. At the exception of Basic RL, they
all rely on one hyper-parameter: 0pcpi, Orop and kqq; re-
spectively. We performed a grid search on those parame-
ters and for HCPI compared 3 versions. In the main text,
we only report the best performance we found (65,cp; = 0.9,
0rob = 0.1, and Kqq; = 0.003), the full results can be found
in Appendix B.2. Additionally, Robust MDP and RaMDP
depend on a safety test that always failed in our experi-
ments. We still report their performance.

3.1. Does SPIBB outperform existing algorithms?

Our first domain is a discrete, stochastic, 5 x 5 gridworld
(see Figure 1(a)), with 4 actions: up, down, left and right.
The transitions are stochastic: the agent moves in the re-
quested direction with 75% chance, in the opposite one
with 5% chance and to either side with 10% chance each.
The initial and final states are respectively the bottom left
and top right corners. The reward function is +1 when the
final state is reached and O everywhere else. The baseline
we use in this experiment is a fixed stochastic policy with a
0.4 performance, the optimal policy has a 0.6 performance.

We start by analysing the sensitivity of II,-SPIBB and
I1<;-SPIBB with respect to V5. We visually represent the
results as two 1%-CVaR heatmaps: Figures 1(b) and 1(c)
for II,-SPIBB and I1<;-SPIBB. They read as follows: the
colour of a cell indicates the improvement over the base-
line normalized with respect to the optimal performance:
red, yellow, and green respectively mean below, equal to,
and above baseline performance. We observe for SPIBB al-
gorithms that the policy improvement is safe (at the slight
exception of II,-SPIBB with a low N, on 10-trajectory
datasets), that the bigger the N,, the more conservative
SPIBB gets, and that IT<;-SPIBB outperforms II,-SPIBB.

In Figure 1(d), we see that Basic RL improves the base-

Safe Policy Improvement with Baseline Bootstrapping

----- Baseline
----- Optimal policy
i Basic RL 1%-CVaR
040 L'.:"'"[?""'"E TS S perf RaMDP 1%-CVaR T
o S 3 ~%- Robust MDP 1%-CVaR
. - HCPI doubly robust 1%-CVaR
i —&- TI,-SPIBB 1%-CVaR

0.30 i
il —<- I14-SPIBB 1%-CVaR

performance
e
|
o)
i

025 . . \
10 102 10 10 o o w1
number of trajectories in dataset D

(a) 1%-CVaR benchmark with Ny = 20.

0 20
Number of trajectories

(b) 1%-CVaR heatmap: 11,-SPIBB.

0 200 500 1000 2000 5000 10000
Number of trajectories

500 1000 2000 5000 10000 10 2 50 10

(c) 1%-CVaR heatmap: I1<;-SPIBB.

Figure 2. Gridworld experiment with random behavioural policy: Figure (a) shows the benchmark for the 1%-CVaR performance, with
SPIBB using N = 20. Figures (b-c) are the heatmaps of the 1%-CVaR normalized performance of the SPIBB algorithms as a function

of N (same heat colours as in Figures 1(b) and 1(c)).

line on average, but not monotonically with the size of the
dataset, and remains quite far from optimal. That fact is
explained by the fairly frequent learning of catastrophic
policies and will be analyzed in details with the 1%-CVaR
results. HCPI is more conservative for small datasets but
slightly outperforms Basic RL for bigger ones, still re-
maining away from optimal. We also observe that Robust
MDPs do even worse than Basic RL; in fact, they learn
policies that remain at the center of the grid where the
dataset contains a maximum of transitions and therefore
where the Robust MDPs have a minimal estimate error,
and completely ignore the goal. A similar behaviour is ob-
served with RaMDP when its hyper-parameter is set too
high (> 0.004). Inversely, when it is set too low (< 0.002),
RaMDP behaves like Basic RL. But in the tight spot of
0.003, RaMDP is very efficient. We refer the interested
reader to Appendix B.2 for the analysis of hyper-parameter
search for the benchmark algorithms. Overall, RaMDP and
I1<,-SPIBB win this benchmark based on mean perfor-
mance, with I1,-SPIBB not far behind.

Figure 1(e) displays the 1%-CVaR performance of the al-
gorithms. We observe that the very good mean performance
of RaMDP hides some catastrophic runs where the trained
policy under-performs for small datasets. In contrast, II<;-
SPIBB’s curve remains over the baseline. II,-SPIBB is
again a bit behind. HCPI also proves to be near safe. We
explained in the previous paragraph why Robust MDP of-
ten generates bad policies. It actually does it so often, and
the policies are so bad, that its curve does not even show on
the graph. Let us now consider Basic RL and explain why it
does so poorly, even at times on very large datasets (consid-
ering that the MDP has 25 states and 4 actions). The dataset
is collected using a baseline that performs some actions
only very rarely. As a consequence, even in big datasets,
some state-action pairs are observed only once or twice.
Given the stochasticity of the environment, the MLE MDP
might be quite different from the true MDP in those states,
leading to policies falsely taking advantage of those chi-

maeras. SPIBB algorithms are not allowed to jump to con-
clusions without sufficient proof and have to conservatively
reproduce the baseline policy in those configurations.

Figure 1(f) shows the SPIBB curves for a higher value of
N, = 20. There, the algorithms are more conservative and
therefore safe, while still achieving near optimality on big
datasets. Full results may be found in Appendix C.1.

3.2. Must the dataset be collected with the baseline?

SPIBB theory relies on the assumption that the baseline
was used for the data collection, which is a limiting fac-
tor of the method. In practice, this assumption simply en-
sures that the preferential trajectories of the baseline are
experienced in the batch of trajectories used for training.
We modify the previous experiment by producing datasets
using a uniform random policy, while keeping the same
Gridworld environment and the same baseline for boot-
strapping. In this setting, Basic RL does not have its non-
monotonic behaviour anymore, but both our algorithms,
I1,-SPIBB and II<;-SPIBB, still significantly outperform
their competitors (see Figure 2(a)). Note however the fol-
lowing differences: Basic RL becomes safe with 100 trajec-
tories, RaMDP does not improve Basic RL anymore, and
HCPI has more difficulty improving the baseline. Robust
MDP still does not show on the 1%-CVaR figure. Focusing
more specifically on the SPIBB algorithms and their N,
sensitivity, Figures 2(b) and 2(c) show that they fail to be
completely safe when Ny < 10 and |D| < 20; and that
I1,,-SPIBB slightly outperforms I1<;-SPIBB. Indeed, I1<;-
SPIBB cannot take advantage anymore of the bias that the
behavioural policy tends to take actions that are better than
average. Full results may be found in Appendix C.2.

3.3. Does SPIBB achieve SPI in most domains?

In this section, we study the conditions required on the en-
vironment and on the baseline for SPIBB to be helpful.
To do so, we use a generator of Random MDPs where the

Safe Policy Improvement with Baseline Bootstrapping

Baseline
Optimal policy
Basic RL mean
RaMDP mean

Baseline /

Optimal policy

Basic RL meal

HCPLdoubly robust mean ¢
ASPIBB mean’ """ 00
~,-SPIBB mean

0.0 PSS o

-0.2

10t 10% 10* 10!
number of trajectories in dataset D

(a) Mean: with » = 0.1 and N, = 10.

s

Normalized performance

10 2 50 100 20 500
Number of trajectories

(d) 1%-CVaR: RaMDP with d,4; = 0.003.

1000

2000 10 2 50

10%
number of trajectories in dataset D

(b) Mean: withn = 0.9 and N, = 10.

” -

100
Number of trajectories

(e) 1%-CVaR: I1<;,-SPIBB with N, = 10.

Optimal policy
Basic RL 1%-CVaR

- RaMDP 1%-CVaR

5

< —4~ Robust MDP 1%-CVaR B

20 HCPI doubly robust 1‘3&-7cng’

= =% ———g< _I1,-SPIBB1%-EViR

25 7 e £
—<- I4-SPIBB 1%-CVaR -~

-3.0 s o

10* 10! 102 10*

number of trajectories in dataset D

(¢) 1%-CVaR: with n = 0.9 and N, = 10.

200 500 1000 2000 10 2 50 100 200 500

Number of trajectories

(f) 1%-CVaR: I1<;-SPIBB with n = 0.9.

1000 2000

Figure 3. Random MDPs domain: Figures (a-c) show the mean and 1%-CVaR performances for n values of 0.1 and 0.9 and SPIBB
with N, = 10. Figures (d-e) are the 1%-CVaR as a function of 77 for RaMDP and I1<;-SPIBB respectively. Figure (f) is the 1%-CVaR

heatmap for I1<;-SPIBB as a function of N withn = 0.9.

number of states has been fixed to |X| = 50, the number
of actions to |.A| = 4 and the connectivity of the transition
function to 4. This means that for a given state-action pair
(z, a), its transition function P(z’|x, a) is non-zero on four
states ' only. The initial state is fixed at xo. The reward
function is 0 everywhere except when entering the termi-
nal state, where it equals 1. The terminal state is chosen in
such a way that the optimal value function is minimal. It
coarsely amounts to choosing the state that is the hardest to
reach/farthest from x¢. For a randomly generated MDP M,
we generate baselines with different levels of performance
(the process is detailed in Appendix B.1.4). Specifically, we
set a target performance for the baseline based on a hyper-
parameter 7 € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}:
p(my, M) = np(n*, M) + (1 — n)p(7, M), where 7* and
7 are respectively the optimal and the uniform policies.

Figure 3(a) shows the mean results with a bad, highly
stochastic baseline (n = 0.1). Since, the baseline is bad, it
is an easy task to safely improve it. Basic RL and RaMDP
dominate the benchmark in mean, but also in safety (not
shown). SPIBB algorithms are too conservative for small
datasets but catch up on the bigger ones. Figure 3(b) shows
the mean results with a very good baseline, therefore very
hard task to safely improve. On average, the podium is
composed by II<;,-SPIBB, RaMDP, II,-SPIBB, followed
closely by Basic RL. But, when one considers more specif-
ically the 1%-CVaR performance, all fail to be safe but

the SPIBB algorithms. Note that a -0.5 normalized per-
formance is still a good performance, and that this loss is
actually predicted by the theory: Theorem 2 proves a (-
approximate safe policy improvement.

The heatmaps shown in Figures 3(d) and 3(e) allow us
to compare more globally the 1%-CVaR performance of
RaMDP and II<;,-SPIBB. One observes that the former is
unsafe in a large area of the map (where it is red, for high n
or small datasets), while the latter is safe everywhere. Fig-
ure 3(f) displays a heatmap of the II<;-SPIBB 1%-CVaR
performance in the hardest scenario (n = 0.9) in function
of its N, hyper-parameter. Unsurprisingly, the algorithm
becomes slightly unsafe when N, gets too low. As it in-
creases, the red stains disappear meaning that it becomes
completely safe. The green sections show that it still allows
for some policy improvement. Full results may be found in
Appendix C.3.

3.4. Does SPIBB scale to larger tasks?

For the sake of simplicity and to be able to repeat sev-
eral runs of each experiment efficiently, instead of apply-
ing pseudo-count methods from the literature (Bellemare
et al., 2016; Fox et al., 2018; Burda et al., 2019), we con-
sider here a pseudo-count heuristic based on the Euclidean
state-distance, and a task where it makes sense to do so. The
pseudo-count of a state-action (x, a) is defined as the sum
of its similarity with the state-action pairs (x;, a;) found

Safe Policy Improvement with Baseline Bootstrapping

Baseline

DQN

B

performance

__________ 1,i::::;%:—:: CoCEE EEEEEE

——
—— SPIBB-DQN, N, =5
—— SPIBB-DQN, N, = 10

performance

7 Rt o N
7 SN

. Baseline, mean ——- Baseline, 10%-CVaR =
—=— |D| = 10000, mean =%~ [D| = 10000, 10%-CVaR)

2 —¥— |D| = 20000, mean =¥= |D| = 20000, 10%-CVaR

. —¥— |D| = 30000, mean =¥= [D| = 30000, 10%-CVaR

0 5 10 15 20 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0

] N, noise level
)
(a) Helicopter environment. (b) Mean and 10%-CVaR in function of N5. (c) Performance in function of the noise factor.

Figure 4. SPIBB-DQN experiments: Figure (a) is an illustration of the environment. Figure (b) displays the mean and 10%-CVaR per-
formance as a function of [N for three dataset sizes. Figure (c) displays the mean and 10%-CVaR performance for the baseline, vanilla
DQN, RaMDP with k,4; = 0.01, SPIBB-DQN with Ny = 5, and with N, = 10, as a function of the transition noise factor.

in the dataset. The similarity between (z, a) and (x;, a;) is
equal to 0 if a; # a, and to max(0, 1 —d(z, x;)) otherwise,
where d(-, -) is the Euclidean distance between two states.

We consider a helicopter navigation task (see Figure 4(a)).
The helicopter starts from a random position in the teal
area, with a random initial velocity. The 9 available actions
consist in applying thrust: backward, no, or forward accel-
eration, along the two dimensions. The episode terminates
when the velocity exceeds some maximal value, in which
case it gets a -1 reward, or when the helicopter leaves the
blue area, in which case it gets a reward as chromatically
indicated on Figure 4(a). The dynamics of the domain fol-
low the basic laws of physics with a Gaussian centered ad-
ditive noise both on the position and the velocity, see Ap-
pendix D.1 for full details of the domain. To train our al-
gorithms, we use a discount factor v = 0.9, but we report
in our results the undiscounted final reward. The baseline
is generated as follows: we first train a policy with on-
line DQN, stop before full convergence and then apply a
softmax on the obtained @Q-network. Our experiments con-
sist in 300 runs on SPIBB-DQN with a range of N, values
and for different dataset sizes. SPIBB-DQN with Ny = 0
is equivalent to vanilla DQN. We also tried RaMDP with
several values of k,q; € [0.001, 0.1] without any success.
For figure clarity, we do not report RaMDP in the Main
Document figures. The set of used parameters and the re-
sults of the preliminary experiments are reported in Appen-
dices D.3 and D 4.

Figure 4(b) displays the mean and 10%-CVaR perfor-
mances in function of N, for three dataset sizes (10k, 20k,
and 30k). We observe that vanilla DQN (N, = 0) signifi-
cantly worsens the baseline in mean and achieves the worst
possible 10%-CVaR performance. SPIBB-DQN not only
significantly improves the baseline in mean performance
for No > 1, but also in 10%-CVaR when N, > 8. The
discerning reader might wonder about the CVaR curve for

the baseline. It is explained by the fact that the evaluation
of the policies are not exact. The curve accounts for the
evaluation errors, errors also obviously encountered with
the trained policies.

We performed an additional experiment. Keeping the base-
line identical, we trained on 10k-transitions datasets ob-
tained from environments with a different transition noise.
Figure 4(c) shows the mean and 10%-CVaR performances
for the baseline, vanilla DQN, and SPIBB-DQN with
N, € {5, 10}. First, we observe that vanilla DQN performs
abysmally. Second, we see that the baseline quickly gets
more efficient when the noise is removed making the safe
policy improvement task harder for SPIBB-DQN. SPIBB is
efficient at dealing with stochasticity, the noise attenuation
reduces its usefulness. Third, as we get to higher noise fac-
tors, the stochasticity becomes too high to efficiently aim
at the goal, but SPIBB algorithms still succeed at safely
improving the baseline.

4. Conclusion and Future Work

In this paper, we tackle the problem of safe Batch Rein-
forcement Learning. We reformulate the percentile crite-
rion without compromising its safety. We lose optimality
that way but keep a PAC-style guarantee of policy im-
provement. It allows the implementation of an algorithm
II,-SPIBB that run as fast as a vanilla model-based RL al-
gorithm, while generating a provably safe policy improve-
ment over a known baseline 7;,. A variant algorithm IT<;-
SPIBB is shown to perform better and safer on a wide range
of domains, but does not come with safety guarantees. Ba-
sic Batch RL and the other benchmark competitors are
shown to fall short on at least one, and generally two, of the
following criteria: mean performance, safety, or domain-
dependent hyper-parameter sensitivity. Finally, we imple-
ment a DQN version of SPIBB that is the first deep batch
algorithm allowing policy improvement in a safe manner.

Safe Policy Improvement with Baseline Bootstrapping

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, 1., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Watten-
berg, M., Wicke, M., Yu, Y., and Zheng, X. TensorFlow:
Large-scale machine learning on heterogeneous systems,
2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

Altman, E. Constrained Markov Decision Processes. CRC
Press, 1999.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based explo-
ration and intrinsic motivation. In Proceedings of the
29th Advances in Neural Information Processing Sys-
tems (NIPS), 2016.

Bellman, R. A markovian decision process. Journal of
Mathematics and Mechanics, 1957.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Explo-
ration by random network distillation. In Proceedings of
the 7th International Conference on Learning Represen-
tations (ICLR), 2019.

Carrara, N., Leurent, E., Laroche, R., Urvoy, T., Maillard,
0., and Pietquin, O. Scaling up budgeted reinforcement
learning. CoRR, abs/1903.01004, 2019. URL http:
//arxiv.org/abs/1903.01004.

Chollet, F. et al. Keras. https://keras.1io, 2015.

Delage, E. and Mannor, S. Percentile optimization for
markov decision processes with parameter uncertainty.
Operations research, 2010.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In Proceedings of the 33rd Inter-
national Conference on Machine Learning (ICML), pp.
1329-1338, 2016.

Efron, B. Better bootstrap confidence intervals. Journal of
the American statistical Association, 82(397):171-185,
1987.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine
Learning Research, 6(Apr):503-556, 2005.

Fatemi, M., Sharma, Shikharand van Seijen, H., and
Ebrahimi Kahou, S. Dead-ends and secure exploration
in reinforcement learning. In Proceedings of the 36th
International Conference on Machine Learning (ICML),
2019.

Fox, L., Choshen, L., and Loewenstein, Y. Dora the
explorer: Directed outreaching reinforcement action-
selection. In Proceedings of the 6th International Con-
ference on Learning Representations (ICLR), 2018.

Garcfia, J. and Fernandez, F. A comprehensive survey on
safe reinforcement learning. Journal of Machine Learn-
ing Research, 2015.

Gosavi, A. A reinforcement learning algorithm based on
policy iteration for average reward: Empirical results
with yield management and convergence analysis. Ma-
chine Learning, 2004.

Guerraoui, R., Hendrikx, H., Maurer, A., et al. Dynamic
safe interruptibility for decentralized multi-agent rein-
forcement learning. In Advances in Neural Information
Processing Systems, pp. 130-140, 2017.

Guo, Z., Thomas, P. S., and Brunskill, E. Using options
and covariance testing for long horizon off-policy policy
evaluation. In Proceedings of the 30th Advances in Neu-
ral Information Processing Systems (NIPS), pp. 2492—
2501, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into
rectifiers: Surpassing human-level performance on ima-
genet classification. arXiv preprint arXiv:1502.01852,
2015.

Howard, R. A. Dynamic programming. Management Sci-
ence, 1966.

Iyengar, G. N. Robust dynamic programming. Mathemat-
ics of Operations Research, 2005.

Jiang, N. and Li, L. Doubly robust off-policy value
evaluation for reinforcement learning. arXiv preprint
arXiv:1511.03722, 2015.

Kakade, S. and Langford, J. Approximately optimal ap-
proximate reinforcement learning. In Proceedings of
the 19th International Conference on Machine Learning
(ICML), volume 2, pp. 267-274, 2002.

Kocsis, L. and Szepesvéri, C. Bandit based monte-carlo
planning. In European conference on machine learning,
pp- 282-293. Springer, 2006.

Lange, S., Gabel, T., and Riedmiller, M. Batch reinforce-
ment learning. In Reinforcement learning. Springer,
2012.

Safe Policy Improvement with Baseline Bootstrapping

Laroche, R., Putois, G., and Bretier, P. Optimising a
handcrafted dialogue system design. In Proceedings of
the 11th Annual Conference of the International Speech
Communication Association (INTERSPEECH), 2010.

Li, L., Littman, M. L., and Walsh, T. J. Knows what it
knows: a framework for self-aware learning. In Proceed-
ings of the 25th International Conference on Machine
Learning (ICML), 2008.

Mandel, T., Liu, Y.-E., Levine, S., Brunskill, E., and
Popovic, Z. Offline policy evaluation across represen-
tations with applications to educational games. In Pro-
ceedings of the 13th International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS),
2014.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, 1., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 2015.

Nilim, A. and El Ghaoui, L. Robust control of markov de-
cision processes with uncertain transition matrices. Op-
erations Research, 2005.

Orseau, L. and Armstrong, S. Safely interruptible
agents. In Proceedings of the Thirty-Second Confer-
ence on Uncertainty in Artificial Intelligence (UAI),
UATI’'16, pp. 557-566, Arlington, Virginia, United
States, 2016. AUAI Press. ISBN 978-0-9966431-1-
5. URL http://dl.acm.org/citation.cfm?
1d=3020948.3021006.

Paduraru, C. Off-policy Evaluation in Markov Decision
Processes. PhD thesis, PhD thesis, McGill University,
2013.

Parr, R. E. and Russell, S. Hierarchical control and learn-
ing for Markov decision processes. University of Cali-
fornia, Berkeley, CA, 1998.

Petrik, M., Ghavamzadeh, M., and Chow, Y. Safe policy
improvement by minimizing robust baseline regret. In
Proceedings of the 29th Advances in Neural Information
Processing Systems (NIPS), 2016.

Pirotta, M., Restelli, M., and Bascetta, L. Adaptive step-
size for policy gradient methods. In Proceedings of the

26th Advances in Neural Information Processing Sys-
tems (NIPS), pp. 1394-1402, 2013a.

Pirotta, M., Restelli, M., Pecorino, A., and Calandriello, D.
Safe policy iteration. In Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML), pp.
307-315, 2013b.

Puterman, M. L. and Brumelle, S. L. On the convergence
of policy iteration in stationary dynamic programming.
Mathematics of Operations Research, 1979.

Schulman, J., Levine, S., Abbeel, P, Jordan, M., and
Moritz, P. Trust region policy optimization. In Proceed-
ings of the 32nd International Conference on Machine
Learning (ICML), 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. The MIT Press, 1998.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction
in reinforcement learning. Artificial intelligence, 1999.

Szita, I. and Lé&rincz, A. The many faces of optimism: a
unifying approach. In Proceedings of the 25th Interna-
tional Conference on Machine Learning (ICML), 2008.

Taylor, M. E. and Stone, P. Transfer learning for reinforce-
ment learning domains: A survey. Journal of Machine
Learning Research, 10(Jul):1633-1685, 2009.

Thomas, P. S., Theocharous, G., and Ghavamzadeh, M.
High confidence policy improvement. In Proceedings of
the 32nd International Conference on Machine Learning
(ICML), 2015a.

Thomas, P. S., Theocharous, G., and Ghavamzadeh, M.
High-confidence off-policy evaluation. In Proceedings
of the 29th AAAI Conference on Artificial Intelligence,
2015b.

Thomas, P. S., da Silva, B. C., Barto, A. G., and Brun-
skill, E. On ensuring that intelligent machines are well-
behaved. arXiv preprint arXiv:1708.05448, 2017.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magni-
tude. COURSERA: Neural networks for machine learn-
ing, 4(2):26-31, 2012.

van Hasselt, H., Guez, A., and Silver, D. Deep
reinforcement learning with double g-learning.
CoRR, abs/1509.06461, 2015. URL http:

//dblp.uni-trier.de/db/journals/corr/
corrl509.html#HasseltGS15.

