
Batch Policy Learning under Constraints

A. Equivalence between Regularization and Constraint Satisfaction
A.1. Formulating Different Regularized Policy Learning Problems as Constrained Policy Learning

In this section, we provide connections between regularized policy learning and our constrained formulation (OPT).
Although the main paper focuses on batch policy learning, here we are agnostic between online and batch learning settings.

Entropy regularized RL. The standard reinforcement learning objective, either in online or batch setting, is to
find a policy π∗std that minimizes the long-term cost (equivalent to maximizing the accumuted rewards): π∗std =
arg minπ

∑
t E(xt,at)∼π[c(xt, at)] = arg minπ E(x,a)∼µπ [c(x, a)]. Maximum entropy reinforcement learning (Haarnoja

et al., 2017) augments the cost with an entropy term, such that the optimal policy maximizes its entropy at each visited
state: π∗MaxEnt = arg minπ E(x,a)∼µπ [c(x, a)] − λH(π(·|x)). As discuseed by (Haarnoja et al., 2017), the goal is for the
agent to maximize the entropy of the entire trajectory, and not greedily maximizing entropy at the current time step (i.e.,
Boltzmann exploration). Maximum entropy policy learning was first proposed by (Ziebart et al., 2008; Ziebart, 2010) in the
context of learning from expert demonstrations. Entropy regulazed RL/IL is equivalent to our problem (OPT) by simply set
C(π) = E(xt,at)∼π[c(xt, at)] (standard RL objective), and g(x, a) = π(a|x) log π(a|x), thus G(π) = −H(π) ≤ τ

Smooth imitation learning (& Regularized imitation learning). This is a constrained imitation learning problem studied
by (Le et al., 2016): learning to mimic smooth behavior in continuous space from human desmonstrations. The data collected
from human demonstrations is considered to be fixed and given a priori, thus the imitation learning task is also a batch
policy learning problem. The proposed approach from (Le et al., 2016) is to view policy learning as a function regularization
problem: policy π = (f, g) is a combination of functions f and h, where f belongs to some expressive function class F
(e.g., decision trees, neural networks) and h ∈ H with certifiable smoothness property (e.g., linear models). Policy learning
is the solution to the functional regularization problem π = arg minf,g Ex∼µπ ‖f(x)− πE(x)‖ + λ ‖h(x)− πE(x)‖,
where πE is the expert policy. This constrained imitation learning setting is equivalent to our problem (OPT) as follows:
C(π) = C((f, h)) = Ex∼µπ ‖f(x)− πE(x)‖ and G(π) = G((f, h)) = minh′∈H ‖h′(x)− πE(x)‖ ≤ τ

Regularizing RL with expert demonstrations / Learning from imperfect demonstrations. Efficient exploration in RL
is a well-known challenge. Expert demonstrations provide a way around online exploration to reduce the sample complexity
for learning. However, the label budget for expert demonstrations may be limited, resulting in a sparse coverage of the state
space compared to what the online RL agent can explore (Hester et al., 2018). Additionally, expert demonstrations may be
imperfect (Oh et al., 2018). Some recent work proposed to regularize standard RL objective with some deviation measure
between the learning policy and (sparse) expert data (Hester et al., 2018; Oh et al., 2018; Henaff et al., 2019).

For clarity we focus on the regularized RL objective for Q-learning in (Hester et al., 2018), which is defined as J(π) =
JDQ(Q)+λ1Jn(Q)+λ2JE(Q)+λ3JL2(Q), where JDQ(Q) is the standard deep Q-learning loss, Jn(Q) is the n-step return
loss, JE(Q) is the imitation learning loss defined as JE(Q) = maxa∈A [Q(x, a) + `(aE , a)−Q(x, aE)], and JL2(Q) is an
L2 regularization loss applied to the Q-network to prevent overfitting to a small expert dataset. The regularization parameters
λ’s are obtained by hyperparameter tuning. This approach provides a bridge between RL and IL, whose objective functions
are fundamentally different (see AggreVate by (Ross & Bagnell, 2014) for an alternative approach).

We can cast this problem into (OPT) as: C(π) = CDQ(Q) + λ3CL2(Q) (standard RL objective), and two constraints:
g1(π) = Ex∼µπ [maxa∈AQ(x, a) + `(aE , a) − Q(x, aE)], and g2(x, a) = Ex∼µπ [ct + γct+1 + . . . + γn−1ct+n−1 +
min′a γ

nQ(xt+n, a
′)−Q(xt, a)]. Here g1 captures the loss w.r.t. expert demonstrations and g2 reflects the n-step return

constraint.

More generally, one can define the imitation learning constraint as G(π) = Ex∼µπ`(π(x), πE(x)) for an appropriate
divergence definition between π(x) and πE(x) (defined at states where expert demonstrations are available).

Conservative policy improvement. Many policy search algorithms perform small policy update steps, requiring the new
policy π to stay within a neighborhood of the most recent policy iterate πk to ensure learning stability (Levine & Abbeel,
2014; Schulman et al., 2015; Montgomery & Levine, 2016; Achiam et al., 2017). This simply corresponds to the definition
of G(π) = distance(π, πk) ≤ τ , where distance is typically KL-divergence or total variation distance between the
distribution induced by π and πk. For KL-divergence, the single timestep cost g(x, a) = −π(a|x) log(πk(a|x)

π(a|x))

Batch Policy Learning under Constraints

A.2. Equivalence of Regularization and Constraint Viewpoint - Proof of Proposition 2.1

Regularization =⇒ Constraint: Let λ > 0 and π∗ be optimal policy in Regularization. Set τ = G(π∗).
Suppose that π∗ is not optimal in Constraint. Then ∃π ∈ Π such that G(π) ≤ τ and C(π) < C(π∗). We then have

C(π) + λ>G(π) < C(π∗) + λ>τ = C(π∗) + λ>G(π∗)

which contradicts the optimality of π∗ for Regularization problem. Thus π∗ is also the optimal solution of the
Constraint problem.

Constraint =⇒ Regularization: Given τ and let π∗ be the corresponding optimal solution of the Constraint
problem. The Lagrangian of Constraint is given by L(π, λ) = C(π) + λ>G(π), λ ≥ 0. We then have π∗ =
arg min
π∈Π

max
λ≥0

L(π, λ). Let

λ∗ = arg max
λ≥0

min
π∈Π

L(π, λ)

Slater’s condition implies strong duality. By strong duality and the strong max-min property (Boyd & Vandenberghe, 2004),
we can exchange the order of maximization and minimization. Thus π∗ is the optimal solution of

min
π∈Π

C(π) + (λ∗)>(G(π)− τ)

Removing the constaint (λ∗)>τ , we have that π∗ is the optimal solution of the Regularization problem with λ = λ∗.
And since π∗ 6= arg min

π∈Π
C(π), we must have λ∗ ≥ 0.

Batch Policy Learning under Constraints

B. Convergence Proofs
B.1. Convergence of Meta-algorithm - Proof of Proposition 3.1

Let us evaluate the empirical primal-dual gap of the Lagrangian after T iterations:

max
λ

L(π̂T , λ) = max
λ

1

T

∑
t

L(πt, λ) (1)

≤ 1

T

∑
t

L(πt, λt) +
o(T)

T
(2)

≤ 1

T

∑
t

L(π, λt) +
o(T)

T
∀π ∈ Π (3)

= L(π, λ̂T) +
o(T)

T
∀π (4)

Equations (1) and (4) are due to the definition of π̂T and λ̂T and linearity of L(π, λ) wrt λ and the distribution over policies
in Π. Equation (2) is due to the no-regret property of Online-algorithm. Equation (3) is true since πt is best response
wrt λt. Since equation (4) holds for all π, we can conclude that for T sufficiently large such that o(T)

T ≤ ω, we have
maxλ L(π̂T , λ) ≤ minπ L(π, λ̂T) + ω , which will terminate the algorithm.

Note that we always have maxλ L(π̂T , λ) ≥ L(π̂T , λ̂T) ≥ minπ L(π, λ̂T). Algorithm 1’s convergence rate depends on the
regret bound of the Online-algorithm procedure. Multiple algorithms exist with regret scaling as Ω(

√
T) (e.g., online

gradient descent with regularizer, variants of online mirror descent). In that case, the algorithm will terminate after O(1
ω2)

iterations.

B.2. Empirical Convergence Analysis of Main Algorithm - Proof of Theorem 4.1

By choosing normalized exponentiated gradient as the online learning subroutine, we have the following regret bound after
T iterations of the main algorithm 2 (chapter 2 of (Shalev-Shwartz et al., 2012)) for any λ ∈ Rm+1

+ , ‖λ‖1 = B:

1

T

T∑
t=1

L̂(πt, λ) ≤ 1

T

T∑
t=1

L̂(πt, λt) +

B log(m+1)
η + ηG2BT

T
(5)

Denote ωT =
B log(m+1)

η +ηG2BT

T to simplify notations. By the linearity of L̂(π, λ) in both π and λ, we have for any λ that

L̂(π̂T , λ)
linearity

=
1

T

T∑
t=1

L̂(πt, λ)
eqn (5)

≤ 1

T

T∑
t=1

L̂(πt, λt) + ωT
best response πt
≤ 1

T

T∑
t=1

L̂(π̂T , λt) + ωT
linearity

= L̂(π̂T , λ̂T) + ωT

Since this is true for any λ, maxλ L̂(π̂T , λ) ≤ L̂(π̂T , λ̂T) + ωT .

On the other hand, for any policy π, we also have

L̂(π, λ̂T)
linearity

=
1

T

T∑
t=1

L̂(π, λt)
best response πt
≥ 1

T

T∑
t=1

L̂(πt, λt)
eqn (5)

≥ 1

T

T∑
t=1

L̂(πt, λ̂T)− ωT
linearity

= L̂(π̂T , λ̂T)− ωT

Thus minπ L̂(π, λ̂T) ≥ L̂(π̂T , λ̂T)− ωT , leading to

max
λ

L̂(π̂T , λ)−min
π
L̂(π, λ̂T) ≤ L̂(π̂T , λ̂T) + ωT − (L̂(π̂T , λ̂T)− ωT) = 2ωT

After T iterations of the main algorithm 2, therefore, the empirical primal-dual gap is bounded by

max
λ

L̂(π̂T , λ)−min
π
L̂(π, λ̂T) ≤

2B log(m+1)
η + 2ηG2BT

T
In particular, if we want the gap to fall below a desired threshold ω, setting the online learning rate η = ω

4G2B
will ensure

that the algorithm converges after 16B2G2 log(m+1)
ω2 iterations.

Batch Policy Learning under Constraints

C. End-to-end Generalization Analysis of Main Algorithm
In this section, we prove the following full statement of theorem 4.4 of the main paper. Note that to lessen notation, we
define V = C +BG to be the bound of value functions under considerations in algorithm 2.
Theorem C.1 (Generalization bound of algorithm 2). Let π∗ be the optimal policy to problem OPT. Let K be the number
of iterations of FQE and FQI. Let π̂ be the policy returned by our main algorithm 2, with termination threshold ω. For any
ε > 0, δ ∈ (0, 1), when n ≥ 24·214·V 4

ε2

(
log K(m+1)

δ + dimF log 320V 2

ε2 + log(14e(dimF + 1))
)
, we have with probability

at least 1− δ:

C(π̂) ≤ C(π∗) + ω +
(4 +B)γ

(1− γ)3

(√
Cρε+ 2γK/2V

)
and

G(π̂) ≤ τ + 2
V + ω

B
+

γ1/2

(1− γ)3/2

(√
Cρε+

2γK/2V

(1− γ)1/2

)
Let π̂ = 1

T

∑
t πt be the returned policy T iterations, with corresponding dual variable λ̂ = 1

T

∑
t λt.

By the stopping condition, the empirical duality gap is less than some threshold ω, i.e., max
λ∈Rm+1

+ ,‖λ‖1=B
L̂(π̂, λ) −

min
π∈Π

L̂(π, λ̂) ≤ ω where L̂(π, λ) = Ĉ(π) + λ>(Ĝ(π) − τ). We first show that the returned policy approximately

satisfies the constraints. The proof of theorem C.1 will make use of the following empirical constraint satisfaction bound:
Lemma C.2 (Empirical constraint satisfactions). Assume that the constraints Ĝ(π) ≤ τ are feasible. Then the returned
policy π̂ approximately satisfies all constraints

max
i=1:m+1

(ĝi(π̂)− τi) ≤ 2
C + ω

B

Proof. We consider max
i=1:m+1

(ĝi(π̂)− τi) > 0 (otherwise the lemma statement is trivially true). The termination condition

implies that L̂(π̂, λ̂)− max
λ∈Rm+1

+ ,‖λ‖1=B
L̂(π̂, λ) ≥ −ω

=⇒ λ̂>(Ĝ(π̂)− τ̂) ≥ max
λ∈Rm+1

+ ,‖λ‖1=B
λ>(Ĝ(π̂)− τ̂)− ω (6)

Relaxing the RHS of equation (6) by setting λ[j] = B for j = arg max
i=1:m+1

[ĝi(π̂)− τi] and λ[i] = 0 ∀i 6= j yields:

B max
i=1:m+1

[ĝi(π̂)− τi]− ω ≤ λ̂>(Ĝ(π̂)− τ) (7)

Given π such that Ĝ(π) ≤ τ , also by the termination condition:

L̂(π̂, λ̂)− L̂(π, λ̂) ≤ max
λ∈Rm+1

+ ,‖λ‖1=B
L̂(π̂, λ)−min

π∈Π
L̂(π, λ̂) ≤ ω

Thus implies

L̂(π̂, λ̂) ≤ L̂(π, λ̂) + ω = Ĉ(π) + λ̂>(Ĝ(π)− τ) ≤ Ĉ(π) + ω (8)
combining what we have from equation (8) and (7):

B max
i=1:m+1

[ĝi(π̂)− τ̂i]− ω ≤ λ̂>(Ĝ(π̂)− τ̂) = L̂(π̂, λ̂)− Ĉ(π̂) ≤ Ĉ(π) + ω − Ĉ(π̂)

Rearranging and bounding Ĉ(π) ≤ C and Ĉ(π̂) ≤ −C finishes the proof of the lemma.

We now return to the proof of theorem C.1, our task is to lift empirical error to generalization bound for main objective and
constraints.

Denote by εFQE the (generalization) error introduced by the Fitted Q Evaluation procedure (algorithm 3) and εFQI the
(generalization) error introduced by the Fitted Q Iteration procedure (algorithm 4). For now we keep εFQE and εFQI
unspecified (to be specified shortly). That is, for each t = 1, 2, . . . , T , we have with probability at least 1− δ:

C(πt) + λ>t (G(πt)− τ) ≤ C(π∗) + λ>t (G(π∗)− τ) + εFQI

Batch Policy Learning under Constraints

Since π∗ satisfies the constraints, i.e., G(π∗)− τ ≤ 0 componentwise, and λt ≥ 0, we also have with probability 1− δ
L(πt, λt) = C(πt) + λ>t (G(πt)− τ) ≤ C(π∗) + εFQI (9)

Similarly, with probability 1− δ, all of the following inequalities are true
Ĉ(πt) + εFQE ≥ C(πt) ≥ Ĉ(πt)− εFQE (10)

Ĝ(πt) + εFQE1 ≥ G(πt) ≥ Ĝ(πt)− εFQE1 (row wise for all m constraints) (11)
Thus with probability at least 1− δ

L(πt, λt) = C(πt) + λ>t (G(πt)− τ) ≥ Ĉ(πt) + λ>t (Ĝ(πt)− τ)− εFQE(1 + λ>t 1)

≥ Ĉ(πt) + λ>t (Ĝ(πt)− τ)− εFQE(1 +B)

= L̂(πt, λt)− εFQE(1 +B) (12)
Recall that the execution of mixture policy π̂ is done by uniformly sampling one policy πt from {π1, . . . , πT }, and rolling-
out with πt. Thus from equations (9) and (12), we have Et∼U [1:T]L̂(πt, λt) ≤ C(π∗) + εFQI + (1 +B)εFQE w.p. 1− δ.
In other words, with probability 1− δ:

1

T

T∑
t=1

L̂(πt, λt) ≤ C(π∗) + εFQI + (1 +B)εFQE

Due to the no-regret property of our online algorithm (EG in this case):

1

T

T∑
t=1

L̂(πt, λt) ≥ max
λ

L̂(π̂, λ)− ω = Ĉ(π̂) + max
λ

λ>(Ĝ(π̂)− τ)− ω

If Ĝ(π̂)− τ ≤ 0 componentwise, choose λ[i] = 0, i = 1, 2, . . . ,m and λ[m+ 1] = B. Otherwise, we can choose λ[j] = B

for j = arg max
i=1:m+1

[ĝi(π̂)− τ [i]] and λ[i] = 0 ∀i 6= j. We can see that max
λ∈Rm+1

+ ,‖λ‖1=B
λ>(Ĝ(π̂)− τ) ≥ 0. Therefore:

Ĉ(π̂)− ω ≤ C(π∗) + εFQI + (1 +B)εFQE with probability at least 1− δ
Combined with the first term from equation (10):

C(π̂)− εFQE − ω ≤ C(π∗) + εFQI + (1 +B)εFQE

or
C(π̂) ≤ C(π∗) + ω + εFQI + (2 +B)εFQE (13)

We now bring in the generalization error results from our standalone analysis of FQI (appendix F) and FQE (appendix E)
into equation (13).

Specifically, when n ≥ 24·214·V 4

ε2

(
log K(m+1)

δ + dimF log 320V 2

ε2 + log(14e(dimF + 1))
)

, when FQI and FQE are run
with K iterations, we have the guarantee that for any ε > 0, with probability at least 1− δ

C(π̂) ≤ C(π∗) + ω +
2γ

(1− γ)3

(√
Cµε+ 2γK/2V

)
︸ ︷︷ ︸

FQI generalization error

+
γ1/2(2 +B)

(1− γ)3/2

(√
Cµε+

γK/2

(1− γ)1/2
2V

)
︸ ︷︷ ︸

(2+B)× FQE generalization error

≤ C(π∗) + ω +
(4 +B)γ

(1− γ)3

(√
Cµε+ 2γK/2V

)
(14)

From lemma C.2, Ĝ(π̂) ≤ τ + 2C+ω
B ≤ τ + 2V+ω

B . From equation (11), for each t=1,2,. . . ,T, we have Ĝ(πt) ≥
G(πt)− εFQE1 with probability 1− δ. Thus

P
(
Ĝ(π̂) ≥ G(π̂)− εFQE1

)
=

T∑
t=1

P(Ĝ(πt) ≥ G(πt)− εFQE1|π̂ = πt)P(π̂ = πt) ≥ T (1− δ) 1

T
= 1− δ

Therefore, we have the following generalization guarantee for the approximate satisfaction of all constraints:

G(π̂) ≤ τ + 2
V + ω

B
+

γ1/2

(1− γ)3/2

(√
Cµε+

γK/2

(1− γ)1/2
2V

)
(15)

Inequalities (14) and (15) complete the proof of theorem C.1 (and theorem 4.4 of the main paper)

Batch Policy Learning under Constraints

D. Preliminaries to Analysis of Fitted Q Evaluation (FQE) and Fitted Q Iteration (FQI)
In this section, we set-up necessary notations and definitions for the theoretical analysis of FQE and FQI. To simplify the
presentation, we will focus exclusively on weighted `2 norm for error analysis.

With the definitions and assumptions presented in this section, we will present the sample complexity guarantee of
Fitted-Q-Evaluation (FQE) in appendix E. The proof for FQI will follow similarly in appendix F.

While it is possible to adapt proofs from related algorithms (Munos & Szepesvári, 2008; Antos et al., 2008b) to analyze FQE
and FQI, in the next two sections we show improved convergence rate from O(n−4) to O(n−2), where n is the number of
samples in data set D.

To be consistent with the notations in the main paper, we use the convention C(π) as the value function that denotes
long-term accumulated cost, instead of using V (π) denoting long-term rewards in the traditional RL literature. Our notation
for Q function is similar to the RL literature - the only difference is that the optimal policy minimizes Q(x, a) instead of
maximizing. We denote the bound on the value function as C (alternatively if the single timestep cost is bounded by c, then
C = c

1−γ). For simplicity, the standalone analysis of FQE and FQI concerns only with the cost objective c. Dealing with
cost c+ λ>g offers no extra difficulty - in that case we simply augment the bound of the value function to V = C +BG.

D.1. Bellman operators

The Bellman optimality operator T : B(X×A;C) 7→ B(X×A;C) as

(TQ)(x, a) = c(x, a) + γ

∫
X

min
a′∈A

Q(x′, a′)p(dx′|x, a) (16)

The optimal value functions are defined as usual by C∗(x) = sup
π
Cπ(x) and Q∗(x, a) = sup

π
Qπ(x, a) ∀x ∈ X, a ∈ A.

For a given policy π, the Bellman evaluation operator Tπ : B(X×A;C) 7→ B(X×A;C) as

(TπQ)(x, a) = c(x, a) + γ

∫
X

Q(x′, π(x′))p(dx′|x, a) (17)

It is well known that TπQπ = Qπ, a fixed point of the Tπ operator.

D.2. Data distribution and weighted `2 norm

Denote the state-action data generating distribution as µ, induced by some data-generating (behavior) policy πD, that is,
(xi, ai) ∼ µ for (xi, ai, x

′
i, ci) ∈ D.

Note that data set D is formed by multiple trajectories generated by πD. For each (xi, ai), we have x′i ∼ p(·|xi, ai)
and ci = c(xi, ai). For any (measurable) function f : X × A 7→ R, define the µ-weighted `2 norm of f as ‖f‖2µ =∫

X×A
f(x, a)2µ(dx, da) =

∫
X×A

f(x, a)2µx(dx)πD(a|dx). Similarly for any other state-action distribution ρ, ‖f‖2ρ =∫
X×A

f(x, a)2ρ(dx, da)

D.3. Inherent Bellman error

FQE and FQI depend on a chosen function class F to approximate Q(x, a). To express how well the Bellman operator Tg
can be approximated by a function in the policy class F, when Tg /∈ F, a notion of distance, known as inherent Bellman
error was first proposed by (Munos, 2003) and used in the analysis of related ADP algorithms (Munos & Szepesvári, 2008;
Munos, 2007; Antos et al., 2008a;b; Lazaric et al., 2010; 2012; Lazaric & Restelli, 2011; Maillard et al., 2010).

Definition D.1 (Inherent Bellman Error). Given a function class F and a chosen distribution ρ, the inherent Bellman error
of F is defined as

dF = d(F,TF) = sup
h∈F

inf
f∈F
‖f − Th‖ρ

where ‖·‖ρ is the ρ−weighted `2 norm and T is the Bellman optimality operator defined in (16)

To analyze FQE, we will form a similar definition for the Bellman evaluation operator

Definition D.2 (Inherent Bellman Evaluation Error). Given a function class F and a policy π, the inherent Bellman

Batch Policy Learning under Constraints

evaluation error of F is defined as
dπF = d(F,TπF) = sup

h∈F
inf
f∈F
‖f − Tπh‖ρπ

where ‖·‖ρπ is the `2 norm weighted by ρπ . ρπ is defined as the state-action distribution induced by policy π, and Tπ is the
Bellman operator defined in (17)

D.4. Concentrability coefficients

Let Pπ denote the operator acting on f : X×A 7→ R such that (Pπf)(x, a) =
∫

X
f(x′, π(x′))p(x′|x, a)dx′. Acting on f

(e.g., approximates Q), Pπ captures the transition dynamics of taking action a and following π thereafters.

The following definition and assumption are standard in the analysis of related approximate dynamic programming algorithms
(Lazaric et al., 2012; Munos & Szepesvári, 2008; Antos et al., 2008a). As approximate value iteration and policy iteration
algorithms perform policy update, the new policy at each round will induce a different stationary state-action distribution.
One way to quantify the distribution shift is the notion of concentrability coefficient of future state-action distribution, a
variant of the notion introduced by (Munos, 2003).

Definition D.3 (Concentrability coefficient of state-action distribution). Given data generating distribution µ ∼ πD, initial
state distribution χ. For m ≥ 0, and an arbitrary sequence of stationary policies {πm}m≥1 let

βµ(m) = sup
π1,...,πm

∥∥∥∥d(χPπ1Pπ2 . . . Pπm)

dµ

∥∥∥∥
∞

(βµ(m) = ∞ if the future state distribution χPπ1Pπ2 . . . Pπm is not absolutely continuous w.r.t. µ, i.e,
χPπ1Pπ2 . . . Pπm(x, a) > 0 for some µ(x, a) = 0)

Assumption 3. βµ = (1− γ)2
∑
m≥1

mγm−1βµ(m) <∞

Combination Lock Example. An example of an MDP that violates Assumption 3 is the “combination lock” example
proposed by (Koenig & Simmons, 1996). In this finite MDP, we have N states X = {1, 2, . . . , N}, and 2 actions: going L
or R. The initial state is x0 = 1. In any state x, action L takes agent back to initial state x0, and action R advances the agent
to the next state x+ 1 in a chain fashion. Suppose that the reward is 0 everywhere except for the very last state N . One can
see that for an MDP such that any behavior policy πD that has a bounded from below probability of taking action L from
any state x, i.e., πD(L|x) ≥ ν > 0, then it takes an exponential number of trajectories to learn or evaluate a policy that
always takes action R. In this setting, we can see that the concentration coefficient βµ can be designed to be arbitrarily large.

D.5. Complexity measure of function class F

Definition D.4 (Random L1 Norm Covers). Let ε > 0, let F be a set of functions X 7→ R, let xn1 = (x1, . . . , xn) be n fixed
points in X. Then a collection of functions Fε = {f1, . . . , fN} is an ε-cover of F on xn1 if

∀f ∈ F,∃f ′ ∈ Fε : | 1
n

n∑
i=1

f(xi)−
1

n

n∑
i=1

f ′(xi)| ≤ ε

The empirical covering number, denote by N1(ε,F, xn1), is the size of the smallest ε-cover on xn1 . Take N1(ε,F, xn1) =∞
if no finite ε-cover exists.

Definition D.5 (Pseudo-Dimension). A real-valued function class F has pseudo-dimension dimF defined as the VC
dimension of the function class induced by the sub-level set of functions of F. In other words, define function class
H = {(x, y) 7→ sign(f(x)− y : f ∈ F}, then

dimF = VC-dimension(H)

Batch Policy Learning under Constraints

E. Generalization Analysis of Fitted Q Evaluation
In this section we prove the following statement for Fitted Q Evaluation (FQE).
Theorem E.1 (Guarantee for FQE - General Case (theorem 4.2 in main paper)). Under Assumption 3, for ε > 0 & δ ∈ (0, 1),
after K iterations of Fitted Q Evaluation (Algorithm 3), for n = O

(
C4

ε2 (log K
δ + dimF log C2

ε2 + log dimF)
)
, we have with

probability 1− δ: ∣∣C(π)− Ĉ(π)
∣∣ ≤ γ1/2

(1− γ)3/2

(√
βµ (2dπF + ε) +

2γK/2C

(1− γ)1/2

)
.

Theorem E.2 (Guarantee for FQE - Bellman Realizable Case). Under Assumptions 3-4, for any ε > 0, δ ∈ (0, 1), after K
iterations of Fitted Q Evaluation (Algorithm 3), when n ≥ 24·214·C4

ε2

(
log K

δ + dimF log 320C2

ε2 + log(14e(dimF + 1))
)
,

we have with probability 1− δ: ∣∣C(π)− Ĉ(π)
∣∣ ≤ γ1/2

(1− γ)3/2

(√
βµε+

2γK/2C

(1− γ)1/2

)
We first focus on theorem E.2, analyzing FQE assuming a sufficiently rich function class F so that the Bellman evaluation
update Tπ is closed wrt F (thus inherent Bellman evaluation error is 0). We call this the Bellman evaluation realizability
assumption. This assumption simplifies the presentation of our bounds and also simplifies the final error analysis of Algo. 2.

After analyzing FQE under this Bellman realizable setting, we will turn to error bound for general, non-realizable setting in
theorem E.1 (also theorem 4.2 in the main paper). The main difference in the non-realizable setting is the appearance of an
extra term dπF our final bound.

E.1. Error bound for single iteration - Bellman realizable case

Assumption 4 (Bellman evaluation realizability). We consider function classes F sufficiently rich so that ∀f,Tπf ∈ F.

We begin with the following result bounding the error for a single iteration of FQE, under “training” distribution µ ∼ πD
Proposition E.3 (Error bound for single iteration). Let the functions in F also be bounded by C, and let dimF denote the
pseudo-dimension of the function class F. We have with probability at least 1− δ:

‖Qk − TπQk−1‖µ < ε

when n ≥ 24·214·C4

ε2

(
log 1

δ + dimF log 320C2

ε2 + log(14e(dimF + 1))
)

Remark E.4. Note from proposition E.3 that the dependence of sample complexity n here on ε is Õ(1
ε2), which is better than

previously known analysis for Fitted Value Iteration (Munos & Szepesvári, 2008) and FittedPolicyQ (continuous version of
Fitted Q Iteration (Antos et al., 2008a)) dependence of Õ(1

ε4). The finite sample analysis of LSTD (Lazaric et al., 2010)
showed an Õ(1

ε2) dependence using linear function approximation. Here we prove similar convergence rate for general
non-linear (bounded) function approximators.

Proof of Proposition E.3. Recall the training target in round k is yi = ci + γQk−1(x′i, π(x′i)) for i = 1, 2, . . . , n, and
Qk ∈ F is the solution to the following regression problem:

Qk = arg min
f∈F

1

n

n∑
i=1

(f(xi, ai)− yi)2

Consider random variables (x, a) ∼ µ and y = c(x, a) + γQk−1(x′, π(x′)) where x′ ∼ p(·|x, a). By this definition,
TπQk−1 is the regression function that minimizes square loss min

h:RX×A 7→R
E|h(x, a) − y|2 out of all functions h (not

necessarily in F). This is due to (TπQk−1)(x̃, ã) = E [y|x = x̃, a = ã] by definition of the Bellman operator. Consider
Qk−1 fixed and we now want to relate the learned function Qk over finite set of n samples with the regression function over
the whole data distribution via uniform deviation bound. We use the following lemma:
Lemma E.5 ((Györfi et al., 2006), theorem 11.4. Original version (Lee et al., 1996), theorem 3). Consider random vector
(X,Y) and n i.i.d samples (Xi, Yi). Let m(x) be the (optimal) regression function under square loss m(x) = E[Y |X = x].
Assume |Y | ≤ B a.s. and B ≤ 1. Let F be a set of function f : Rd 7→ R and let |f(x)| ≤ B. Then for each n ≥ 1

P

{
∃f ∈ F : E|f(X)− Y |2 − E|m(X)− Y |2 − 1

n

n∑
i=1

(
|f(Xi)− Yi|2 − |m(Xi)− Yi|2

)
≥

Batch Policy Learning under Constraints

ε ·
(
α+ β + E|f(X)− Y |2 − E|m(X)− Y |2

)}
≤ 14 sup

xn1

N1

(
βε

20B
,F, xn1

)
exp

(
− ε2(1− ε)αn

214(1 + ε)B4

)
where α, β > 0 and 0 < ε < 1/2

To apply this lemma, first note that since TπQk−1 is the optimal regression function6, we have

Eµ
[
(Qk(x, a)− y)2

]
= Eµ

[
(Qk(x, a)− TπQk−1(x, a) + TπQk−1(x, a)− y)

2
]

= Eµ
[
(Qk(x, a)− TπQk−1(x, a))

2
] + Eµ[(TπQk−1(x, a)− y)

2
]

thus
‖Qk − TπQk−1‖2µ = E

[
(Qk(x, a)− TπQk−1(x, a))2

]
= E

[
(Qk(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
where by definition

E
[
(Qk(x, a)− TπQk−1(x, a))2

]
=

∫
(Qk(x, a)− TπQk−1(x, a))

2
µ(dx, da)

=

∫
(Qk(x, a)− Tπ(x, a))2µx(dx)πD(a|dx)

Next, given a fixed data set D̃k ∼ µ

P
{
‖Qk − TπQk−1‖2µ > ε

}
= P

{
E
[
(Qk(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
> ε

}
≤ P

{
E
[
(Qk(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
− 2 ·

(
1

n

n∑
i=1

(Qk(xi, ai)− yi)2 − 1

n

n∑
i=1

(TπQk−1(xi, ai)− yi)2

)
> ε

}
(18)

= P

{
E
[
(Qk(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
− 1

n

n∑
i=1

[
(Qk(xi, ai)− yi)2 − (TπQk−1(xi, ai)− yi)2

]
>

1

2
(ε+ E

[
(Qk(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
)

}
(19)

≤ P

{
∃f ∈ F : E

[
(f(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
− 1

n

n∑
i=1

[
(f(xi, ai)− yi)2 − (TπQk−1(xi, ai)− yi)2

]
≥ 1

2
(
ε

2
+
ε

2
+ E

[
(f(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
)

}
≤ 14 sup

xn1

N1

(
ε

80C
,F, xn1

)
· exp

(
− nε

24 · 214C4

)
(20)

Equation (18) uses the definition of Qk = arg min
f∈F

1
n

∑n
i=1(f(xi, ai)− yi)2 and the fact that TπQk−1 ∈ F, thus making

the extra term a positive addition. Equation (19) is due to rearranging the terms. Equation (20) is an application of lemma
E.5. We can further bound the empirical covering number by invoking the following lemma due to Haussler (Haussler,
1995):

Lemma E.6 ((Haussler, 1995), Corollary 3). For any set X , any points x1:n ∈ Xn, any class F of functions on X taking

6It is easy to see that if m(x) = E[y|x] is the regression function then for any function f(x), we have
E [(f(x)−m(x))(m(x)− y) = 0]

Batch Policy Learning under Constraints

values in [0, C] with pseudo-dimension dimF <∞, and any ε > 0

N1(ε,F, xn1) ≤ e(dimF + 1)

(
2eC

ε

)dimF

Applying lemma E.6 to equation (20), we have the inequality

P
{
‖Qk − TπQk−1‖2µ > ε

}
≤ 14 · e · (dimF + 1)

(
320C2

ε

)dimF

· exp

(
− nε

24 · 214C4

)
(21)

We thus have that when n ≥ 24·214·C4

ε2

(
log 1

δ + dimF log 320C2

ε2 + log(14e(dimF + 1))
)

:

‖Qk − TπQk−1‖ρ < ε

with probability at least 1− δ. Notice that the dependence of sample complexity n here on ε is Õ(1
ε2), which is better than

previously known analyses for other approximate dynamic programming algorithms such as Fitted Value Iteration (Munos
& Szepesvári, 2008), FittedPolicyQ (Antos et al., 2008b;a) with dependence of O(1

ε4).

E.2. Error bound for single iteration - Bellman non-realizable case

We now give similar error bound for the general case, where Assumption 4 does not hold. Consider the decomposition
‖Qk − TπQk−1‖2µ = E

[
(Qk(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
=

{
E
[
(Qk(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

]
− 2 ·

(
1

n

n∑
i=1

(Qk(xi, ai)− yi)2 − 1

n

n∑
i=1

(TπQk−1(xi, ai)− yi)2

)}

+

{
2 ·

(
1

n

n∑
i=1

(Qk(xi, ai)− yi)2 − 1

n

n∑
i=1

(TπQk−1(xi, ai)− yi)2

)}
= component 1 + component 2

Splitting the probability of error into two separate bounds. We saw from the previous section (equation (21)) that

P(component 1 > ε/2) ≤ 14 · e · (dimF + 1)

(
640C2

ε

)dimF

· exp

(
− nε

48 · 214C4

)
(22)

We no longer have component 2 ≤ 0 since TπQk−1 /∈ F. Let f∗ = arg inf
f∈F

‖f − TπQk−1‖2µ. Since Qk =

arg min
f∈F

1
n

∑n
i=1(f(xi, ai)− yi)2, we can upper-bound component 2 by

component 2 ≤ 2 ·

(
1

n

n∑
i=1

(f∗(xi, ai)− yi)2 − 1

n

n∑
i=1

(TπQk−1(xi, ai)− yi)2

)
We can treat f∗ as a fixed function, unlike random function Qk, and use standard concentration inequalities to bound the
empirical average from the expectation. Let random variable z = ((x, a), y), zi = ((xi, ai), yi), i = 1, . . . , n and let

h(z) = (f∗(x, a)− y)2 − (TπQk−1(x, a)− y)2

We have |h(z)| ≤ 4C2. We will derive a bound for

P

(
1

n

n∑
i=1

h(zi)− Eh(z) >
ε

4
+ Eh(z)

)
using Bernstein inequality(Mohri et al., 2012). First, using the relationship h(z) = (f∗(x, a) + TπQk−1(x, a) −
2y)(f∗(x, a)− TπQk−1(x, a)), the variance of h(z) can be bounded by a constant factor of Eh(z), since

Var(h(z)) ≤ Eh(z)2 ≤ 16C2E
[
(f∗(x, a)− TπQk−1(x, a))2

]
= 16C2

(
E
[
(f∗(x, a)− y)2

]
− E

[
(TπQk−1(x, a)− y)2

])
(23)

= 16C2Eh(z) (24)

Batch Policy Learning under Constraints

Equation (23) stems from TπQk−1 being the optimal regression function. Now we can apply equation (24) and Bernstein
inequality to obtain

P

(
1

n

n∑
i=1

h(zi)− Eh(z) >
ε

4
+ Eh(z)

)
≤ P

(
1

n

n∑
i=1

h(zi)− Eh(z) >
ε

4
+

Var(h(z))

16C2

)
≤ . . .

≤ exp

− n
(
ε
4 + Var

16C2

)2

2Var + 2 4C2

3

(
ε
4 + Var

16C2

)


≤ exp

− n
(
ε
4 + Var

16C2

)2

(
32C2 + 8C2

3

)(
ε
4 + Var

16C2

)
 = exp

−n
(
ε
4 + Var

16C2

)
32C2 + 8C2

3

 ≤ exp

(
− 1

128 + 32
3

· nε
C2

)

Thus

P

(
2 ·

[
1

n

n∑
i=1

h(zi)− 2Eh(z)

]
>
ε

2

)
≤ exp

(
− 3

416
· nε
C2

)
(25)

Now we have

component 2 ≤ 2 · 1

n

n∑
i=1

h(zi) = 2 ·

[
1

n

n∑
i=1

h(zi)− 2Eh(z)

]
+ 4Eh(z)

Using again the fact that TπQk−1 is the optimal regression function
Eh(z) = ED

[
(f∗(x, a)− y)2

]
− ED

[
(TπQk−1(x, a)− y)2

]
= ED

[
(f∗(x, a)− TπQk−1(x, a))2

]
= inf
f∈F
‖f − TπQk−1‖2µ (26)

Combining equations (22), (25) and (26), we can conclude that

P
{
‖Qk − TπQk−1‖2µ − 4 inf

f∈F
‖f − TπQk−1‖2µ > ε

}
≤ 14 · e · (dimF + 1)

(
640C2

ε

)dimF

· exp

(
− nε

48 · 214C4

)
+ exp

(
− 3

416
· nε
C2

)
thus implying

P
{
‖Qk − TπQk−1‖µ − 2 inf

f∈F
‖f − TπQk−1‖µ > ε

}
≤ 14 · e · (dimF + 1)

(
640C2

ε2

)dimF

· exp

(
− nε2

48 · 214C4

)
+ exp

(
− 3

416
· nε

2

C2

)
(27)

We now can further upper-bound the term 2 inff∈F ‖f − TπQk−1‖µ ≤ 2 supf ′∈F inff∈F ‖f − Tπf ′‖µ = 2dπF (the worst-
case inherent Bellman evaluation error), leading to the final bound for the Bellman non-realizable case.

One may wish to further remove the inherent Bellman evaluation error from our error bound. However, counter-examples
exist where the inherent Bellman error cannot generally be estimated using function approximation (see section 11.6 of
(Sutton & Barto, 2018)). Fortunately, inherent Bellman error can be driven to be small by choosing rich function class F
(low bias), at the expense of more samples requirement (higher variance, through higher pseudo-dimension dimF).

While the bound in (27) looks more complicated than the Bellman realizable case in equation 21, note that the convergence
rate will still be O(1

n2).

E.3. Bounding the error across iterations

Previous sub-sections E.2 and E.2 have analyzed the error of FQE for a single iteration in Bellman realizable and non-
realizable case. We now analyze how errors from different iterations flow through the FQE algorithm. The proof borrows
the idea from lemma 3 and 4 of (Munos & Szepesvári, 2008) for fitted value iteration (for value function V instead of Q),
with appropriate modifications for our off-policy evaluation context.

Recall that Cπ, Qπ denote the true value function and action-value function, respectively, under the evaluation policy π.

Batch Policy Learning under Constraints

And CK = E[QK(x, π(x))] denote the value function associated with the returned function QK from algorithm 3. Our goal
is to bound the difference Cπ − CK between the true value function and the estimated value of the returned function QK .

Let the unknown state-action distribution induced by the evaluation policy π be ρ. We first bound the loss ‖Qπ −QK‖ρ
under the “test-time ”distribution ρ of (x, a), which differs from the state-action µ induced by data-generating policy πD.
We will then lift the loss bound from QK to CK .

Step 1: Upper-bound the value estimation error

Let εk−1 = Qk − TπQk−1 ∈ X×A, C. We have for every k that
Qπ −Qk = TπQπ − TπQk−1 + εk−1 (Qπ is fixed point of Tπ)

= γPπ(Qπ −Qk−1) + εk−1

Thus by simple recursion

Qπ −QK =

K−1∑
k=0

γK−k−1(Pπ)K−k−1εk + γK(Pπ)K(Qπ −Q0)

=
1− γK+1

1− γ

[
K−1∑
k=0

(1− γ)γK−k−1

1− γK+1
(Pπ)K−k−1εk +

(1− γ)γK

1− γK+1
(Pπ)K(Qπ −Q0)

]

=
1− γK+1

1− γ

[
K−1∑
k=0

αkAkεk + αKAK(Qπ −Q0)

]
(28)

where for simplicity of notations, we denote

αk =
(1− γ)γK−k−1

1− γK+1
for k < K,αK =

(1− γ)γK

1− γK+1

Ak = (Pπ)K−k−1, AK = (Pπ)K

Note that Ak’s are probability kernels and αk’s are deliberately chosen such that
∑
k αk = 1.

We can apply point-wise absolute value on both sides of (28) with |f | being the short-hand notation for |f(x, a)| and
inequality holds point-wise. By triangle inequalities:

|Qπ −QK | ≤
1− γK+1

1− γ

[
K−1∑
k=0

αkAk|εk|+ αKAK |Qπ −Q0|

]
(29)

Step 2: Bounding ‖Qπ −QK‖ρ for any unknown distribution ρ. To handle distribution shift from µ to ρ, we decompose
the loss as follows:

‖Qπ −QK‖2ρ =

∫
ρ(dx, da) (Qπ(x, a)−QK(x, a))

2

≤
[

1− γK+1

1− γ

]2 ∫
ρ(dx, da)

[(
K−1∑
k=0

αkAk|εk|+ αKAK |Qπ −Q0|

)
(x, a)

]2

(from(29))

≤
[

1− γK+1

1− γ

]2 ∫
ρ(dx, da)

[
K−1∑
k=0

αk(Akεk)2 + αK(AK(Q∗ −Q0))2

]
(x, a) (Jensen)

≤
[

1− γK+1

1− γ

]2 ∫
ρ(dx, da)

[
K−1∑
k=0

αkAkε
2
k + αKAK(Q∗ −Q0)2

]
(x, a) (Jensen)

Using assumption 3 (assumption 1 of the main paper), we can bound each term ρAk as
ρAk = ρ(Pπ)K−k−1 ≤ µβµ(K − k − 1) (definition D.3)

Thus

‖Qπ −QK‖2ρ ≤
[

1− γK+1

1− γ

]2
[

1

1− γK+1

K−1∑
k=0

(1− γ)γK−k−1βµ(K − k − 1) ‖εk‖2µ + αK(2C)2

]

Batch Policy Learning under Constraints

Assumption 3 (stronger than necessary for proof of FQE) can be used to upper-bound the first order concentration coefficient:

(1− γ)
∑
m≥0

γmβµ(m) ≤ γ

1− γ

(1− γ)2
∑
m≥1

mγm−1βµ(m)

 =
γ

1− γ
βµ

This gives the upper-bound for ‖Qπ −QK‖2ρ as

‖Qπ −QK‖2ρ ≤
[

1− γK+1

1− γ

]2 [
γ

(1− γ)(1− γK+1)
βµ max

k
‖εk‖2µ +

(1− γ)γK

1− γK+1
(2C)2

]
≤ 1− γK+1

(1− γ)2

[
γ

1− γ
βµ max

k
‖εk‖2µ + (1− γ)γK(2C)2

]
≤ γ

(1− γ)3
βµ max

k
‖εk‖2µ +

γK

1− γ
(2C)2

Using a2 + b2 ≤ (a+ b)2 for nonnegative a, b, we conclude that

‖Qπ −QK‖ρ ≤
γ1/2

(1− γ)3/2

(√
βµ max

k
‖εk‖µ +

γK/2

(1− γ)1/2
2C

)
(30)

Step 3: Turning error bound from Q to |Cπ − CK | Now we can choose ρ to be the state-action distribution by the
evaluation policy π. The error bound on the value function C follows simply by integrating inequality (30) over state-action
pairs induced by π. The final error across iterations can be related to individual iteration error by

|Cπ − CK | ≤
γ1/2

(1− γ)3/2

(√
βµ max

k
‖εk‖µ +

γK/2

(1− γ)1/2
2C

)
(31)

E.4. Finite-sample guarantees for Fitted Q Evaluation

Combining results from (21), (27) and (31), we have the final guarantees for FQE under both realizable and general cases.

Realizable Case - Proof of theorem E.2. From (21), when n ≥ 24·214·C4

ε2

(
log K

δ + dimF log 320C2

ε2 + log(14e(dimF + 1))
)

,
we have ‖εk‖µ < ε with probability at least 1− δ/K for any 0 ≤ k < K. Thus we conclude that for any ε > 0, 0 < δ < 1,
after K iterations of Fitted Q Evaluation, the value estimate returned by QK satisfies:

|Cπ − CK | ≤
γ1/2

(1− γ)3/2

(√
βµε+

γK/2

(1− γ)1/2
2C

)
holds with probability 1− δ when n ≥ 24·214·C4

ε2

(
log K

δ + dimF log 320C2

ε2 + log(14e(dimF + 1))
)

. This concludes the
proof of theorem E.2.

Non-realizable Case - Proof of theorem E.1 and theorem 4.2 of main paper. Similarly, from (27) we have

P
{
‖Qk − TπQk−1‖µ − 2 inf

f∈F
‖f − TπQk−1‖µ > ε

}
≤ 14 · e · (dimF + 1)

(
640C2

ε2

)dimF

· exp

(
− nε2

48 · 214C4

)
+ exp

(
− 3

416
· nε

2

C2

)
Since inff∈F ‖f − TπQk−1‖µ ≤ suph∈F inff∈F ‖f − Tπh‖µ = dπF (the inherent Bellman evaluation error), similar
arguments to the realizable case lead to the conclusion that for any ε > 0, 0 < δ < 1, after K iterations of FQE:

|Cπ − CK | ≤
γ1/2

(1− γ)3/2

(√
βµ(2dπF + ε) +

γK/2

(1− γ)1/2
2C

)
holds with probability 1− δ when n = O

(
C4

ε2 (log K
δ + dimF log C2

ε2 + log dimF)
)
, thus finishes the proof of theorem E.1.

Note that in both cases, the Õ(1
ε2) dependency of n is significant improvement over previous finite-sample analysis of

related approximate dynamic programming algorithms (Munos & Szepesvári, 2008; Antos et al., 2008b;a). This dependency
matches that of previous analysis using linear function approximators from (Lazaric et al., 2012; 2010) for LSTD and LSPI
algorithms. Here our analysis, using similar assumptions, is applicable for general non-linear, bounded function classes. ,
which is an improvement over convergence rate of O(1

n4) in related approximate dynamic programming algorithms (Antos
et al., 2008a;b; Munos & Szepesvári, 2008).

Batch Policy Learning under Constraints

F. Finite-Sample Analysis of Fitted Q Iteration (FQI)
F.1. Algorithm and Discussion

Algorithm 4 Fitted Q Iteration with Function Approximation: FQI(c) (Ernst et al., 2005)
Input: Collected data set D = {xi, ai, x′i, ci}ni=1. Function class F
1: Initialize Q0 ∈ F randomly
2: for k = 1, 2, . . . ,K do
3: Compute target yi = ci + γminaQk−1(x

′
i, a) ∀i

4: Build training set D̃k = {(xi, ai), yi}ni=1

5: Solve a supervised learning problem:
Qk = argmin

f∈F

1
n

∑n
i=1(f(xi, ai)− yi)

2

6: end for
Output: πK(·) = argmin

a
QK(·, a) (greedy policy with respect to the returned function QK)

The analysis of FQI (algorithm 4) follows analogously from the analysis of FQE from the previous section (Appendix E).
For brevity, we skip certain detailed derivations, especially those that are largely identical to FQE’s analysis.

To the best of our knowledge, a finite-sample analysis of FQI with general non-linear function approximation has not been
published (Continuous FQI from (Antos et al., 2008a) is in fact a Fitted Policy Iteration algorithm and is different from algo
4). In principle, one can adapt existing analysis of fitted value iteration (Munos & Szepesvári, 2008) and FittedPolicyQ
(Antos et al., 2008b;a) to show that under similar assumptions, among policies greedy w.r.t. functions in F, FQI will find
ε− optimal policy using n = Õ(1

ε4) samples. We derive an improved analysis of FQI with general non-linear function
approximations, with better sample complexity of n = Õ(1

ε2). We note that the appendix of (Lazaric & Restelli, 2011)
contains an analysis of LinearFQI showing similar rate to ours, albeit with linear function approximators.

In this section, we prove the following statement:

Theorem F.1 (Guarantee for FQI - General Case (theorem 4.3 in main paper)). Under Assumption 3, for any ε > 0, δ ∈ (0, 1),
after K iterations of Fitted Q Iteration (algorithm 4), for n = O

(
C4

ε2 (log K
δ + dimF log C2

ε2 + log dimF)
)
, we have with

probability 1− δ:

C∗ − C(πK) ≤ 2γ

(1− γ)3

(√
βµ (2dF + ε) + 2γK/2C

)
where πK is the policy greedy with respect to the returned function QK , and C∗ is the value of the optimal policy.

The key steps to the proof follow similar scheme to the proof of FQE. We first bound the error for each iteration, and then
analyze how the errors flow through the algorithm.

F.2. Single iteration error bound ‖Qk − TQk−1‖µ
Here µ is the state-action distribution induced by the data-generating policy πD.

We begin with the decomposition:
‖Qk − TQk−1‖2µ = E

[
(Qk(x, a)− y)2

]
− E

[
(TQk−1(x, a)− y)2

]
=

{
E
[
(Qk(x, a)− y)2

]
− E

[
(TQk−1(x, a)− y)2

]
− 2 ·

(
1

n

n∑
i=1

(Qk(xi, ai)− yi)2 − 1

n

n∑
i=1

(TQk−1(xi, ai)− yi)2

)}

+

{
2 ·

(
1

n

n∑
i=1

(Qk(xi, ai)− yi)2 − 1

n

n∑
i=1

(TQk−1(xi, ai)− yi)2

)}
= component 1 + component 2

For T the Bellman (optimality) operator (equation 16), TQk−1 is the regression function that minimizes square loss
min

h:RX×A 7→R
E|h(x, a) − y|2, with the random variables (x, a) ∼ µ and y = c(x, a) + γmina′ Qk−1(x′, a′) where x′ ∼

p(x′|x, a). Invoking lemma E.5 and following the steps similar to equations (18),(19),(20) and (21) from appendix E, we

Batch Policy Learning under Constraints

can bound the first component as

P(component 1 > ε/2) ≤ 14 · e · (dimF + 1)

(
640C2

ε

)dimF

· exp

(
− nε

48 · 214C4

)
(32)

Let f∗ = arg inf
f∈F

‖f − TQk−1‖2µ. Since Qk = arg min
f∈F

1
n

∑n
i=1(f(xi, ai)− yi)2, we can upper-bound component 2 by

component 2 ≤ 2 ·

(
1

n

n∑
i=1

(f∗(xi, ai)− yi)2 − 1

n

n∑
i=1

(TQk−1(xi, ai)− yi)2

)

Let random variable z = ((x, a), y), zi = ((xi, ai), yi), i = 1, . . . , n and let
h(z) = (f∗(x, a)− y)2 − (TQk−1(x, a)− y)2

We have |h(z)| ≤ 4C2. We can derive a bound for P
(

1
n

∑n
i=1 h(zi)− Eh(z) > ε

4 + Eh(z)
)

using Bernstein inequality,
similar to equations (23) and (24) from appendix E to obtain:

P

(
2 ·

[
1

n

n∑
i=1

h(zi)− 2Eh(z)

]
>
ε

2

)
≤ exp

(
− 3

416
· nε
C2

)
(33)

Now we have

component 2 ≤ 2 · 1

n

n∑
i=1

h(zi) = 2 ·

[
1

n

n∑
i=1

h(zi)− 2Eh(z)

]
+ 4Eh(z)

Since
Eh(z) = ED̃k

[
(f∗(x, a)− y)2

]
− ED̃k

[
(TQk−1(x, a)− y)2

]
= ED̃k

[
(f∗(x, a)− TQk−1(x, a))2

]
= inf
f∈F
‖f − TQk−1‖2µ (34)

Combining equations (32), (33) and (34), we obtain that

P
{
‖Qk − TQk−1‖2µ − 4 inf

f∈F
‖f − TQk−1‖2µ > ε

}
≤ 14 · e · (dimF + 1)

(
640C2

ε

)dimF

· exp

(
− nε

48 · 214C4

)
+ exp

(
− 3

416
· nε
C2

)
(35)

F.3. Propagation of error bound for ‖Q∗ −QπK‖ρ
The analysis of error propagation for FQI is more involved than that of FQE, but the proof largely follows the error
propagation analysis in lemma 3 and 4 of (Munos & Szepesvári, 2008) in the fitted value iteration context (for V function).
We include the Q function’s (slighly more complicated) derivation here for completeness.

Recall that πK is greedy wrt the learned function QK returned by FQI. We aim to bound the difference C∗ − CπK between
the optimal value function and that πK . For a (to-be-specified) distribution ρ of state-action pairs (different from the data
distribution µ), we bound the generalization loss ‖Q∗ −QπK‖ρ
Step 1: Upper-bound the propagation error (value). Let εk−1 = Qk − TQk−1. We have that
Q∗ −Qk = Tπ

∗
Q∗ − Tπ

∗
Qk−1 + Tπ

∗
Qk−1 − TQk−1 + εk−1 ≤ Tπ

∗
Q∗ − Tπ

∗
Qk−1 + εk−1 (b/c TQk−1 ≥ Tπ

∗
Qk−1)

= γPπ
∗
(Q∗ −Qk−1) + εk−1

Thus by recursion Q∗ −QK ≤
∑K−1
k=0 γK−k−1(Pπ

∗
)K−k−1εk + γK(Pπ

∗
)K(Q∗ −Q0)

Step 2: Lower-bound the propagation error (value). Similarly
Q∗ −Qk = TQ∗ − Tπk−1Q∗ + Tπk−1Q∗ − TQk−1 + εk−1 ≥ Tπk−1Q∗ − TQk−1 + εk−1 (as TQ∗ ≥ Tπk−1Q∗)

≥ Tπk−1Q∗ − Tπk−1Qk−1 + εk−1 (b/c πk−1 greedy wrt Qk−1)

= γPπk−1(Q∗ −Qk−1) + εk−1

And by recursion Q∗ −QK ≥
∑K−1
k=0 γK−k−1(PπK−1PπK−2 . . . Pπk+1)εk + γK(PπK−1PπK−2 . . . Pπ0)(Q∗ −Q0)

Batch Policy Learning under Constraints

Step 3: Upper-bound the propagation error (policy). Beginning with a decomposition of value wrt to policy πK
Q∗ −QπK = Tπ

∗
Q∗ − Tπ

∗
QK + Tπ

∗
QK − TπKQK + TπKQK − TπKQπK

≤ (Tπ
∗
Q∗ − Tπ

∗
QK) + (TπKQK − TπKQπK) (since Tπ

∗
QK ≤ TQK = TπKQK)

= γPπ
∗
(Q∗ −QK) + γPπK (QK −QπK)

= γPπ
∗
(Q∗ −QK) + γPπK (QK −Q∗ +Q∗ −QπK)

Thus leading to (I − γPπK)(Q∗ − QπK) ≤ γ(Pπ
∗ − PπK)(Q∗ − QK) The operator (I − γPπK) is invertible and

(I − γPπK)−1 =
∑
m≥0 γ

m(PπK)m is monotonic. Thus

Q∗ −QπK ≤ γ(I − γPπK)−1(Pπ
∗
− PπK)(Q∗ −QK)

= γ(I − γPπK)−1Pπ
∗
(Q∗ −QK)− γ(I − γPπK)−1PπK (Q∗ −QK) (36)

Applying inequalities from Step 1 and Step 2 to the RHS of (36), we have

Q∗ −QπK ≤ (I − γPπK)−1

[K−1∑
k=0

γK−k
(

(Pπ
∗
)K−k − PπKPπK−1 . . . Pπk+1

)
εk

+ γK+1
(

(Pπ
∗
)K+1 − (PπKPπK−1 . . . Pπ0)

)
(Q∗ −Q0)

]
(37)

Next we apply point-wise absolute value on RHS of (37), with |εk| being the short-hand notation for |εk(x, a)| point-wise.
Using triangle inequalities and rewriting (37) in a more compact form ((Munos & Szepesvári, 2008)):

Q∗ −QπK ≤ 2γ(1− γK+1)

(1− γ)2

[
K−1∑
k=0

αkAk|εk|+ αKAK |Q∗ −Q0|

]
where αk = (1−γ)γK−k−1

1−γK+1 for k < K,αK = (1−γ)γK

1−γK+1 and

Ak =
1− γ

2
(I − γPπK)−1

[
(Pπ

∗
)K−k + PπKPπK−1 . . . Pπk+1

]
for k < K

AK =
1− γ

2
(I − γPπK)−1

[
(Pπ

∗
)K+1 + PπKPπK−1 . . . Pπ0

]
Note that Ak’s are probability kernels that combine the Pπi terms and αk’s are chosen such that

∑
k αk = 1.

Step 4: Bounding ‖Q∗ −QπK‖2ρ for any test distribution ρ.

This step handles distribution shift from µ to ρ (similar to Step 2 from sub-section E.3 of appendix E)

‖Q∗ −QπK‖2ρ ≤
[

2γ(1− γK+1)

(1− γ)2

]2 ∫
ρ(dx, da)

[
K−1∑
k=0

αkAkε
2
k + αKAK(Q∗ −Q0)2

]
(x, a) (twice Jensen)

Using assumption 3 (assumption 1 in the main paper), each term ρAk is bounded as

ρAk =
1− γ

2
ρ(I − γPπK)−1

[
(Pπ

∗
)K−k + PπKPπK−1 . . . Pπk+1

]
=

1− γ
2

∑
m≥0

γmρ(PπK)m
[
(Pπ

∗
)K−k + PπKPπK−1 . . . Pπk+1

]
≤ (1− γ)

∑
m≥0

γmβµ(m+K − k)µ (def D.3)

Thus

‖Q∗ −QπK‖2ρ ≤
[

2γ(1− γK+1)

(1− γ)2

]2
 1

1− γK+1

K−1∑
k=0

(1− γ)2
∑
m≥0

γm+K−k−1βµ(m+K − k) ‖εk‖2µ + αK(2C)2


≤
[

2γ(1− γK+1)

(1− γ)2

]2 [
1

1− γK+1
βµ max

k
‖εk‖2µ +

(1− γ)γK

1− γK+1
(2C)2

]
(assumption 3)

≤
[

2γ(1− γK+1)

(1− γ)2

]2 [
1

1− γK+1
βµ max

k
‖εk‖2µ +

γK

1− γK+1
(2C)2

]
≤
[

2γ

(1− γ)2

]2 [
βµ max

k
‖εk‖2µ + γK(2C)2

]

Batch Policy Learning under Constraints

Using a2 + b2 ≤ (a+ b)2 for nonnegative a, b, we thus conclude that

‖Q∗ −QπK‖ρ ≤
2γ

(1− γ)2

(√
βµ max

k
‖εk‖µ + 2γK/2C

)
(38)

Step 5: Bounding C∗ − CπK Using the performance difference lemma (lemma 6.1 of (Kakade & Langford, 2002), which
states that C∗ − CπK = − 1

1−γEx∼dπK
a∼πK

A∗ [x, a]. We can upper-bound the performance difference of value function as

C∗ − CπK =
1

1− γ
Ex∼dπK
a∼πK

[C∗(x)−Q∗(x, a)] =
1

1− γ
Ex ∼dπK [C∗(x)−Q∗(x, πK(x))]

≤ 1

1− γ
Ex ∼dπK [Q∗(x, π∗(x))−QK(x, π∗(x)) +QK(x, πK(x)−Q∗(x, πK(x))] (greedy)

≤ 1

1− γ
Ex ∼dπK |Q

∗(x, π∗(x))−QK(x, π∗(x))|+ |QK(x, πK(x)−Q∗(x, πK(x))|

≤ 1

1− γ

(
‖Q∗ −QπK‖dπK×π∗ + ‖Q∗ −QπK‖dπK×πK

)
(upper-bound 1-norm by 2-norm)

≤ 2γ

(1− γ)3

(√
βµ max

k
‖εk‖µ + 2γK/2C

)
(39)

Note that inequality (39) follows from (38) by specifying ρ = χPπKPπ
∗

and ρ = χPπKPπK , respectively (χ is the initial
state distribution).

F.4. Finite-sample guarantees for Fitted Q Iteration

From (35) we have:

P
{
‖Qk − TQk−1‖µ − 2 inf

f∈F
‖f − TQk−1‖µ > ε

}
≤ 14 · e · (dimF + 1)

(
640C2

ε2

)dimF

· exp

(
− nε2

48 · 214C4

)
+ exp

(
− 3

416
· nε

2

C2

)
Note that inff∈F ‖f − TQk−1‖µ ≤ suph∈F inff∈F ‖f − Th‖µ = dF (the inherent Bellman error from equation 16).
Combining with equation (39), we have the conclusion that for any ε > 0, 0 < δ < 1, after K iterations of Fitted Q Iteration,
and for πK the greedy policy wrt QK :

C∗ − CπK ≤
2γ

(1− γ)3

(√
βµ(2dF + ε) + 2γK/2C

)
holds with probability 1− δ when n = O

(
C4

ε2 (log K
δ + dimF log C2

ε2 + log dimF)
)
.

Note that compared to the Fitted Value Iteration analysis of (Munos & Szepesvári, 2008), our error includes an extra factor 2
for dF.

F.5. Statement for the Bellman-realizable Case

To facilitate the end-to-end generalization analysis of theorem 4.4 in the main paper, we include a version of FQI analysis
under Bellman-realizable assumption in this section. The theorem is a consequence of previous analysis in this section.

Assumption 5 (Bellman evaluation realizability). We consider function classes F sufficiently rich so that ∀f,Tf ∈ F.

Theorem F.2 (Guarantee for FQI - Bellman-realizable Case). Under Assumption 3 and 5, for any ε > 0, δ ∈ (0, 1), after
K iterations of Fitted Q Iteration, for n ≥ 24·214·C4

ε2

(
log K

δ + dimF log 320C2

ε2 + log(14e(dimF + 1))
)
, we have with

probability 1− δ:

C∗ − C(πK) ≤ 2γ

(1− γ)3

(√
βµε+ 2γK/2C

)
where πK is the policy greedy with respect to the returned function QK , and C∗ is the value of the optimal policy.

Batch Policy Learning under Constraints

G. Additional Instantiation of Meta-Algorithm (algorithm 1)
We provide an additional instantiation of the meta-algorithm described in the main paper, with Online Gradient Descent
(OGD) (Zinkevich, 2003) and Least-Squares Policy Iteration (LSPI) (Lagoudakis & Parr, 2003) as subroutines. Using LSPI
requires a feature map φ such that any state-action pair can be represented by k features. The value function is linear in
parameters represented by φ. Policy representation is simplified to a weight vector w ∈ Rk.

Similar to our main algorithm 2, OGD updates require bounded parameters λ. We thus introduce hyper-parameter B as the
bound of λ in `2 norm. The gradient update is projected to the `2 ball when the norm of λ exceeds B (line 15 of algo 5).

Algorithm 5 Batch Learning under Constraints using Online Gradient Descent and Least-Squares Policy Iteration
Input: Dataset D = {xi, ai, x′i, ci, gi}ni=1 ∼ πD. Online algorithm parameters: `2 norm bound B, learning rate η
Input: Number of basis function k. Basis function φ (feature map for state-action pairs)

1: Initialize λ1 = (0, . . . , 0) ∈ Rm
2: for each round t do
3: Learn wt ← LSPI(c+ λ>t g) // LSPI with cost c+ λ>t g

4: Evaluate Ĉ(wt)← LSTDQ(wt, c) // Algo 7 with πt, cost c
5: Evaluate Ĝ(wt)← LSTDQ(wt, g) // Algo 7 with πt, cost g
6: ŵt ← 1

t

∑t
t′=1 wt′

7: Ĉ(ŵt)← 1
t

∑t
t′=1 Ĉ(wt′), Ĝ(ŵt)← 1

t

∑t
t′=1 Ĝ(wt′)

8: λ̂t ← 1
t

∑t
t′=1 λt′

9: Learn w̃ ← LSPI(c+ λ̂>t g) // LSPI with cost c+ λ̂>t g

10: Evaluate Ĉ(w̃)← LSTDQ(w̃, c), Ĝ(w̃)← LSTDQ(w̃, g)

11: L̂max = max
λ,‖λ‖2≤B

(
Ĉ(ŵt) + λ>(Ĝ(ŵt)− τ)

)
12: L̂min = Ĉ(w̃) + λ̂>t (Ĝ(w̃)− τ)

13: if L̂max − L̂min ≤ ω then
14: Return π̂t greedy w.r.t ŵt

(
i.e., π̂t(x) = arg mina∈A ŵ

>
t φ(x, a) ∀x

)
15: end if
16: λt+1 = P(λt − η(Ĝ(πt)− τ)) where projection P(λ) = B λ

max{B,‖λ‖2}
17: end for

Algorithm 6 Least-Squares Policy Iteration: LSPI(c) (Lagoudakis & Parr, 2003)
Input: Stopping criterion ε

1: Initialize w′ ← w0

2: repeat
3: w ← w′

4: w′ ← LSTDQ(w, c)
5: until ‖w − w′‖ ≤ ε

Output: Policy weight w
(
i.e., π(x) = arg mina∈A w

>φ(x, a) ∀x
)

Algorithm 7 LSTDQ(w, c) (Lagoudakis & Parr, 2003)

1: Initialize Ã← 0 // k × k matrix
2: Initialize b̃← 0 // k × 1 vector
3: for each (x, a, x′, c) ∈ D do
4: a′ = argminã∈A w

>φ(x′, ã)

5: Ã← Ã+ φ(x, a)
(
φ(x, a)− γφ(x′, a′)

)>
6: b̃← b̃+ φ(x, a)c
7: end for
8: w̃ ← Ã−1b̃

Output: w̃

Batch Policy Learning under Constraints

H. Additional Experimental Details
H.1. Environment Descriptions and Procedures

Figure 3. Depicting the FrozenLake and CarRacing environments.

Frozen Lake. The environment is a 8x8 grid as seen in Figure 3 (left), based on OpenAi’s FrozenLake-v0. In each episode,
the agent starts from S and traverse to goal G. While traversing the grid, the agent must avoid the pre-determined holes
denoted by H . If the agent steps off of the grid, the agent returns to the same grid location. The episode terminates when the
agent reaches the goal or falls into a hole. The arrows in Figure 3 (left) is an example policy returned by our algorithm,
showing an optimal route.

Denote Xholes as the set of all holes in the grid and Xgoal = {xgoal} is a singleton set representing the goal in the grid. The
contrained batch policy learning problem is:

min
π∈Π

C(π) = E[I(x′ 6∈ Xgoals)] = P(x′ 6∈ {xgoal})

s.t. G(π) = E[I(x′ ∈ Xholes)] = P(x′ ∈ Xholes) ≤ τ
(40)

We collect 5000 trajectories by selecting an action randomly with probability .95 and an action from a DDQN-trained model
with probability .05.Furthermore we set B = 30 and η = 50, the hyperparameters of our Exponentiated Gradient subroutine.
We set the threshold for the constraint τ = .1.

Car Racing. The environment is a racetrack as seen in Figure 3 (right), modified from OpenAi’s CarRacing-v0. In each
state, given by the raw pixels, the agent has 12 actions: a ∈ A = {(i, j, k)|i ∈ {−1, 0, 1}, j ∈ {0, 1}, k ∈ {0, .2}}. The
action tuple (i, j, k) cooresponds to steering angle, amount of gas applied and amount of brake applied, respectively. In each
episode, the agent starts at the same point on the track and must traverse over 95% of the track, given by a discretization of
281 tiles. The agent recieves a reward of + 1000

281 for each unique tile over which the agent drives. The agent receives a penalty
of −.1 per-time step. Our collected dataset takes the form: D = {(xt−6, xt−3, xt), at, (xt−3, xt, xt+3), ct, g0,t, g1,t} where
xi denotes the image at timestep i and at is applied 3 times between xt and xt+3. This frame-stacking option is common
practice in online RL for Atari and video games.In our collected dataset D, the maximum horizon is 469 time steps.

The first constraint concerns accumulated number of brakes, a proxy for smooth driving or acceleration. The second
constraint concerns how far the agent travels away from the center of the track, given by the Euclidean distance between the
agent and the closest point on the center of the track. Let Nt be the number of tiles that is collected by the agent in time t.
The constrained batch policy learning problem is:

min
π∈Π

E[

∞∑
t=0

γt(−1000

281
Nt + .1)]

s.t. G0(π) = E[

∞∑
t=0

γtI(at ∈ Abraking)] ≤ τ0

G1(π) = E[

∞∑
t=0

γtd(ut, vt)] ≤ τ1

(41)

We instatiate our subroutines, FQE and FQI, with multi-layered CNNs. Furthermore we set B = 10 and η = .01, the
hyperparameters of our Exponentiated Gradient subroutine. We set the threshold for the constraint to be about 75% of the
value exhibited by online RL agent trained by DDQN (Van Hasselt et al., 2016).

Batch Policy Learning under Constraints

Figure 4. (First and Second figures) Result of 2-D grid-search for one-shot, regularized policy learning for LSPI (left) and FQI (right).
(Third and Fourth figures) value range of individual policies in our mixtured policy and data generating policy πD for main objective (left)
and cost constraint (right)

H.2. Additional Discussion for the Car Racing Experiment

Regularized policy learning and grid-search. We perform grid search over a range of regularization parameters λ for
both Least-Squares Policy Iteration - LSPI ((Lagoudakis & Parr, 2003)) and Fitted Q Iteration - FQI ((Ernst et al., 2005)).
The results, seen from the the first and second plot of Figure 4, show that one-shot regularized learning has difficulty
learning a policy that satisfies both constraints. We augment LSPI with non-linear feature mapping from one of our best
performing FQI model (using CNNs representation). While both regularized LSPI and regularized FQI can achieve low
main objective cost, the constraint cost values tend to be sensitive with the λ step. Overall for the whole grid search, about
10% of regularized policies satisfy both constraints, while none of the regularized LSPI policy satisfies both constraints.

Mixture policy and de-randomization. As our algorithm returned a mixture policy, it is natural to analyze the performance
of individual policies in the mixture. The third and fourth plot from Figure 4 show the range of performance of individual
policy in our mixture (purple band). We compare individual policy return with the stochastic behavior of the data generation
policy. Note that our policies satisfy constraints almost always, while the individual policy returned in the mixture also tends
to outperform πD with respect to the main objective cost.

Off-policy evaluation standalone comparison. Typically, inverse propensity scoring based methods call for stochastic
behavior and evaluation policies (Precup et al., 2000; Swaminathan & Joachims, 2015). However in this domain, the
evaluation policy and environment are both deterministic, with long horizon (the max horizon is D is 469). Consequently
Per-Decision Importance Sampling typically evaluates the policy as 0. In general, off-policy policy evaluation in long-
horizon domains is known to be challenging (Liu et al., 2018; Guo et al., 2017). We augment PDIS by approximating
the evaluation policy with a stochastic policy, using a softmin temperature parameter. However, PDIS still largely shows
significant errors. For Doubly Robust and Weighted Doubly Robust methods, we train a model of the environment as
follows:

• a 32-dimensional representation of state input is learned using variational autoencoder. Dimensionality reduction is
necessary to aid accuracy, as original state dimension is 96× 96× 3

• an LSTM is used to learn the transition dynamics P (z(x′)|z(x), a), where z(x) is the low-dimensional representation
learned from previous step. Technically, using a recurrent neural networks is an augmentation to the dynamical
modeling, as true MDPs typically do not require long-term memory

• the model is trained separately on a different dataset, collected indendently from the dataset D used for evaluation

The architecture of our dynamics model is inspired by recent work in model-based online policy learning (Ha & Schmidhuber,
2018). However, despite our best effort, learning the dynamics model accurately proves highly challenging, as the horizon
and dimensionality of this domain are much larger than popular benchmarks in the OPE literature (Jiang & Li, 2016;
Thomas & Brunskill, 2016; Farajtabar et al., 2018). The dynamics model has difficulty predicting the future state several
time steps away. Thus we find that the long-horizon, model-based estimation component of DR and WDR in this high-
dimensional setting is not sufficiently accurate. For future work, a thorough benchmarking of off-policy evaluation methods
in high-dimensional domains would be a valuable contribution.

