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Abstract
We introduce an approach to learn representations
based on the Lorentzian distance in hyperbolic ge-
ometry. Hyperbolic geometry is especially suited
to hierarchically-structured datasets, which are
prevalent in the real world. Current hyperbolic
representation learning methods compare exam-
ples with the Poincaré distance. They try to min-
imize the distance of each node in a hierarchy
with its descendants while maximizing its dis-
tance with other nodes. This formulation pro-
duces node representations close to the centroid
of their descendants. To obtain efficient and inter-
pretable algorithms, we exploit the fact that the
centroid w.r.t the squared Lorentzian distance can
be written in closed-form. We show that the Eu-
clidean norm of such a centroid decreases as the
curvature of the hyperbolic space decreases. This
property makes it appropriate to represent hierar-
chies where parent nodes minimize the distances
to their descendants and have smaller Euclidean
norm than their children. Our approach obtains
state-of-the-art results in retrieval and classifica-
tion tasks on different datasets.

1. Introduction
Generalizations of Euclidean space are important forms of
data representation in machine learning. For instance, ker-
nel methods (Shawe-Taylor et al., 2004) rely on Hilbert
spaces that possess the structure of the inner product and
are therefore used to compare examples. The properties
of such spaces are well-known and closed-form relations
are often exploited to obtain efficient, scalable, and inter-
pretable training algorithms. While representing examples
in a Euclidean space is appropriate to compare lengths and
angles, non-Euclidean representations are useful when the
task requires specific structure.
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A common and natural non-Euclidean representation space
is the spherical model (e.g. (Wang et al., 2017)) where the
data lies on a unit hypersphere Sd = {x ∈ Rd : �x�2 = 1}
and angles are compared with the cosine similarity func-
tion. Recently, some machine learning approaches (Nickel
& Kiela, 2017; 2018; Ganea et al., 2018) have considered
representing hierarchical datasets with the hyperbolic model.
The motivation is that any finite tree can be mapped into
a finite hyperbolic space while approximately preserving
distances (Gromov, 1987), which is not the case for Eu-
clidean space (Linial et al., 1995). Since hierarchies can
be formulated as trees, hyperbolic spaces can be used to
represent hierarchically structured data where the high-level
nodes of the hierarchy are represented close to the origin
whereas leaves are further away from the origin.

An important question is the form of hyperbolic geometry.
Since their first formulation in the early nineteenth century
by Lobachevsky and Bolyai, hyperbolic spaces have been
used in many domains. In particular, they became popular in
mathematics (e.g. space theory and differential geometry),
and physics when Varicak (1908) discovered that special
relativity theory (Einstein, 1905) had a natural interpretation
in hyperbolic geometry. Various hyperbolic geometries and
related distances have been studied since then. Among them
are the Poincaré metric, the Lorentzian distance (Ratcliffe,
2006), and the gyrodistance (Ungar, 2010; 2014).

In the case of hierarchical datasets, machine learning ap-
proaches that learn hyperbolic representations designed to
preserve the hierarchical similarity order have typically em-
ployed the Poincaré metric. Usually, the optimization prob-
lem is formulated so that the representation of a node in a
hierarchy should be closer to the representation of its chil-
dren and other descendants than to any other node in the
hierarchy. Based on (Gromov, 1987), the Poincaré metric is
a sensible dissimilarity function as it satisfies all the proper-
ties of a distance metric and is thus natural to interpret.

In this paper, we explain why the squared Lorentzian dis-
tance is a better choice than the Poincaré metric. One ana-
lytic argument relies on Jacobi Field (Lee, 2006) properties
of Riemannian centers of mass (also called “Karcher means”
although Karcher (2014) strongly discourages the use of
that term). One other interesting property is that its centroid
can be written in closed form.
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Contributions: The main contributions of this paper are
the study of the Lorentzian distance. We show that interpret-
ing the squared Lorentzian distances with a set of points is
equivalent to interpreting the distance with their centroid.
We also study the dependence of the centroid with some
hyperparameters, particularly the curvature of the manifold
that has an impact on its Euclidean norm which is used as a
proxy for depth in the hierarchy. This is the key motivation
for our theoretical work characterizing its behavior w.r.t. the
curvature. We relate the Lorentzian distance to other hyper-
bolic distances/geometries and explore its performance on
retrieval and classification problems.

2. Background
In this section, we provide some technical background about
hyperbolic geometry and introduce relevant notation. The
interested reader may refer to (Ratcliffe, 2006).

2.1. Notation and definitions

To simplify the notation, we consider that vectors are row
vectors and �·� is the �2-norm. In the following, we consider
three important spaces.

Poincaré ball: The Poincaré ball Pd is defined as the set of
d-dimensional vectors with Euclidean norm smaller than 1
(i.e. Pd = {x ∈ Rd : �x� < 1}). Its associated distance is
the Poincaré distance metric defined in Eq. (3).

Hyperboloid model: We consider some specific hyper-
boloid models Hd,β ⊆ Rd+1 defined as follows:

Hd,β := {a = (a0, · · · , ad) ∈ Rd+1 : �a�2L = −β, a0 > 0}
(1)

where β > 0 and �a�2L = �a, a�L is the squared Lorentzian
norm of a. The squared Lorentzian norm is derived from the
Lorentzian inner product defined for all a = (a0, · · · , ad) ∈
Hd,β ,b = (b0, · · · , bd) ∈ Hd,β as:

�a,b�L := −a0b0 +

d�

i=1

aibi ≤ −β (2)

It is worth noting that �a,b�L = −β iff a = b. Otherwise,
�a,b�L < −β for all pairs (a,b) ∈ (Hd,β)2. Vectors in
Hd,β are a subset of positive time-like vectors1. The hyper-
boloid Hd,β has constant negative curvature −1/β. More-

over, every vector a ∈ Hd,β satisfies a0 =
�

β +
�d

i=1 a
2
i .

We note Hd := Hd,1 the space obtained when β = 1; it is
called the unit hyperboloid model and is the main hyper-
boloid model considered in the literature.

Model space: Finally, we note Fd ⊆ Rd the output vector

1A vector a that satisfies �a, a�L < 0 is called time-like and it
is called positive iff a0 > 0.

space of our model (e.g. the output representation of some
neural network). We consider that Fd = Rd.

2.2. Optimizing the Poincaré distance metric

Most methods that compare hyperbolic representations
(Nickel & Kiela, 2017; 2018; Ganea et al., 2018; Gulcehre
et al., 2019) consider the Poincaré distance metric defined
for all c ∈ Pd,d ∈ Pd as:

dP(c,d) = cosh−1

�
1 + 2

�c− d�2
(1− �c�2)(1− �d�2)

�
(3)

which satisfies all the properties of a distance metric and
is therefore natural to interpret. Direct optimization in Pd

of problems using the distance formulation in Eq. (3) is
numerically unstable for two main reasons (see for instance
(Nickel & Kiela, 2018) or (Ganea et al., 2018, Section 4)).
First, the denominator depends on the norm of examples, so
optimizing over c and d when either of their norms is close
to 1 leads to numerical instability. Second, elements have
to be re-projected onto the Poincaré ball at each iteration
with a fixed maximum norm. Moreover, Eq. (3) is not
differentiable when c = d (see proof in appendix).

For better numerical stability of their solver, Nickel & Kiela
(2018) propose to use an equivalent formulation of dP in
the unit hyperboloid model. They use the fact that there
exists an invertible mapping h : Hd,β → Pd defined for all
a = (a0, · · · , ad) ∈ Hd,β as:

h(a) :=
1

1 +
�

1 +
�d

i=1 a
2
i

(a1, · · · , ad) ∈ Pd (4)

When β = 1, a ∈ Hd,b ∈ Hd, we have the following
equivalence:

dH(a,b) = dP (h(a), h(b)) = cosh−1 (−�a,b�L) (5)

Nickel & Kiela (2018) show that optimizing the formulation
in Eq. (5) in Hd is more stable numerically.

Duality between spherical and hyperbolic geometries:
One can observe from Eq. (5) that preserving the order
of Poincaré distances is equivalent to preserving the reverse
order of Lorentzian inner products (defined in Eq. (2)) since
the cosh−1 function is monotonically increasing on its do-
main [1, +∞). The relationship between the Poincaré met-
ric and the Lorentzian inner product is actually similar to the
relationship between the geodesic distance cos−1(�p,q�)
and the cosine �p,q� (or the squared Euclidean distance
�p−q�2 = 2− 2�p,q�) when p and q are on a unit hyper-
sphere Sd because of the duality between these geometries
(Ratcliffe, 2006). The hyperboloid Hd,β can be seen as a
half hypersphere of imaginary radius i

√
β. In the same way

as kernel methods that consider inner products in Hilbert
spaces as similarity measures, we consider in this paper the
Lorentzian inner product and its induced distance.
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3. Lorentzian distance learning
We present the (squared) Lorentzian distance function dL
which has been studied in differential geometry but not
used to learn hyperbolic representations to the best of our
knowledge. Nonetheless, it was used in contexts where rep-
resentations are not hyperbolic (Liu et al., 2010; Sun et al.,
2015) (i.e. not constrained to belong to some hyperboloid).
We give the formulation of the Lorentzian centroid when
representations are hyperbolic and show that its Euclidean
norm, which is used as a proxy for depth in the hierarchy,
depends on the curvature −1/β. We show that studying
(squared) Lorentzian distances with a set of points is equiv-
alent to studying the distance with their centroid. Moreover,
we exploit results in (Karcher, 1987) to explain why the
Lorentzian distance is a better choice than the Poincaré
distance. Finally, we discuss optimization details.

3.1. Lorentzian distance and mappings

The squared Lorentzian distance (Ratcliffe, 2006) is defined
for all pair a ∈ Hd,β ,b ∈ Hd,β as:

d2L(a,b) = �a− b�2L = −2β − 2�a,b�L (6)

It satisfies all the axioms of a distance metric except the
triangle inequality.

Mapping: Current hyperbolic machine learning models ex-
ploit dH. They re-project at each iteration their learned rep-
resentations onto the Poincaré ball (Nickel & Kiela, 2017)
or use the exponential map of the unit hyperboloid model
Hd (Nickel & Kiela, 2018; Gulcehre et al., 2019) to directly
optimize on it. Since our approach does not necessarily
consider that β = 1, we consider the invertible mapping
gβ : Fd → Hd,β , called a local parametrization of Hd,β ,
defined for all f = (f1, · · · , fd) ∈ Fd as:

gβ(f) := (
�
�f�2 + β, f1, · · · , fd) ∈ Hd,β (7)

As mentioned in Section 2.1, Fd is the output space of our
model, i.e., Rd in practice. The pair (Hd,β , g−1

β ) where
g−1
β : Hd,β → Fd is called a chart of the manifold Hd,β .

We then compare two examples f1 ∈ Fd and f2 ∈ Fd with
d2L by calculating:

d2L(gβ(f1), gβ(f2)) = −2β − 2�gβ(f1), gβ(f2)�L (8)

= −2
�
β + �f1, f2� −

�
�f1�2 + β

�
�f2�2 + β

�
(9)

Preserved order of Euclidean norms: Although examples
are compared with d2L in the hyperbolic space Hd,β where
all the points have the same Lorentzian norm, it is worth
noting that the order of the Euclidean norms of examples is
preserved along the three spaces Fd, Hd,β and Pd with the
mappings gβ and h. The preservation with gβ is straight-
forward: ∀f1, f2 ∈ Fd, �f1� < �f2� ⇐⇒

�
2�f1�2 + β =

�gβ(f1)� < �gβ(f2)�. The proof of the following theorem
is given in the appendix:

Theorem 3.1 (Order of Euclidean norms). The following
order is preserved for all a ∈ Fd,b ∈ Fd with h◦gβ where
h and gβ are defined in Eq. (4) and Eq. (7), respectively:

�a� < �b� ⇐⇒ �h(gβ(a))� < �h(gβ(b))� (10)

In conclusion, the Euclidean norms of examples can be
compared equivalently in any space. This is particularly
useful if we want to study the Euclidean norm of centroids.

3.2. Centroid properties

The center of mass (here called centroid) is a concept in
statistics motivated in (Fréchet, 1948) to estimate some sta-
tistical dispersion of a set of points (e.g. the variance). It is
the minimizer of an expectation of (squared) distances with
a set of points and was extended to Riemannian manifolds
in (Grove & Karcher, 1973). We now study the centroid
w.r.t. the squared Lorentzian distance. Ideally, we would
like the centroid of node representations to be (close to) the
representation of their lowest common ancestor.

Lemma 3.2 (Center of mass of the Lorentzian inner prod-
uct). The point µ ∈ Hd,β that maximizes the following prob-
lem maxµ∈Hd,β

�n
i=1 νi�xi,µ�L where ∀i,xi ∈ Hd,β ,

∀i, νi ≥ 0,
�

i νi > 0 is unique and formulated as:

µ =
�

β

�n
i=1 νixi

|��n
i=1 νixi�L|

(11)

where |�a�L| =
�
|�a�2L| is the modulus of the imaginary

Lorentzian norm of the positive time-like vector a. The
proof is given in the appendix. The centroid formulation
in Eq. (11) generalizes the centroid formulations given in
(Galperin, 1993; Ratcliffe, 2006) for any number of points
and any value of the constant curvature −1/β.

Theorem 3.3 (Centroid of the squared Lorentzian dis-
tance). The point µ ∈ Hd,β that minimizes the prob-
lem minµ∈Hd,β

�n
i=1 νid

2
L(xi,µ) where ∀i,xi ∈ Hd,β ,

νi ≥ 0,
�

i νi > 0 is given in Eq. (11)

The proof exploits the formulation given in Eq. (6). The
formulation of the centroid µ can be used to perform hard
clustering where a uniform measure over the data in a cluster
is assumed (i.e. ∀i, νi = 1

n or equivalently in this context
∀i, νi = 1). One can see that the centroid of one example is
the example itself. We now study its Euclidean norm.

Theorem 3.4. The Euclidean norm of the centroid of differ-
ent points in Pd decreases as β > 0 decreases.

The proof is given in the appendix. Fig. 1 illustrates the
2-dimensional Poincaré ball representation of the centroid
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(a) Poincaré distance (b) β = 1, Squared Lorentzian dist. (c) β = 0.1, Squared Lorentzian dist.

Figure 1. n = 10 examples are represented in green in a Poincaré ball. Their centroid w.r.t. dH and d2L for different values of
β ∈ {1, 10−1} (and ∀i ∈ {1, · · · , n}, νi = 1

n
) is in magenta and the level sets represent the sum of the distances between the current

point and the 10 examples. Smaller values of β induce smaller Euclidean norms of the centroid.

of a set of 10 different points w.r.t. the Poincaré distance
and the squared Lorentzian distance for different values of
β > 0. One can see that the centroid w.r.t. the Poincaré
metric does not have smaller norm. On the other hand, the
Euclidean norm of the Lorentzian centroid does decrease
as β decreases, it can then be enforced to be smaller by
choosing lower values of β > 0. Centroids w.r.t. other
hyperbolic distances are illustrated in the appendix.

We provide in the following some side remarks that are
useful to understand the behavior of the Lorentzian distance.
Theorem 3.5 (Nearest point). Let B ⊆ Hd,β be a sub-
set of Hd,β , and let µ ∈ Hd,β be the centroid of the set
x1, · · · ,xn ∈ Hd,β w.r.t. the squared Lorentzian distance
(see Theorem 3.3). We have the following relation:

argmin
b∈B

n�

i=1

νid
2
L(xi,b) = argmin

b∈B
d2L(µ,b) (12)

The theorem shows that distances with a set of points can
be compared with only one point which is the centroid. We
will show the interest of this theorem in the last experiment
in Section 4.3.

Moreover, from the Cauchy-Schwarz inequality, as β tends
to 0, the Lorentzian distance in Eq. (9) to f1 tends to 0 for
any vector f2 that can be written f2 = τ f1 with τ ≥ 0.
The distance is greater otherwise. Therefore, the Lorentzian
distance with a set of points tends to be smaller along the ray
that contains elements that can be written as τµ where τ ≥ 0
and µ is their centroid (see illustrations in the appendix).

Curvature adaption: From Jacobi field properties, when
the chosen metric is the Poincaré metric dH on the unit
hyperboloid Hd, the Hessian of dH has the eigenvalue 0
along the radial direction. However, the eigenvalues of
the Hessian are principal curvatures of the level surface.

Since the vector field is more important and to get a “better
curvature adaption” (Karcher, 2014) (i.e. nonzero eigenval-
ues), Karcher (1987) recommends the “modified distance”
(−1 + cosh(dH)) which is equal to 1

2d
2
L on Hd.

Hyperbolic centroids in the literature: To the best of our
knowledge, two other works exploit hyperbolic centroids.
Sala et al. (2018) use a centroid related to the Poincaré
metric but do not have a closed-form solution for it so they
compute it via gradient descent. Gulcehre et al. (2019)
optimize a problem based on the Poincaré metric but exploit
the gyro-centroid (Ungar, 2014) which belongs to another
type of hyperbolic geometry. When the set contains only
2 points, it is the minimizer of the Einstein addition of
the gyrodistances between it and the two points of the set
by using the gyrotriangle inequality. Otherwise, it can be
seen as a point which preserves left gyrotranslation. One
limitation of the gyrocentroid is that it cannot be seen as
a minimizer of an expectation of distances (unlike Fréchet
means) since the Einstein addition is not commutative.

3.3. Optimization and solver

Hyperbolic approaches that optimize the Poincaré distance
on the hyperboloid (Nickel & Kiela, 2018) as defined in
Eq. (5) exploit Riemannian stochastic gradient descent. This
choice of optimizer is motivated by the fact that the domain
of Eq. (5) cannot be considered to be a vector space (e.g.
Rd+1 × Rd+1). Indeed, dH (a,b) is not defined for pairs
a ∈ Rd+1, b ∈ Rd+1 that satisfy �a,b�L > −1 due to the
definition of cosh−1. Therefore, the directional derivative
of dH lacks a suitable vector space structure, and standard
optimizers cannot be used.

On the other hand, the squared Lorentzian distance relies
only on the formulation of the Lorentzian inner product
in Eq. (2) which is well-defined and smooth for any pair
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Figure 2. Training loss obtained by different solvers as a function
of the number of epochs for the ACM dataset.

a ∈ Rd+1, b ∈ Rd+1. We formulate our training loss
functions as taking representations in Fd = Rd that are
mapped to Hd,β via gβ : Fd → Hd,β and compared with
the Lorentzian inner product for which a directional deriva-
tive in vector space exists. Therefore, methods of real analy-
sis apply (see Chapter 3.1.1 of (Absil et al., 2009)), and the
chain rule is used to derive standard optimization techniques
such as SGD. In the case of the unit hyperboloid model, the
geodesic distance dH (i.e. Poincaré) and the vector space
distance dL (i.e. Lorentzian) are increasing functions of
each other due to the monotonicity of cosh−1. Therefore,
by trying to decrease the Lorentzian distance in vector space,
the standard SGD also decreases the geodesic distance.

It is worth mentioning that due to the formulation of gβ ,
the parameter space is not Euclidean and has a Riemannian
structure. The direction in parameter space which gives
the largest change in the objective per unit of change is pa-
rameterized by the inverse of the Fisher information matrix
and called natural gradient (NG) (Amari, 1998). We have
tried different optimizers such as the standard SGD with and
without momentum, and Riemannian metric methods that
approximate the NG (Ollivier, 2015). We experimentally
observed that the standard SGD with momentum provides
a good tradeoff in terms on running time and retrieval eval-
uation metrics. Although its convergence is slightly worse
than NG approximation methods, it is much simpler to use
since it does not require storing gradient matrices and re-
turns better retrieval performance. Momentum methods are
known to account for the curvature directions of the parame-
ter space. The convergence comparison of the SGD and NG
approximations for the ACM dataset is illustrated in Fig. 2.
A detailed comparison of standard SGD and NG optimizers
is provided in the appendix. In the following, we only use
the standard SGD with momentum.

4. Experiments
We evaluate the Lorentzian distance in three different tasks.
The first two experiments consider the same evaluation pro-
tocol as the baselines and therefore do not exploit the formu-
lation of the center of mass which does not exist in closed
form for the Poincaré metric. The first experiment considers
similarity constraints based on subsumption in hierarchies.
The second experiment performs binary classification to
determine whether or not a test node belongs to a specific
subtree of the hierarchy. The final experiment extracts a
category hierarchy from a dataset where the taxonomy is
partially provided.

4.1. Representation of hierarchies

The goal of the first experiment is to learn the hyperbolic
representation of a hierarchy. To this end, we consider the
same evaluation protocol as (Nickel & Kiela, 2018) and the
same datasets. Each dataset can be seen as a directed acyclic
graph (DAG) where a parent node links to its children and
descendants in the tree to create a set of edges D. More ex-
actly, Nickel & Kiela (2017) consider subsumption relations
in a hierarchy (e.g. WordNet nouns). They consider the set
D = {(u, v)} such that each node u is an ancestor of v in
the tree. For each node u, a set of negative nodes N (u) is
created: each example in N (u) is not a descendant of u in
the tree. Their problem is then formulated as learning the
representations {fi}ni=1 that minimize:

LD = −
�

(u,v)∈D
log

e−d(fu,fv)

�
v�∈N (u)∪{v} e

−d(fu,fv� )
(13)

where d is the chosen distance function. Eq. (13) tries to
get similar examples closer to each other than dissimilar
ones. Nickel & Kiela (2017) and Nickel & Kiela (2018) op-
timize the Poincaré metric with different solvers. We replace
d(fu, fv) by d2L(gβ(fu), gβ(fv)) as defined in Eq. (9).

As in (Nickel & Kiela, 2018), the quality of the learned
embeddings is measured with the following metrics: the
mean rank (MR), the mean average precision (MAP) and
the Spearman rank-order correlation ρ (SROC) between
the Euclidean norms of the learned embeddings and the
normalized ranks of nodes. Following (Nickel & Kiela,
2018), the normalized rank of a node u is formulated:

rank(u) =
sp(u)

sp(u) + lp(u)
∈ [0, 1] (14)

where lp(u) is the longest path between u and one of its
descendant leaves; sp(u) is the shortest path from the root
of the hierarchy to u. A leaf in the hierarchy tree then has
a normalized rank equal to 1, and nodes closer to the root
have smaller normalized rank. ρ is measured as the SROC
between the list of Euclidean norms of embeddings and their
normalized rank.
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Table 1. Evaluation of Taxonomy embeddings. MR: Mean Rank (lower is better). MAP: Mean Average Precision (higher is better). ρ:
Spearman’s rank-order correlation (higher is better).

Method dP in Pd dP in Hd Ours Ours Ours Ours
optimizer proposed in optimizer proposed in β = 0.01 β = 0.1 β = 1 β = 0.01
(Nickel & Kiela, 2017) (Nickel & Kiela, 2018) λ = 0 λ = 0 λ = 0 λ = 0.01

MR 4.02 2.95 1.46 1.59 1.72 1.47
WordNet Nouns MAP 86.5 92.8 94.0 93.5 91.5 94.7

ρ 58.5 59.5 40.2 45.2 43.1 71.1

MR 1.35 1.23 1.11 1.14 1.23 1.13
WordNet Verbs MAP 91.2 93.5 94.6 93.7 91.9 94.0

ρ 55.1 56.6 36.8 38.7 37.2 73.0

MR 1.23 1.17 1.06 1.06 1.09 1.06
EuroVoc MAP 94.4 96.5 96.5 96.0 95.0 96.1

ρ 61.4 67.5 41.8 44.2 45.6 61.7

MR 1.71 1.63 1.03 1.06 1.16 1.04
ACM MAP 94.8 97.0 98.8 96.9 94.1 98.1

ρ 62.9 65.9 53.9 55.9 46.7 66.4

MR 12.8 12.4 1.31 1.30 1.40 1.33
MeSH MAP 79.4 79.9 90.1 90.5 85.5 90.3

ρ 74.9 76.3 46.1 47.2 41.5 78.7

Our optimization problems learns representations {fi ∈
Fd}ni=1 that minimize the following problem:

LD + λ
�

{(u,v):rank(u)<rank(v)}
max(�fu�2 −�fv�2, 0) (15)

where λ ≥ 0 is a regularization parameter. The second term
tries to satisfy the order of the embedding norms to match
the normalized ranks. Using Theorem 3.1, we optimize
Euclidean norms in Fd. This problem tries to minimize the
distances between similar examples to preserve orders of
distances so that ancestors are closer to their descendants
than to unrelated nodes. This indirectly enforces an example
similar to a set of examples to be close to their centroids.

Datasets: We consider the following datasets: (1) 2012
ACM Computing Classification System: is the classification
system for the computing field used by ACM journal. (2)
EuroVoc: is a thesaurus maintained by the European Union.
(3) Medical Subject Headings (MeSH): (Rogers, 1963) is
a medical thesaurus provided by the U.S. National Library
of Medicine. (4) Wordnet: (Miller, 1998) is a large lexical
database. As in (Nickel & Kiela, 2018), we consider the
noun and verb hierarchy of WordNet. More details about
these datasets can be found in (Nickel & Kiela, 2018).

Implementation details: Following (Nickel & Kiela,
2017)2, we implemented our method in Pytorch 0.3.1. We
use the standard SGD optimizer with a learning rate of 0.1
and momentum of 0.9. For the largest datasets Wordnet
Nouns and MeSH, we stop training after 1500 epochs. We

2We use the source code available at https://github.
com/facebookresearch/poincare-embeddings

stop training at 3000 epochs for the other datasets. The
mini-batch size is 50, and the number of sampled negatives
per example is 50. The weights of the embeddings are
initialized from the continuous uniform distribution in the
interval [−10−4, 10−4]. The dimensionality of our embed-
dings is 10. To sample {(u, v) : rank(u) < rank(v)} in a
mini-batch, we randomly sample η examples from the set of
positive and negative examples that are sampled for LD, we
then select 5% of the possible ordered pairs. η = 150 for
all the datasets, except for WordNet nouns where η = 50
and MeSH where η = 100 due to their large size.

Results: We compare in Table 1 the Poincaré distance met-
ric as optimized in (Nickel & Kiela, 2017; 2018) with our
method for different values of β and λ (indicated in the
table). Here we separately analyze the case where λ = 0,
which corresponds to using the same constraints as those
reported in (Nickel & Kiela, 2018), and where λ > 0.

- Case where λ = 0: Our approach obtains better Mean
Rank and Mean Average Precision scores than (Nickel &
Kiela, 2018) for small values of β when we use the same
constraints. The fact that the retrieval performance of our ap-
proach changes with different values of β ∈ {0.01, 0.1, 1}
shows that the curvature of the space has an impact on
the distances between examples and on the behavior of the
model. As explained in Section 3.2, the squared Lorentzian
distance tends to behave more radially (i.e. the distance
tends to decrease along the ray that can be written τµ where
τ ≥ 0 and µ is the centroid) as β > 0 decreases. Children
then tend to have larger Euclidean norm than their parents
while being close w.r.t. the Lorentzian distance. We eval-
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Table 2. Test F1 classification scores for four different subtrees of WordNet noun tree.
Dataset animal.n.01 group.n.01 worker.n.01 mammal.n.01

(Ganea et al., 2018) 99.26± 0.59% 91.91± 3.07% 66.83± 11.83% 91.37± 6.09%
Euclidean dist 99.36± 0.18% 91.38± 1.19% 47.29± 3.93% 77.76± 5.08%
log0 + Eucl 98.27± 0.70% 91.41± 0.18% 36.66± 2.74% 56.11± 2.21%
Ours (β = λ = 0.01) 99.57± 0.24% 99.75± 0.11% 94.50± 1.21% 96.65± 1.18%
Ours (β = 0.01, λ = 0) 99.77± 0.17% 99.86± 0.03% 96.32± 1.05% 97.73± 0.86%

uate in the appendix the percentage of nodes that have a
Euclidean norm greater than their parent in the tree. More
than 90% of pairs (parent,child) satisfy the desired order of
Euclidean norms. The percentage increases with smaller
values of β, this illustrates our point on the impact on the
Euclidean norm of the center of mass.

On the other hand, our approach obtains worse performance
for the ρ metric which evaluates how the order of the Eu-
clidean norms is correlated with their normalized rank/depth
in the hierarchy tree. This result is expected due to the for-
mulation of the constraints of LD that considers only local
similarity orders between pairs of examples. The loss LD
does not take into account the global structure of the tree;
it only considers whether pairs of concepts subsume each
other or not. The worse ρ performance of the Lorentzian
distance dL could be due to the fact that dL does not take
into account global structure of the hierarchy tree but does
tend to preserve local structure (as shown in Table 3).

- Case where λ > 0: As a consequence of the worse ρ per-
formance, we evaluate the performance of our model when
including normalized rank information during training. As
can be seen in Table 1, this improves the ρ performance
and outperforms the baselines (Nickel & Kiela, 2017; 2018)
for all the evaluation metrics on some datasets. The Mean
Rank and Mean Average Precision performances remain
comparable with the case where λ = 0. Global rank infor-
mation can then be exploited during training without having
a significant impact on retrieval performance. Increasing λ
even more can improve ρ.

In conclusion, we have shown that the Lorentzian distance
outperforms the standard Poincaré distance for retrieval (i.e.
mean rank and MAP). In particular, retrieval performance
can be improved by tuning the hyperparameter β.

4.2. Binary classification

Another task of interest for hyperbolic representations is
to determine whether a given node belongs to a specific
subtree of the hierarchy or not. We follow the same binary
classification protocol as (Ganea et al., 2018) on the same
datasets. We describe their protocol below.

(Ganea et al., 2018) extract some pre-trained hyperbolic
embeddings of the WordNet nouns hierarchy, those repre-
sentations are learned with the Poincaré metric. They then
consider four subtrees whose roots are the following synsets:
animal.n.01, group.n.01, worker.n.01 and mammal.n.01. For
each subtree, they consider that every node that belongs to
it is positive and all the other nodes of Wordnet nouns are
negative. They then select 80% of the positive nodes for
training, the rest for test. They select the same percentage of
negative nodes for training and test. At test time, they eval-
uate the F1 score of the binary classification performance.
They do it for 3 different training/test splits. We refer to
(Ganea et al., 2018) for details on the baselines.

Our goal is to evaluate the relevance of the Lorentzian dis-
tance to represent hierarchical datasets. We then use the
embeddings trained with our approach (with β = 0.01 and
different values of λ) and classify a test node by assigning
it to the category of the nearest training example w.r.t. the
Lorentzian distance (with β = 1). The test performance
of our approach is reported in Table 2. It outperforms the
classification performance of the baselines which are based
on Poincaré or Euclidean distance. This shows that our
embeddings can also be used to perform classification.

4.3. Automatic hierarchy extraction

The previous experiments compare the performances of the
Lorentzian distance and the standard Poincaré distance but
do not exploit the closed form expression of the center of
mass since we use the same evaluation protocols as the
baselines (i.e. we use the same pairwise constraints). We
now exploit the formulation of our centroids to efficiently
extract the category hierarchy of a dataset whose taxonomy
is partially provided. In particular, we test our approach on
the CIFAR-100 (Krizhevsky & Hinton, 2009) dataset which
contains 100 classes/categories containing 600 images each.
The 100 classes are grouped into 20 superclasses3 (e.g. the
classes apples, mushrooms, oranges, pears, sweet peppers
belong to the superclass fruits and vegetables). We con-
sider the hierarchy formed by these superclasses to learn
hyberbolic representations with a neural network.

3The detailed class hierarchy of CIFAR-100 is available at
https://www.cs.toronto.edu/˜kriz/cifar.html
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Figure 3. Taxonomy extracted for CIFAR-100 by optimizing Eq. (18) with the Lorentzian distance (left) and Euclidean distance (right)

Let {Cc}kc=1 be the set of categories (with k = 100) and
{Aa}κa=1 be the set of superclasses (with κ = 20) of the
dataset. We formulate the posterior probability:

p(Cc|xi) =
exp(−d(xi,µCc

))
�k

m=1 exp(−d(xi,µCm
))

(16)

p(Aa|xi) =
exp(−d(xi,µAa

))�κ
e=1 exp(−d(xi,µAe

))
(17)

where d is the chosen distance. Our goal is to learn the
representations xi and µ that minimize the following loss:

−
�

xi∈Cc

log(p(Cc|xi))− α
�

xi∈Aa

log(p(Aa|xi)) (18)

where α ≥ 0 is a regularization parameter. Eq. (18) tries to
group samples which belongs to the same (super)-class into
a single cluster. It corresponds to the supervised clustering
task (Law et al., 2016; 2019). Following works on clustering,
the optimal values of the different µ are the centers of mass
of the elements belonging to the respective (super-)classes.
If the chosen metric is the squared Lorentzian distance, the
optimal value of µCc

is:

µCc
=

�
β

�n
i=1 νixi

|��n
i=1 νixi�L|

s.t. νi = 1Cc
(xi) (19)

where 1 is the indicator function and n = 600 is the size of
the mini-batch. We trained a convolutional neural network
ϕ so that its output of the i-th image is fi ∈ Fd and xi =
gβ(fi) (see details in the appendix). One advantage of our
loss function is that its complexity is linear in the number of
examples and linear in the number of (super-)classes. The
algorithm is then more efficient than pairwise constraint
losses such as Eq. (13) where the cardinality of the negative
nodes N (u) is so large that it has to be subsampled (e.g.
with the sampling strategy in (Jean et al., 2015)).

From Theorem 3.5, each category can be represented by
a single centroid. We then trained a neural network with

output dimensionality d = 10 on the whole dataset, and
extracted the super-class centroids on which we applied
hierarchical agglomerative clustering based on complete-
linkage clustering (Defays, 1977). Fig. 3 illustrates the
extracted taxonomies when the chosen distance d is the
squared Lorentzian distance (left) or the squared Euclidean
distance (right). The hierarchical clusters extracted with
hyperbolic representations are more natural. For instance,
insects are closer to flowers with the Lorentzian distance.
This is explained by the fact that bees (known for their role
in pollination) are in the insects superclass. Trees are also
closer to outdoor scenes and things with the Lorentzian
distance. The reptile superclass contains aquatic animals
(e.g. turtles and crocodiles), which is why it is close to fish
and aquatic mammals.

5. Conclusion
In this paper, we proposed a distance learning approach
based on the Lorentzian distance to represent hierarchically-
structured datasets. Unlike most of the literature that con-
siders the unit hyperboloid model, we show that the perfor-
mance of the learned model can be improved by decreasing
the curvature of the chosen hyperboloid model. We give
a formulation of the centroid w.r.t. the squared Lorentzian
distance as a function of the curvature, and we show that
the Euclidean norm of its projection in the Poincaré ball
decreases as the curvature decreases. Hierarchy constraints
are generally formulated such that high-level nodes are sim-
ilar to all their descendants and thus their representation
should be close to the centroid of the descendants. Decreas-
ing the curvature implicitly enforces high-level nodes to
have smaller Euclidean norm than their descendants and is
therefore is more appropriate for learning representations of
hierarchically-structured datasets.
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10(3):215–310, 1948.

GA Galperin. A concept of the mass center of a system of
material points in the constant curvature spaces. Commu-
nications in Mathematical Physics, 154(1):63–84, 1993.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hof-
mann. Hyperbolic neural networks. Advances in neural
information processing systems, 2018.

Mikhael Gromov. Hyperbolic groups. In Essays in group
theory, pp. 75–263. Springer, 1987.

Karsten Grove and Hermann Karcher. How to conjugatec
1-close group actions. Mathematische Zeitschrift, 132(1):
11–20, 1973.

Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali
Razavi, Razvan Pascanu, Karl Moritz Hermann, Peter
Battaglia, Victor Bapst, David Raposo, Adam Santoro,
and Nando de Freitas. Hyperbolic attention networks. In
International Conference on Learning Representations,
2019.
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