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Abstract
The use of target networks has been a popular
and key component of recent deep Q-learning al-
gorithms for reinforcement learning, yet little is
known from the theory side. In this work, we
introduce a new family of target-based temporal
difference (TD) learning algorithms that main-
tain two separate learning parameters – the target
variable and online variable. We propose three
members in the family, the averaging TD, double
TD, and periodic TD, where the target variable is
updated through an averaging, symmetric, or pe-
riodic fashion, respectively, mirroring those tech-
niques used in deep Q-learning practice. We es-
tablish asymptotic convergence analyses for both
averaging TD and double TD and a finite sample
analysis for periodic TD. In addition, we provide
some simulation results showing potentially su-
perior convergence of these target-based TD al-
gorithms compared to the standard TD-learning.
While this work focuses on linear function approx-
imation and policy evaluation setting, we consider
this as a meaningful step towards the theoretical
understanding of deep Q-learning variants with
target networks.

1. Introduction
Deep Q-learning (Mnih et al., 2015) has recently captured
significant attentions in the reinforcement learning (RL)
community for outperforming human in several challenging
tasks. Besides the effective use of deep neural networks
as function approximators, the success of deep Q-learning
is also indispensable to the utilization of a separate target
network for calculating target values at each iteration. In
practice, using target networks is proven to substantially
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improve the performance of Q-learning algorithms, and
is gradually adopted as a standard technique in modern
implementations of Q-learning.

To be more specific, the update of Q-learning with target
network can be viewed as follows:

θt+1 = θt + α(yt −Q(st, at; θt))∇θQ(st, at; θt)

where yt = r(st, at) + γmaxaQ(st+1, a; θ′t), θt is the
online variable, and θ′t is the target variable. Here the state-
action value function Q(s, a; θ) is parameterized by θ. The
update of the online variable θt resembles the stochastic
gradient descent step. The term r(st, at) stands for the inter-
mediate reward of taking action at in state st, and yt stands
for the target value under the target variable, θ′t. When the
target variable is set to be the same as the online variable
at each iteration, this reduces to the standard Q-learning
algorithm (Watkins & Dayan, 1992), and is known to be
unstable with nonlinear function approximations. Several
choices of target networks are proposed in the literature to
overcome such instability: (i) periodic update, i.e., the target
variable is copied from the online variable every τ > 0 steps,
as used for deep Q-learning (Gu et al., 2016; Mnih et al.,
2015; 2016; Wang et al., 2016); (ii) symmetric update, i.e.,
the target variable is updated symetrically as the online vari-
able; this is first introduced in double Q-learning (Hasselt,
2010; Van Hasselt et al., 2016); and (iii) Polyak averaging
update, i.e., the target variable takes weighted average over
the past values of the online variable; this is used in deep
deterministic policy gradient (Heess et al., 2015; Lillicrap
et al., 2015) as an example. In the following, we simply
refer these as target-based Q-learning algorithms.

While the integration of Q-learning with target networks
turns out to be successful in practice, its theoretical con-
vergence analysis remains largely an open yet challenging
question. As an intermediate step towards the answer, in this
work, we first study target-based temporal difference (TD)
learning algorithms and establish their convergence analysis.
TD algorithms (Sutton, 1988; Sutton et al., 2009a;b) are
designed to evaluate a given policy and are the fundamental
building blocks of many RL algorithms. Comprehensive sur-
veys and comparisons among TD-based policy evaluation
algorithms can be found in (Dann et al., 2014). Motivated by
the target-based Q-learning algorithms (Mnih et al., 2015;
Wang et al., 2016), we introduce a target variable into the
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TD framework and develop a family of target-based TD
algorithms with different updating rules for the target vari-
able. In particular, we propose three members in the family,
the averaging TD, double TD, and periodic TD, where the
target variable is updated through an averaging, symmetric
or periodic fashion, respectively. Meanwhile, similar to the
standard TD-learning, the online variable takes stochastic
gradient steps of the Bellman residual loss function while
freezing the target variable. As the target variable changes
slowly compared to the online variable, target-based TD
algorithms are prone to improve the stability of learning
especially if large neural networks are used, although this
work will focus on TD with linear function approximators.

Theoretically, we prove the asymptotic convergence of av-
eraging TD and double TD and establish a finite sample
analysis for the periodic TD. Practically, we also run some
simulations showing superior convergence of the proposed
target-based TD algorithms compared to the standard TD-
learning. In particular, our empirical case studies demon-
strate that the target TD-learning algorithms outperform the
standard TD-learning in the long run with better accuracy
and lower variances, despite their slower convergence at the
very beginning. Moreover, our analysis reveals an important
connection between the TD-learning and the target-based
TD-learning. We consider the work as a meaningful step
towards the theoretical understanding of deep Q-learning
with general nonlinear function approximation.

Related work. The first target-based reinforcement learn-
ing was proposed in (Mnih et al., 2015) for policy optimiza-
tion problems with nonlinear function approximation, where
only empirical results were given. To our best knowledge,
target-based reinforcement learning for policy evaluation
has not been specifically studied before. A somewhat re-
lated family of algorithms are the gradient TD (GTD) learn-
ing algorithms (Dai et al., 2017; Mahadevan et al., 2014;
Sutton et al., 2009a;b), which minimize the projected Bell-
man residual through the primal-dual algorithms. The GTD
algorithms share some similarities with the proposed target-
based TD-learning algorithms in that they also maintain
two separate variables – the primal and dual variables, to
minimize the objective. Apart from this connection, the
GTD algorithms are fundamentally different from the av-
eraging TD and double TD algorithms that we propose.
The proposed periodic TD algorithm can be viewed as ap-
proximately solving least squares problems across cycles,
making it closely related to two families of algorithms, the
least-square TD (LSTD) learning algorithms (Bertsekas,
1995; Bradtke & Barto, 1996) and the least squares policy
evaluation (LSPE) (Bertsekas & Yu, 2009; Yu & Bertsekas,
2009). But they also distinct from each other in terms of the
subproblems and subroutines used in the algorithms. Partic-
ularly, the periodic TD executes stochastic gradient descent
steps while LSTD uses the least-square parameter estima-

tion method to minimize the projected Bellman residual.
On the other hand, LSPE directly solves the subproblems
without successive projected Bellman operator iterations.
Moreover, the proposed periodic TD algorithm enjoys a
simple finite-sample analysis based on existing results on
stochastic approximation.

2. Preliminaries
In this section, we briefly review the basics of the TD-
learning algorithm with linear function approximation. We
first list a few notations used throughout the paper.

Notation ‖x‖D :=
√
xTDx for any positive-definite D;

λmin(A) and λmax(A) denotes the minimum and maximum
eigenvalues of a symmetric matrix A, respectively.

2.1. Markov Decision Process (MDP)

A discounted Markov decision process is characterized by
the tuple M := (S,A, P, r, γ), where S is a finite state
space, A is a finite action space, P (s, a, s′) := P[s′|s, a]
represents the (unknown) state transition probability from
state s to s′ given action a, r : S × A → [0, σ] is a
uniformly bounded stochastic reward, and γ ∈ (0, 1) is
the discount factor. If action a is selected with the cur-
rent state s, then the state transits to s′ with probability
P (s, a, s′) and incurs a random reward r(s, a) ∈ [0, σ] with
expectation R(s, a). A stochastic policy is a distribution
π ∈ ∆|S|×|A| representing the probability π(s, a) = P[a|s],
Pπ denotes the transition matrix whose (s, s′) entry is
P[s′|s] =

∑
a∈A P (s, a, s′)π(s, a), and d ∈ ∆|S| denotes

the stationary distribution of the state s ∈ S under policy π,
i.e., d = dPπ . The following assumption is standard in the
literature.

Assumption 1 We assume that d(s) > 0 for all s ∈ S.

We also define rπ(s) and Rπ(s) as the stochastic reward
and its expectation given the policy π and the current state s,
i.e. Rπ(s) :=

∑
a∈A π(s, a)R(s, a). The infinite-horizon

discounted value function given policy π is

Jπ(s) := E
[∑∞

k=0
γkr(sk, ak)

∣∣∣ s0 = s
]
,

where s ∈ S , E stands for the expectation taken with respect
to the state-action-reward trajectories.

2.2. Linear Function Approximation

Given pre-selected basis (or feature) functions φ1, . . . , φn :
S → R, Φ ∈ R|S|×n is defined as

Φ :=

 φ(1)T

...
φ(|S|)T

 ∈ R|S|×n, where φ(s) :=

φ1(s)
...

φn(s)

 ∈ Rn.
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Here n � |S| is a positive integer and φ(s) is a feature
vector. It is standard to assume that the columns of Φ do not
have any redundancy up to linear combinations. We make
the following assumption.

Assumption 2 Φ has full column rank.

2.3. Reinforcement Learning (RL) Problem

In this paper, the goal of RL with the linear function ap-
proximation is to find the weight vector θ ∈ Rn such that
Jθ := Φθ approximates the true value function Jπ. This
is typically done by minimizing the mean-square Bellman
error loss function (Sutton et al., 2009a)

min
θ∈Rn

l(θ) :=
1

2
Es[([Es′,r[r(s, a) + γJθ(s

′)]− Jθ(s)])2]

=
1

2
‖Rπ + γPπΦθ − Φθ‖2D, (1)

where D is defined as a diagonal matrix with diagonal en-
tries equal to a stationary state distribution d under the policy
π. Note that due to Assumption 1, D � 0. In typical RL
setting, the model is unknown, while only samples of the
state-action-reward are observed. Therefore, the problem
can only be solved in stochastic way using the observations.
In order to formally analyze the sample complexity, we
consider the following assumption on the samples.

Assumption 3 There exists a Sampling Oracle (SO) that
takes input (s, a) and generates a new state s′ with proba-
bilities P (s, a, s′) and a stochastic reward r(s, a) ∈ [0, σ].

This oracle model allows us to draw i.i.d. samples
(s, a, r, s′) from s ∼ d(·), a ∼ π(s, ·), s′ ∼ P (s, a, ·).
While such an i.i.d. assumption may not necessarily hold in
practice, it is commonly adopted for complexity analysis of
RL algorithms in the literature (Bhandari et al., 2018; Dalal
et al., 2018; Sutton et al., 2009a;b). It’s worth mentioning
that several recent works also provide complexity analysis
when only assuming Markovian noise or exponentially β-
mixing properties of the samples (Antos et al., 2008; Bhan-
dari et al., 2018; Dai et al., 2018; Srikant & Ying., 2019).
For sake of simplicity, this paper only focuses on the i.i.d.
sampling case.

A naive idea for solving 1 is to apply the stochastic gradient
descent steps, θk+1 = θk − αk∇̃θl(θk), where αk > 0 is a
step-size and ∇̃θl(θk) is a stochastic estimator of the true
gradient of l at θ = θk, ∇θl(θk) = Es,a

[
(Es′,r[r(s, a) +

γJθk(s′)]−Jθk(s))T (Es′ [γ∇θJθk(s′)]−∇θJθk(s))
]
. This

approach is called the residual method (Baird, 1995). Its
main drawback is the double sampling issue (Bertsekas
& Tsitsiklis, 1996, Lemma 6.10, pp. 364): to obtain an
unbiased stochastic estimation of ∇θl(θk), we need two
independent samples given any pair (s, a) ∈ S ×A. This is

possible under Assumption 3, but hardly implementable in
most real applications.

2.4. Standard TD-Learning

In the standard TD-learning (Sutton, 1988), the gradient
term Es′ [γ∇θJθk(s′)] in the last line (∇θl(θk)) is omit-
ted (Bertsekas & Tsitsiklis, 1996, pp. 369). The result-
ing update rule is θk+1 = θk − αkη(θk), where η(θk) :=
−(r(s, a) + γJθk(s′)− Jθk(s))∇θJθk(s). While the algo-
rithm avoids the double sampling problem and is simple to
implement, a key issue here is that the stochastic gradient
η(θk) does not correspond to the true gradient of the loss
function l(θ) or any other objective functions, making the
theoretical analysis rather subtle. Asymptotic convergence
of the TD-learning was given in the original paper (Sutton,
1988) in tabular case and in Tsitsiklis & Van Roy (1997)
with linear function approximation. Finite-time convergence
analysis was recently established in Bhandari et al. (2018);
Dalal et al. (2018); Srikant & Ying. (2019).

Remark. The TD-learning can also be interpreted as min-
imizing the modified loss function at each iteration

l(θ; θ′) :=
1

2
Es,a[(Es′,r[r(s, a) + γJθ′(s

′)]− Jθ(s))2],

where θ stands for an online variable and θ′ stands for a
target variable. At each iteration step k, it sets the target
variable to the value of current online variable and performs
a stochastic gradient step, θk+1 = θk−αk ∇̃θl(θ; θk)

∣∣∣
θ=θk

.

A full algorithm is described in Algorithm 1.

Algorithm 1 Standard TD-Learning
1: Initialize θ0 randomly and set θ′0 = θ0.
2: for iteration k = 0, 1, . . . do
3: Sample s ∼ d(·) and a ∼ π(s, ·)
4: Sample s′ and r(s, a) from SO
5: Let gk = φ(s)(r(s, a) + γφ(s′)T θ′k − φ(s)T θk)
6: Update θk+1 = θk − αkgk
7: Update θ′k+1 = θk+1

8: end for

Inspired by the the recent target-based deep Q-learning al-
gorithms (Mnih et al., 2015), we consider several alternative
updating rules for the target variable that are less aggressive
and more general. This then leads to the so-called target-
based TD-learning. One of the potential benefits is that by
slowing down the update for the target variable, we can re-
duce the correlation of the target value, or the variance in the
gradient estimation, which would then improve the stability
of the algorithm. To this end, we introduce three variants
of target-based TD: averaging TD, double TD, and periodic
TD, each of which corresponds to a different strategy of the
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target update. In the following sections, we discuss these
algorithms in details and provide their convergence analysis.

3. Averaging TD-Learning (A-TD)
We start by integrating TD-learning with the Polyak av-
eraging strategy for target variable update. This is moti-
vated by the recent deep Q-learning (Mnih et al., 2015) and
DDPG (Lillicrap et al., 2015). It’s worth pointing out that
such a strategy has been commonly used in the deep Q-
learning framework, but the convergence analysis remains
absent to our best knowledge. Here we first study this for
the TD-learning. The basic idea is to minimize the modified
loss, l(θ; θ′), with respect to θ while freezing θ′, and then
enforce θ′ → θ (target tracking). Roughly speaking, the
tracking step, θ′ → θ, is executed with the update

θk+1 = θk − αk ∇̃θl(θ; θ′k)
∣∣∣
θ=θk

,

θ′k+1 = θ′k + αkδ(θk − θ′k),

where δ > 0 is the parameter used to adjust the update
speed of the target variable and ∇̃θl(θ; θ′k) is a stochastic
estimation of ∇θl(θ; θ′k). A full algorithm is summarized
in Algorithm 2, which is called averaging TD (A-TD).

Compared to the standard TD-learning in Algorithm 1, the
only difference comes from the target variable update in
the last line of Algorithm 2. In particular, if we set αk =
1/δ and replace θk with θk+1 in the second update, then it
reduces to the TD-learning.

Algorithm 2 Averaging TD-Learning (A-TD)
1: Initialize θ0 and θ′0 randomly.
2: for iteration k = 0, 1, . . . do
3: Sample s ∼ d(·) and a ∼ π(s, ·)
4: Sample s′ and r(s, a) from SO
5: Let gk = φ(s)(r(s, a) + γφ(s′)T θ′k − φ(s)T θk)
6: Update θk+1 = θk − αkgk
7: Update θ′k+1 = θ′k + αkδ(θk − θ′k)
8: end for

Next, we prove its convergence under certain assumptions.
The convergence proof is based on the ODE (ordinary dif-
ferential equation) approach (Bhatnagar et al., 2012), which
is standard technique used in the RL literature (Sutton et al.,
2009b). In the approach, a stochastic recursive algorithm is
converted to the corresponding ODE, and the stability of the
ODE is used to prove the convergence. The ODE associated
with A-TD is θ̇ = −ΦTDΦθ + γΦTDPπΦθ′ + ΦTDRπ

and θ̇′ = δθ − δθ′. We arrive at the following convergence
result.

Theorem 1 Assume that with a fixed policy π, the Markov

chain is ergodic and the step-sizes satisfy

αk > 0,

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞. (2)

Then, θ′k → θ∗ and θk → θ∗ as k → ∞ with probability
one, where

θ∗ = −(ΦTD(γPπ − I)Φ)−1ΦTDRπ. (3)

Remark 1 Note that θ∗ in (3) is not identical to the op-
timal solution of the original problem in (1). Instead, it
is the solution of the projected Bellman equation defined
as Φθ = F(Φθ), where F is the projected Bellman op-
erator defined by F(Φθ) := Π(Rπ + γPπΦθ), where Π
is the projection onto the range space of Φ, denoted by
R(Φ): Π(x) := arg minx′∈R(Φ) ‖x−x′‖2D. The projection
can be performed by the matrix multiplication: we write
Π(x) := Πx, where Π := Φ(ΦTDΦ)−1ΦTD.

Theorem 1 implies that both the target and online variables
of the A-TD converge to θ∗ which solves the projected Bell-
man equation. The proof of Theorem 1 is provided in Ap-
pendix A of the supplemental material based on the stochas-
tic approximation approach, where we apply the Borkar
and Meyn theorem (Bhatnagar et al., 2012, Appendix D).
Alternatively, the multi-time scale stochastic approxima-
tion (Bhatnagar et al., 2012, pp. 23) can be used with slightly
different step-size rules. Due to the introduction of target
variable updates, deriving a finite-sample analysis for the
modified TD-learning is far from straightforward (Bhandari
et al., 2018; Dalal et al., 2018). We will leave this for future
investigation.

4. Double TD-Learning (D-TD)
In this section, we introduce a natural extension of the A-TD,
which has a more symmetric form. The algorithm mirrors
the double Q-learning (Van Hasselt et al., 2016), but with a
notable difference. Here, both the online variable and target
variable are updated in the same fashion by switching roles.
To enforce θ′ → θ, we also add a correction term δ(θ −
θ′) to the gradient update. The algorithm is summarized
in Algorithm 3, and referred to as the double TD-learning
(D-TD).

We provide the convergence of the D-TD with linear func-
tion approximation below. The proof is similar to the proof
of Theorem 1, and is contained in Appendix B of the sup-
plemental material. Noting that asymptotic convergence for
double Q-learning has been established in (Hasselt, 2010)
for tabular case, but no result is yet known when linear
function approximation is used.

Theorem 2 Assume that with a fixed policy π, the Markov
chain is ergodic and the step-sizes satisfy (2). Then, θk →
θ∗ and θ′k → θ∗ as k →∞ with probability one.
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Algorithm 3 Double TD-Learning (D-TD)
1: Initialize θ0 and θ′0 randomly.
2: for iteration k = 0, 1, . . . do
3: Sample s ∼ d(·) and a ∼ π(s, ·)
4: Sample s′ and r(s, a) from SO
5: Let gk = φ(s)(r(s, a) + γφ(s′)T θ′k − φ(s)T θk) +
δ(θ′k − θk)

6: Let g′k = φ(s)(r(s, a) + γφ(s′)T θk − φ(s)T θ′k) +
δ(θk − θ′k)

7: Update θk+1 = θk − αkgk
8: Update θ′k+1 = θ′k − αkg′k
9: end for

If D-TD uses identical initial values for the target and online
variables, then the two updates remain identical, i.e., θk =
θ′k for k ≥ 0. In this case, D-TD is equivalent to the TD-
learning with a variant of the step-size rule. In practice, this
problem can also be resolved if we use different samples for
each update, and the convergence result will still apply to
this variation of D-TD.

Compared to the corresponding form of the double Q-
learning (Hasselt, 2010), D-TD has two modifications. First,
we introduce an additional term, δ(θ′k − θk) or δ(θk − θ′k),
linking the target and online parameter to enforce a smooth
update of the target parameter. This covers double Q-
learning as a special case by setting δ = 0. Moreover, the
D-TD updates both target and online parameters in parallel
instead of randomly. This approach makes more efficient
use of the samples in a slight sacrifice of the computation
cost. The convergence of the randomized version is proved
with slight modification of the corresponding proof (see Ap-
pendix C of the supplemental material for details).

5. Periodic TD-Learning (P-TD)
In this section, we propose another version of the target-
based TD-learning algorithm, which more resembles that
used in the deep Q-learning (Mnih et al., 2015). It corre-
sponds to the periodic update form of the target variable,
which differs from previous sections. Roughly speaking,
the target variable is only periodically updated as follows:

θk+1 = θk − αk ∇̃θl(θ; θk−(k mod L))
∣∣∣
θ=θk

,

where ∇̃θl(θ; θk−(k mod L)) is a stochastic estimator of the
gradient ∇θl(θ; θk−(k mod L)). The standard TD-learning
is recovered by setting L = 1.

Alternatively, one can interpret every L iterations of the
update as contributing to minimizing the modified loss func-
tion

min
θ
l(θ; θ′) :=

1

2
Es,a[(Es′,r[r(s, a)+γJθ′(s

′)]−Jθ(s))2],

while freezing the target variable. In other words, the
above subproblem is approximately solved at each itera-
tion through L steps of stochastic gradient descent. We
formally present the algorithmic idea in a more general
way as depicted in Algorithm 4 and call it the periodic TD
algorithm (P-TD).

Algorithm 4 Periodic TD-Learning (P-TD)
1: Initialize θ0 randomly and set θ′0 = θ0.
2: Set positive integers T and the subroutine iteration steps,
Lk, for k = 0, 1, . . . , T − 1.

3: Set stepsizes, {βt}∞t=0, for the subproblem.
4: for iteration k = 0, 1, . . . , T − 1 do
5: Update θk+1 = SGD(θk, θ

′
k, Lk) such that

E[‖θk+1 − θ∗k+1‖22] ≤ εk+1,

where θ∗k+1 := arg minθ∈Θ l(θ; θ
′
k).

6: Update θ′k+1 = θk+1

7: end for
8: Return θT+1

9: procedure SGD(θk,θ′k,Lk)
. Subroutine: Stochastic gradient decent steps

10: Initialize θk,0 = θk.
11: for iteration t = 0, 1, . . . , Lk − 1 do
12: Sample s ∼ d(·) and a ∼ π(s, ·)
13: Sample s′ and r(s, a) from SO
14: Let gt = φ(s)(r(s, a) + γφ(s′)T θ′k −

φ(s)T θk,t)
15: Update θk,t+1 = θk,t − βtgt
16: end for
17: Return θk,Lk

18: end procedure

For the P-TD, given a fixed target variable θ′k, the subrou-
tine, SGD(θk, θ

′
k, Lk), runs stochastic gradient descent steps

Lk times in order to approximately solve the subproblem
arg minθ∈Rn l(θ; θ′k), for which an unbiased stochastic gra-
dient estimator is obtained by using observations. Upon
solving the subproblem after Lk steps, the next target vari-
able is replaced with the next online variable. This makes it
similar to the original deep Q-learning (Mnih et al., 2015)
as it is periodic if Lk is set to a constant. Moreover, P-TD
is also closely related to the TD-learning Algorithm 1. In
particular, if Lk = 0 for all k = 0, 1, . . . , T − 1, then P-TD
corresponds to the standard TD.

Based on the standard results in Bottou et al. (2018, The-
orem 4.7), the SGD subroutine converges to the optimal
solution, θ∗k+1 := arg minθ∈Rn l(θ; θ′k). But as we only
apply a finite number Lk steps of SGD, the subroutine will
return an approximate solution with a certain error bound
εk in expectation, i.e., E[‖θk+1 − θ∗k+1‖22|θk] ≤ εk+1.
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Below, we establish a finite-time convergence analysis of P-
TD. We first characterize the expected error of the solution.

Theorem 3 Consider Algorithm 4. We have

E[‖ΦθT − Φθ∗‖D]

≤‖Φ‖D
√

max
s∈S

d(s)

T−1∑
k=1

γT−k
√
εk + γTE[‖Φθ0 − Φθ∗‖D].

Moreover,

P[‖ΦθT − Φθ∗‖D ≥ τ ] ≤ γTE[‖Φθ0 − Φθ∗‖D]

τ

+
‖Φ‖D

√
maxs∈S d(s)

τ

T−1∑
k=1

γT−k
√
εk.

The result implies that P-TD achieves an ε-optimal so-
lution with high probability by approaching T → ∞
and controlling the error bounds εk. In particular, if
εk = ε for all k ≥ 0, then P[‖ΦθT − Φθ∗‖D ≥ τ ] ≤
‖Φ‖D

√
maxs∈S d(s)

√
ε

τ(1−γ) + γTE[‖Φθ0−Φθ∗‖D]
τ . One can see that

the error is essentially decomposed into two terms, one from
the approximation errors induced from SGD procedures and
one from the contraction property of solving the subprob-
lems, which can also be viewed as solving the projected
Bellman equations. Full details of the proof can be found
in Appendix D of the supplemental material.

To analyze the approximation error from the SGD proce-
dure, existing convergence results in Bottou et al. (2018,
Theorem 4.7) can be applied with some modifications.

Proposition 1 Suppose that the SGD method in Algo-
rithm 4 is run with a stepsize sequence such that, for all
t ≥ 0, βt = β

κ+t+1 for some β > 1/λmin(ΦTDΦ) and
κ > 0 such that

β0 =
β

κ+ 2
≤ 1√

λmax(ΦTDΦΦTDΦ)(ξ3 + 1)
,

Then, for any 0 ≤ t ≤ Lk − 1, we have

E[‖θ∗k+1 − θk,t‖22|θk] ≤ 2

λmin(ΦTDΦ)

χ1 + χ2‖θk − θ∗‖22
κ+ t+ 1

,

where

χ1 :=(ξ1 + ξ2‖θ∗‖22)χ3 +
(κ+ 1)

2
‖Rπ + PπΦθ∗ − Φθ∗‖2D,

χ2 :=
ξ2χ3

2(βλmin(ΦTDΦ)− 1)

+
(κ+ 1)

2
λmax((PπΦ− Φ)TD(PπΦ− Φ)),

and

χ3 :=
β2
√
λmax(ΦTDΦΦTDΦ)

2(βλmin(ΦTDΦ)− 1)
,

ξ1 :=3σ2‖Φ‖22 + 2(1 + ξ3)2‖ΦTDRπ‖22,
ξ2 :=3‖Φ‖42 + 2(1 + ξ3)2λmax(ΦT (Pπ)TDΦΦTDPπΦ),

ξ3 :=
3‖Φ‖42

λmin(ΦTDΦΦTDΦ)
.

Proposition 1 ensures that the subroutine iterate, θk, con-
verges to the solution of the subproblem at the rate of
O(1/Lk). Combining Proposition 1 with Theorem 3, the
overall sample complexity is derived in the following propo-
sition. We defer the proofs to Appendix E and Appendix F
of the supplemental material.

Proposition 2 (Sample Complexity) The ε-optimal solu-
tion, E[‖θT − θ∗‖D] ≤ ε, is obtained by Algorithm 4 with
at most

ρ1(ρ2ε
−2 + 4χ2) ln(ε−1)

number of SO calls , where

ρ1 :=
2‖Φ‖2D

λmin(ΦTDΦ)2(1− γ)2 ln γ−1
,

ρ2 := χ1λmin(ΦTDΦ) + χ2E[‖Φθ0 − Φθ∗‖2D],

and χ1 and χ2 are defined in Proposition 1.

As a result, the overall sample complexity of P-TD is
bounded by O((1/ε2) ln(1/ε)). As mentioned earlier, non-
asymptotic analysis for even the standard TD algorithm
is only recently developed in a few work (Bhandari et al.,
2018; Dalal et al., 2018; Srikant & Ying., 2019). Our sample
complexity result on P-TD, which is a target-based TD algo-
rithm, matches with that developed in Bhandari et al. (2018)
with similar decaying step-size sequence, up to a log factor.
Yet, our analysis is much simpler and builds directly upon
existing results on stochastic gradient descent. Moreover,
from the computational perspective, although P-TD runs in
two loops, it is as the efficient as standard TD.

P-TD also shares some similarity with the least squares
temporal difference (LSTD, Bradtke & Barto (1996)) and
its stochastic approximation variant (fLSTD-SA, Prashanth
et al. (2014)). LSTD is a batch algorithm that directly es-
timates the optimal solution as described in (3) through
samples, which can also be viewed as exactly computing the
solution to a least squares subproblem. fLSTD-SA alleviates
the computation burden by applying the stochastic gradient
descent (the same as TD update) to solve the subproblems.
The key difference between fLSTD-SA and P-TD lies in
that the objective for P-TD is adjusted by the target variables
across cycles. Lastly, P-TD is also closely related to and
can be viewed as a special case of the least-squares fitted
Q-iteration (Antos et al., 2008). Both of them solves a simi-
lar least squares problems using target values. However, for
P-TD, we are able to directly apply the stochastic gradient
descent to address the subproblems to near-optimality.
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(a) Error evolution over [0, 3000] (b) Error evolution over [2000, 3000]

Figure 1: (a) Blue line: error evolution of the standard TD-learning with the step-size αk = 1000/(k + 10000); Red
line: error evolution of A-TD with the step-size αk = 1000/(k + 10000) and δ = 0.9. The shaded areas depict empirical
variances obtained with several realizations. (a) Error over the interval [0, 3000]; (b) Error over the interval [2000, 3000].

(a) Error evolution over [0, 3000] (b) Error evolution over [2000, 3000]

Figure 2: Blue line: error evolution of the standard TD-learning with the step-size αk = 1000/(k+ 10000); Red line: error
evolution of D-TD with the step-size αk = 1000/(k + 10000) and δ = 0.9. The shaded areas depict empirical variances
obtained with several realizations. (a) Error over the interval [0, 3000]; (b) Error over the interval [2000, 3000].

6. Simulations
In this section, we provide some preliminary numerical
simulation results showing the efficiency of the proposed
target-based TD algorithms. We stress that the main goal of
this paper is to introduce the family of target-based TD algo-
rithms with linear function approximation and provide theo-
retical convergence analysis for target TD algorithms, as an
intermediate step towards the understanding of target-based
Q-learning algorithms. Hence, our numerical experiments
simply focus on testing the convergence, sensitivity in terms
of the tuning parameters of these target-based algorithms,
as well as effects of using target variables as opposed to the
standard TD-learning.

6.1. Convergence of A-TD and D-TD

In this example, we consider an MDP with γ = 0.9, |S| =
10,

Pπ =


0.1 0.1 · · · 0.1

0.1 0.1
. . .

...
...

. . .
. . . 0.1

0.1 · · · 0.1 0.1

 ∈ R10×10,

and rπ(s) ∼ U [0, 20], where U [0, 20] denotes the uniform
distribution in [0, 20] and rπ(s) stands for the reward given
policy π and the current state s. The action space and
policy are not explicitly defined here. For the linear function
approximation, we consider the feature vector with the radial
basis function (Geramifard et al., 2013) (n = 2), φ(s) =[

exp(−(s−0)2)
2×102 , exp(−(s−10)2)

2×102

]
∈ R2.

Simulation results are given in Figure 1, which illustrate
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(a) Error evolution over [0, 40000] (b) Error evolution over [39000, 40000]

Figure 3: Blue line: error evolution of the standard TD-learning with the step-size αk = 10000/(k + 10000). Red line:
error of P-TD with the step-size βt = (10000 · (0.997)k)/(10000 + t) and Lk = 40. The shaded areas depict empirical
variances obtained with several realizations. (a) Error over the interval [0, 30000]; (b) Error over the interval [29000, 30000].

error evolution of the standard TD-learning (blue line) with
the step-size, αk = 1000/(k + 10000) and the proposed
A-TD (red line) with the αk = 1000/(k + 10000) and
δ = 0.9. The design parameters of both approaches are set
to demonstrate reasonably the best performance with trial
and errors. Additional simulation results in Appendix G of
the supplemental material provide comparisons for several
different parameters. Figure 1(b) provides the results in
the same plot over the interval [2000, 3000]. The results
suggest that although A-TD with δ = 0.9 initially shows
slower convergence, it eventually converges faster than the
standard TD with lower variances after certain iterations.
With the same setting, comparative results of D-TD are
given in Figure 2.

6.2. Convergence of P-TD

In this section, we provide empirical comparative analy-
sis of P-TD and the standard TD-learning. The conver-
gence results of both approaches are quite sensitive to
the design parameters to be determined, such as the step-
size rules and total number of iterations of the subprob-
lem. We consider the same example as above but with
an alternative linear function approximation with the fea-
ture vector consisting of the radial basis function, φ(s) =[

exp(−(s−0)2)
2×102 , exp(−(s−10)2)

2×102 , exp(−(s−20)2)
2×102 .

]
∈ R3. From

our own experiences, applying the same step-size rule, βt,
for every k ∈ {0, 1, . . . , T − 1} yields unstable fluctua-
tions of the error in some cases. For details, the reader
is referred to Appendix G of the supplemental material,
which provides comparisons with different design param-
eters. The results motivate us to apply an adaptive step-
size rules for the subproblem of P-TD so that smaller and
smaller step-sizes are applied as the outer-loop steps in-
creases. In particular, we employ the adaptive step-size rule,

βk,t = (10000 · (0.997)k)/(10000 + t) with Lk = 40 for
P-TD, and the corresponding simulation results are given
in Figure 3, where P-TD outperforms the standard TD with
the step-size, αk = 10000/(k+10000), best tuned for com-
parison. Figure 3(b) provides the results in Figure 3 in the
interval [29000, 30000], which clearly demonstrates that the
error of P-TD is smaller with lower variances.

7. Conclusion
In this paper, we propose a new family of target-based TD-
learning algorithms, including the averaging TD, double TD,
and periodic TD, and provide theoretical analysis on their
convergences. The proposed TD algorithms are largely in-
spired by the recent success of deep Q-learning using target
networks and mirror several of the practical strategies used
for updating target network in the literature. Simulation re-
sults show that integrating target variables into TD-learning
can also help stabilize the convergence by reducing vari-
ance of and correlations with the target. Our convergence
analysis provides some theoretical understanding of target-
based TD algorithms. We hope this would also shed some
light on the theoretical analysis for target-based Q-learning
algorithms and non-linear RL frameworks.

Possible future topics include (1) developing finite-time
convergence analysis for A-TD and D-TD; (2) extending the
analysis of the target-based TD-learning to the Q-learning
case w/o function approximation; and (3) generalizing the
target-based framework to other variations of TD-learning
and Q-learning algorithms.
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O(n) temporal-difference algorithm for off-policy learn-
ing with linear function approximation. In Advances in
neural information processing systems, pp. 1609–1616,
2009b.

Tsitsiklis, J. N. and Van Roy, B. An analysis of temporal-
difference learning with function approximation. IEEE
Transactions on Automatic Control, 42(5):674–690, 1997.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double Q-learning. In AAAI, volume 2,
pp. 5. Phoenix, AZ, 2016.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M.,
and Freitas, N. Dueling network architectures for deep
reinforcement learning. In International Conference on
Machine Learning, pp. 1995–2003, 2016.

Watkins, C. J. C. H. and Dayan, P. Q-learning. Machine
learning, 8(3-4):279–292, 1992.

Yu, H. and Bertsekas, D. P. Convergence results for some
temporal difference methods based on least squares. IEEE
Transactions on Automatic Control, 54(7):1515–1531,
2009.



Target TD-Learning

Appendix
A. Proof of Theorem 1
The proof is based on the analysis of the general stochastic recursion

θk+1 = θk + αk(h(θk) + εk+1).

where h is a mapping h : Rn → Rn. If only the asymptotic convergence is our concern, the ODE (ordinary differential
equation) approach (Bhatnagar et al., 2012) is a convenient tool. Before starting the main proof, we review essential
knowledge of the linear system theory (Chen, 1995).

Definition 1 (Chen (1995, Definition 5.1)) The ODE, ẋ(t) = Ax(t), t ≥ 0, where A ∈ Rn×n and x(t) ∈ Rn, is
asymptotically stable if for every finite initial state x(0) = x0, x(t)→ 0 as t→∞.

Definition 2 (Hurwitz matrix) A complex square matrixA ∈ Cn×n is Hurwitz if all eigenvalues ofA have strictly negative
real parts.

Lemma 1 (Chen (1995, Theorem 5.4)) The ODE, ẋ(t) = Ax(t), t ≥ 0, is asymptotically stable if and only if A is
Hurwitz.

Lemma 2 (Lyapunov theorem (Chen, 1995, Theorem 5.5)) A complex square matrix A ∈ Cn×n is Hurwitz if and only
if there exists a positive definite matrix M = MH � 0 such that AHM +MA ≺ 0, where AH is the complex conjugate
transpose of A.

Lemma 3 (Schur complement (Boyd & Vandenberghe, 2004, pp. 651)) For any complex block matrix
[
A B
BT C

]
, we

have [
A B
BT C

]
� 0⇔ A � 0, C −BTA−1B.

Convergence of many RL algorithms rely on the ODE approaches (Bhatnagar et al., 2012). One of the most popular
approach is based on the Borkar and Meyn theorem (Bhatnagar et al., 2012, Appendix D). Basic technical assumptions are
given below.

Assumption 4

1. The mapping h : Rn → Rn is globally Lipschitz continuous and there exists a function h∞ : Rn → Rn such that

lim
c→∞

h(cθ)

c
= h∞(θ), ∀θ ∈ Rn.

2. The origin in Rn is an asymptotically stable equilibrium for the ODE θ̇(t) = h∞(θ(t)).

3. There exists a unique globally asymptotically stable equilibrium θe ∈ Rn for the ODE θ̇(t) = h(θ(t)), i.e., θ(t)→ θe

as t→∞.

4. The sequence {εk,Gk, k ≥ 1} with Gk = σ(θi, εi, i ≤ k) is a Martingale difference sequence. In addition, there exists
a constant C0 <∞ such that for any initial θ0 ∈ Rn, we have E[‖εk+1‖2|Gk] ≤ C0(1 + ‖θk‖2),∀k ≥ 0.

5. The step-sizes satisfy (2).

Lemma 4 (Borkar and Meyn theorem) Suppose that Assumption 4 holds. For any initial θ0 ∈ Rn, supk≥0 ‖θk‖ < ∞
with probability one. In addition, θk → θe as k →∞ with probability one.
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Based on the technical results, we are in position to prove Theorem 1.

Proof of Theorem 1: The ODE (??) can be expressed as the linear system with an affine term

˙̄θ = Aθ̄ + b =: h

([
θ
θ′

])
,

where

A :=

[
−ΦTDΦ γΦTDPπΦ

δI −δI

]
, b :=

[
ΦTDRπ

0

]
, θ̄ :=

[
θ
θ′

]
.

Therefore, the mapping h : Rn → Rn, defined by h(θ̄) = Aθ̄ + b, is globally Lipschitz continuous. Moreover, we have

h∞(θ̄) := lim
t→∞

h(tθ̄)/t = Aθ̄.

Therefore, the first condition in Assumption 4 holds. To meet the second condition of Assumption 4, by Lemma 1, it suffices
to prove that A is Hurwitz. The reason is explained below. Suppose that A is Hurwitz. If A is Hurwitz, it is invertible,
and there exists a unique equilibrium θ̄e ∈ Rn for the ODE ˙̄θ = Aθ̄ + b such that 0 = Aθ̄e + b, i.e., θ̄e = −A−1b. Due
to the constant term b, it is not clear if such equilibrium point, θ̄e, is globally asymptotically stable. From (Antsaklis &
Michel, 2007, pp. 143), by letting x = θ̄ − θ̄e, the ODE can be transformed to ẋ = Ax, where the origin is the globally
asymptotically stable equilibrium point since A is Hurwitz. Therefore, θ̄e is globally asymptotically stable equilibrium point
of ˙̄θ = Aθ̄ + b, and the third condition of Assumption 4 is satisfied. Therefore, it remains to prove that A is Hurwitz. We
first provide a simple analysis and prove that there exists a δ∗ > 0 such that for all δ ≥ δ∗, A is Hurwitz. To this end, we use
the property of the similarity transformation (Antsaklis & Michel, 2007, pp. 88), i.e., A is Hurwitz if and only if BAB−1 is

Hurwitz for any invertible matrix B. Letting B =

[
I 0
−I I

]
, one gets

BAB−1 =

[
I 0
−I I

] [
−ΦTDΦ γΦTDPπΦ

δI −δI

] [
I 0
I I

]
=

[
−ΦTDΦ + γΦTDPπΦ γΦTDPπΦ
ΦTDΦ− γΦTDPπΦ −γΦTDPπΦ− δI

]

To prove that BAB−1 is Hurwitz, we use Lemma 2 with M = I and check the sufficient condition

BAB−1 +BATB−1

=

[
ΦTD(−I + γPπ)Φ γΦTDPπΦ
−ΦTD(−I + γPπ)Φ −δI − γΦTDPπΦ

]
+

[
ΦTD(−I + γPπ)Φ γΦTDPπΦ
−ΦTD(−I + γPπ)Φ −δI − γΦTDPπΦ

]T
=

[
ΦTD(−I + γPπ)Φ + ΦT (−I + γPπ)TDΦ −ΦT (−I + γPπ)TDΦ + γΦTDPπΦ
−ΦTD(−I + γPπ)Φ + γΦT (Pπ)TDΦ −2δI − γΦTDPπΦ− γΦT (Pπ)TDΦ

]
≺0. (4)

To check the above matrix inequality, note that ΦTD(γPπ − I)Φ is negative definite (Bertsekas & Tsitsiklis, 1996,
Lemma 6.6, pp. 300). By using the Schur complement Lemma 3, (4) holds if and only if

0 ≺2δI + γΦTDPΦ + γΦTPTDΦ

− {−ΦT (−I + γPπ)TDΦ + γΦTDPπΦ}T (−ΦTD(−I + γP )Φ− ΦT (−I + γP )TΦ)−1

× {−ΦT (−I + γPπ)TDΦ + γΦTDPπΦ} (5)

The above inequality holds for a sufficiently large δ, i.e., there exists δ∗ > 0 such that the above inequality holds for all
δ ≥ δ∗. Therefore, BAB−1 and A are Hurwitz for all δ ≥ δ∗. A natural question is whether or not δ∗ = 0. We prove that
this is indeed the case. The proof requires rather more involved analysis.

Claim: A is Hurwitz for all δ > 0.
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Proof: We investigate the equation [
−ΦTDΦ γΦTDPπΦ

δI −δI

] [
x
y

]
= λ

[
x
y

]
,

where
[
x
y

]
∈ C2n is an eigenvector and λ ∈ C is an eigenvalue of A. Equivalently, it is written by

λx =− ΦTDΦx+ γΦTDPπΦy, (6)
λy =δ(x− y). (7)

Solving (7) leads to y = δ
δ+λx, and plugging this expression into y in (6) yields(

−ΦTDΦ + γ
δ

δ + λ
ΦTDPπΦ

)
x = λx. (8)

For any δ > 0, the complex number in the above equation

s :=
δ

δ + λ
=
δ(λ∗ + δ)

|λ+ δ|2
∈ C, (9)

where λ∗ is the complex conjugate of λ ∈ C and | · | is the absolute value of a complex number (·), has the absolute value
less than or equal to 1, i.e., |s| = δ

|λ+δ| < 1. Now, we prove that the complex matrix, ΦTD(−I + sγPπ)Φ, is Hurwitz for

any s ∈ C such that |s| ≤ 1. For any real vector v ∈ R|S|, we have

vT (γsDPπ + γs∗(Pπ)TD)v =γ(s+ s∗)vTD1/2D1/2Pπv

≤γ(s+ s∗)‖D1/2v‖2‖D1/2Pπv‖2
=γ(s+ s∗)‖v‖D‖Pπv‖D
≤γ(s+ s∗)‖v‖D‖v‖D
=γ(s+ s∗)‖v‖2D
=γ(s+ s∗)vTDv

≤γ2vTDv,

where the first inequality is due to the Cauchy-Schwarz inequality, the second inequality is due to Tsitsiklis & Van Roy
(1997, Lemma 1), and the final inequality follows from the fact that |s| ≤ 1 implies −2 ≤ s + s∗ ≤ 2. The last result
ensures vT (sγDPπ + s∗γ(Pπ)TD)v � γ2vTDv for any v ∈ R|S|, and equivalently,

D(−I + sγPπ) + (−I + s∗γ(Pπ)T )D � 2(γ − 1)D.

Multiplying both sides of the above inequality by Φ from the right and its transpose from the left, one gets

ΦTD(−I + sγPπ)Φ + ΦT (−I + s∗γ(Pπ)T )DΦ � 2(−1 + γ)ΦTDΦ ≺ 0.

By Lemma 2 with M = I , we conclude that the complex matrix, ΦTD(−I + sγPπ)Φ, is Hurwitz for any s ∈ C such
that |s| ≤ 1. Based on this observation, we return to (8) and conclude that −ΦTDΦ + γ δ

δ+λΦTDPπΦ is Hurwitz for any
λ ∈ C. By the definition of a Hurwitz matrix in Definition 2 and the eigenvalue, we conclude that the real part of λ should
be always strictly negative. Therefore, A is Hurwitz for any δ > 0. This completes the proof. �.

Next, we prove the remaining parts. Since εk+1 can be expressed as an affine map of θ̄k = [θ̄k, θ
′
k]T , it can be easily proved

that the fourth condition of Assumption 4 is satisfied. In particular, if we define mk :=
∑k
i=0 εi, then mk is Martingale, and

εk is a Martingale difference sequence. Therefore, the fourth condition is met.

Finally, by Lemma 4, θ̄k converges to θ̄e such that

h(θ̄) =

[
−ΦTDΦ γΦTDPπΦ

δI −δI

] [
θ
θ′

]
+

[
ΦTDRπ

0

]
= 0.

By the block matrix inversion, solving the equation leads to the desired conclusion, i.e., θ̄e =

[
θ∗

θ∗

]
.



Target TD-Learning

B. Proof of Theorem 2
The ODE corresponding to Algorithm 3 can be expressed as the linear system with an affine term

˙̄θ = Aθ̄ + b =: h

([
θ
θ′

])
,

where

A :=

[
−ΦTDΦ− δI αΦTDPπΦ + δI
αΦTDPπΦ + δI −ΦTDΦ− δI

]
, b :=

[
ΦTDRπ

ΦTDRπ

]
, θ̄ :=

[
θ
θ′

]
.

The proof follows the same lines as the proof of Theorem 1. Therefore, we only prove that A is Hurwitz here. In particular,
A can be represented by A = B + CTBC, where

B =

[
−ΦTDΦ ΦTDPπΦ

δI −δI

]
, C =

[
0 I
I 0

]
.

From the proof of Theorem 1, B is Hurwitz, and admits the Lyapunov matrix M = I such that BTM +MB ≺ 0. Thus,[
B 0
0 B

]
is Hurwitz as well, and

[
B 0
0 B

]T
+

[
B 0
0 B

]
≺ 0.

Pre- and post-multiplying the left-hand side of the about inequality by the full rank matrix
[
I CT

]
and its transpose,

respectively, yields[
I
C

]T [
B 0
0 B

]T [
I
C

]
+

[
I
C

]T [
B 0
0 B

] [
I
C

]
= B + CBC +BT + CBTC = AT +A ≺ 0.

By Lemma 2 with M = I , this implies that A is Hurwitz. This completes the proof.

C. Randomized version of D-TD
We consider a randomized version of D-TD in Algorithm 5, which updates either the target or online parameters randomly.

Algorithm 5 Double TD-Learning (D-TD) with Random Update
1: Initialize θ0 and θ′0 randomly.
2: for iteration k = 0, 1, . . . do
3: Sample s ∼ d(·)
4: Sample a ∼ π(s, ·)
5: Sample s′ and r(s, a) from SO
6: Choose UPDATE(A) with probability ν ∈ (0, 1) and UPDATE(B) with probability 1− ν
7: if UPDATE(A) then
8: Let gk = φ(s)(r(s, a) + γφ(s′)T θ′k − φ(s)T θk) + δ(θ′k − θk)
9: Update θk+1 = θk − αkgk

10: else if UPDATE(B) then
11: Let g′k = φ(s)(r(s, a) + γφ(s′)T θk − φ(s)T θ′k) + δ(θk − θ′k)
12: Update θ′k+1 = θ′k − αkg′k
13: end if
14: end for

We have the convergence result similar to Theorem 2.
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Theorem 4 Consider Algorithm 5 and assume that with a fixed policy π, the Markov chain is ergodic and the step-sizes
satisfy (2). Then, θk → θ∗ and θ′k → θ∗ as k →∞ with probability one.

Proof: The proof is a slight modification of the proof of Theorem 2. The ODE corresponding to Algorithm 5 can be
expressed as the linear system with an affine term

˙̄θ = ΛAθ̄ + b =: h

([
θ
θ′

])
,

where A is defined in Appendix B and Λ =

[
νI 0
0 (1− ν)I

]
. The remaining part is to prove that ΛA is Hurwitz. From

the proof of Theorem 2, we know AT + A ≺ 0, which is equivalent to (ATΛ)Λ−1 + Λ−1(ΛA) ≺ 0. By Lemma 2 with
M = Λ−1, this implies that ΛA is Hurwitz. This completes the proof. �

D. Proof of Theorem 3
Before presenting the proof, we first introduce a deterministic version of P-TD summarized in Algorithm 6 in order to make
smooth steps forward. For a fixed θ′k (target variable), the subroutine, GradientDecent, runs gradient descent steps Lk
times in order to approximately solve the subproblem, arg minθ∈Rn l(θ; θ′k). By the standard results in Bubeck et al. (2015,
Theorem 10.3), the gradient descent iterations converge to the optimal solution θ∗k+1 := arg minθ∈Rn l(θ; θ′k) linearly, the
finite iterates reache an approximate solution within a certain error bound εk. Upon solving the subproblem, the next target
variable is replaced with the next online variable.

Algorithm 6 Deterministic Periodic TD-Learning
1: Initialize θ0 randomly and set θ′0 = θ0

2: Set positive integers T and Lk for k = 0, 1, . . . , T − 1
3: Set stepsizes, {βt}∞t=0, for the subproblem
4: for iteration k = 0, 1, . . . , T − 1 do
5: Update

θk+1 = GradientDecent(θk, θ
′
k, Lk)

such that

‖θk+1 − θ∗k+1‖22 ≤ εk+1,

where εk > 0 is an error bound and θ∗k+1 := arg minθ∈Rn l(θ; θ′k).
6: Update θ′k+1 = θk+1

7: end for
8: Return θT+1

9: procedure GRADIENTDECENT(θk,θ′k,Lk)
. Subroutine: Gradient decent steps

10: Set θk,0 = θk
11: for iteration t = 0, 1, . . . , Lk − 1 do
12: Update

θk,t+1 = θk,t − βt ∇θl(θ; θ′k)|θ=θk,t
.

13: end for
14: Return θk,Lk

15: end procedure

The overall convergence relies on the fact that approximately solving the subproblem can be interpreted as approximately
solving a projected Bellman equation defined below.
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Definition 3 (Projected Bellman equation) The projected Bellman equation is defined as

Φθ = F(Φθ),

where F is the projected Bellman operator defined by

F(Φθ) := Π(Rπ + γPπΦθ),

Π is the projection onto the range space of Φ, denoted by R(Φ): Π(x) := arg minx′∈R(Φ) ‖x− x′‖2D. The projection can
be performed by the matrix multiplication: we write Π(x) := Πx, where Π := Φ(ΦTDΦ)−1ΦTD.

By direct calculations, we can conclude that the solution of the projected Bellman equation is not identical to the solution of
the value function evaluation problem in (1), while it only approximates the solution of (1). The solution of the projected
Bellman equation is denoted by θ∗, i.e.,

Φθ∗ = F(Φθ∗).

Therefore, Algorithm 6 executes an approximate dynamic programming procedure. Based on these observations, the
convergence of Algorithm 6 is given below.

Proposition 3 Consider Algorithm 6. We have

‖ΦθT − Φθ∗‖D ≤
√

max
s∈S

d(s)‖Φ‖D
T∑
k=1

γT−k
√
εk + γT ‖Φθ0 − Φθ∗‖D.

To prove Proposition 3, we first summarize some essential technical lemmas. The first lemma states that the operator F is a
contraction.

Lemma 5 The operator F is a γ-contraction with respect to ‖ · ‖D, i.e.,

‖F(Φx)− F(Φy)‖D ≤ γ‖Φx− Φy‖D.

Proof: We have

‖F(Φx)− F(Φy)‖D =‖Π(Rπ + γPπΦx)−Π(Rπ + γPπΦy)‖D
≤‖Rπ + γPπΦx− (Rπ + γPπΦy)‖D
=γ‖PπΦ(x− y)‖D
≤γ‖Φ(x− y)‖D,

where the first inequality is due to the non-expansive mapping property of the projection, and the second inequality is due
to Tsitsiklis & Van Roy (1997, Lemma 1). This completes the proof. �

Lemma 6 θ∗k+1 in Algorithm 6 satisfies Φθ∗k+1 = F(Φθ′k).

Proof: The result follows by solving the optimality condition∇θl(θ; θ′k) = −ΦTD(Rπ+γPπΦθ′k−Φθ) = 0. In particular,
it implies

ΦTDΦθ = ΦTD(Rπ + γPπΦθ′k).

Multiplying both sides by (ΦTDΦ)−1 from the left, we have

θ = (ΦTDΦ)−1ΦTD(Rπ + γPπΦθ′k).

Again, we multiply both sides by Φ from the left to obtain

Φθ = Φ(ΦTDΦ)−1ΦTD(Rπ + γPπΦθ′k) = Π(Rπ + γPπΦθ′k).

where Π := Φ(ΦTDΦ)−1ΦTD. This completes the proof. �
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Lemma 7 l(θ; θ′k) := 1
2‖R

π + γPπΦθ′k − Φθ‖2D is µ-strongly convex with µ := λmin(ΦTDΦ).

Proof: Noting that

l(θ; θ′k) =
1

2
(Rπ + γPπΦθ′k)TD(Rπ + γPπΦθ′k) +

1

2
θTΦTDΦθ − (Rπ + γPπΦθ′k)TD(Φθ)

and that ΦTDΦ − λmin(ΦTDΦ)I � 0, we conclude that l(θ; θ′k) − 1
2‖θ‖

2
2λmin(ΦTDΦ) is convex. Therefore, by the

definition of the strongly convex function, the desired conclusion holds. �

Proof of Proposition 3: We have

‖Φθk+1 − Φθ∗‖D =‖Φθk+1 − Φθ∗k+1 + Φθ∗k+1 − Φθ∗‖D
≤‖Φθk+1 − Φθ∗k+1‖D + ‖Φθ∗k+1 − Φθ∗‖D
≤‖Φ‖D‖θk+1 − θ∗k+1‖D + ‖Φθ∗k+1 − Φθ∗‖D
≤
√

max
s∈S

d(s)‖Φ‖D
√
εk+1 + ‖Φθ∗k+1 − Φθ∗‖D

=
√

max
s∈S

d(s)‖Φ‖D
√
εk+1 + ‖F(Φθk)− F(Φθ∗)‖D

≤
√

max
s∈S

d(s)‖Φ‖D
√
εk+1 + γ‖Φθk − Φθ∗‖D,

where the second equality is due to Lemma 6 and the last inequality is due to Lemma 5. Combining the last inequality over
k = 0, 1, . . . , T − 1, one gets the desired result. The last result is obtained by using the Markov inequality. �

Note that the second term in the inequality of Proposition 3 vanishes as T →∞. The first terms depend on the error incurred
at each iteration. In particular, if εk = ε for all k ≥ 0, then

‖ΦθT − Φθ∗‖D ≤
√

maxs∈S d(s)‖Φ‖D
√
ε

1− γ
+ γT ‖Φθ0 − Φθ∗‖D.

Therefore, we have

lim
T→∞

‖ΦθT − Φθ∗‖D ≤
√

maxs∈S d(s)‖Φ‖D
√
ε

1− γ
.

The remaining error term can vanish if ε→ 0, and it can be done by increasing Lk →∞.

Finally, the proof of Theorem 3 follows similar lines to the proof of Proposition 3 except for the expectation.

Proof of Theorem 3: We have

E[‖Φθk+1 − Φθ∗‖D] =E[‖Φθk+1 − Φθ∗k+1 + Φθ∗k+1 − Φθ∗‖D]

≤E[‖Φθk+1 − Φθ∗k+1‖D] + E[‖Φθ∗k+1 − Φθ∗‖D]

≤‖Φ‖DE[‖θk+1 − θ∗k+1‖D] + E[‖Φθ∗k+1 − Φθ∗‖D]

≤
√

max
s∈S

d(s)‖Φ‖D
√
εk+1 + E[‖Φθ∗k+1 − Φθ∗‖D]

=
√

max
s∈S

d(s)‖Φ‖D
√
εk+1 + E[‖F(Φθk)− F(Φθ∗)‖D]

≤
√

max
s∈S

d(s)‖Φ‖D
√
εk+1 + γE[‖Φθk − Φθ∗‖D],

where the third inequality is due to E[
√
‖θk+1 − θ∗k+1‖22] ≤

√
E[‖θk+1 − θ∗k+1‖22] ≤ √εk+1. Therefore, we have

E[‖Φθk+1 − Φθ∗‖D] ≤ ‖Φ‖D
√

max
s∈S

d(s)
√
εk+1 + γE[‖Φθk − Φθ∗‖D].

Combining the last inequality over k = 0, 1, . . . , T − 1, the desired result is obtained. �
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E. Proof of Proposition 1
The convergence results in Bottou et al. (2018, Theorem 4.7) can be applied to the procedure SGD of Algorithm 4. We first
summarize the results in Bottou et al. (2018). Consider the optimization problem

θ∗ := arg minθ∈Rn F (θ),

where F : Rn → R, let g(θt) be an unbiased i.i.d. stochastic estimation of∇θF (θ) at θ = θt, and consider the stochastic
gradient descent method in Algorithm 7.

Algorithm 7 Stochastic Gradient Descent (SGD)
1: Initialize θ0.
2: for iteration t = 0, 1, . . . do
3: Compute a stochastic vector g(θt)
4: Choose a step size βt > 0
5: Set the new iterate as θt+1 = θt − βtg(θt).
6: end for

With appropriate assumptions, its convergence can be proved. We first list the assumptions.

Assumption 5 The objective function, F , and SGD Algorithm 7 satisfy the following conditions:

1. F is continuously differentiable and ∇θF is Lipschitz continuous with Lipschitz constant L < 0, i.e., ‖∇F (θ) −
∇F (θ′)‖2 ≤ L‖θ − θ′‖2 for all θ, θ′ ∈ Rn.

2. F is c-strongly convex.

3. The sequence of iterates {θt}∞t=0 is contained in an open set over which F is bounded below by a scalar Finf .

4. There exist scalars µG ≥ µ > 0 such that, for all t ≥ 0,

∇F (θt)
TE[g(θt)|θt] ≥ µ‖∇F (θt)‖22

and

‖E[g(θt)|θt]‖2 ≤ µG‖∇F (θt)‖2.

5. There exist scalars M ≥ 0 and MV ≥ 0 such that, for all k ≥ 0,

V[g(θt)|θt] := E[‖g(θt)‖22|θt]− ‖E[g(θt)|θt]‖22 ≤M +MV ‖∇F (θt)‖22

Under Assumption 5, the convergence of iterates of Algorithm 7 in expectation can be proved.

Lemma 8 Under Assumption 5 (with Finf = F (θ∗)), suppose that the SGD method in Algorithm 7 is run with a stepsize
sequence such that, for all t ≥ 0,

βt =
β

κ+ t+ 1

for some β > 1/(cµ) and κ > 0 such that β0 ≤ µ/(L(M + µ2
G)). Then, for all t ≥ 0, the expected optimality gap satisfies

E[F (θt)− F (θ∗)] ≤ ν

κ+ t+ 1
,

where

ν := max

{
β2LM

2(βcµ− 1)
, (κ+ 1)(F (θ0)− F (θ∗))

}
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To apply Lemma 8 to SGD of Algorithm 4, we will prove that all the conditions in Assumption 5 are satisfied with
F (θ) = l(θ; θ′k) := 1

2‖R
π + γPπΦθ′k − Φθ‖2D. The strong convexity is established in Lemma 7. In the following lemmas,

we prove the Lipschitz continuity of the gradient and the remaining conditions in Assumption 5.

Lemma 9 (Lipschitz continuous gradient) F satisfies

‖∇F (θ)−∇F (θ′)‖2 ≤ L‖θ − θ′‖2, ∀θ, θ′ ∈ Rn

with L =
√
λmax(ΦTDΦΦTDΦ).

Proof: Noting that∇F (θ) = ΦTD(Rπ + PπΦθk − Φθ), we have

‖∇F (θ)−∇F (θ′)‖2 =‖ΦTD(Rπ + PπΦθk − Φθ)− ΦTD(Rπ + PπΦθk − Φθ′)‖2
=‖ΦTDΦ(θ − θ′)‖2

≤
√
λmax(ΦTDΦΦTDΦ)‖θ − θ′‖2,

which proves the desired result. �

Lemma 10 For SGD of Algorithm 4, we have

E[g(θk,t)|θk,t, θk] = ∇θ
(

1

2
‖Rπ + γPπΦθk − Φθ‖2D

)∣∣∣∣
θ=θk,t

,

E[‖g(θk,t)‖22|θk,t, θk] ≤‖Φ‖22(3σ2 + 3‖Φ‖22‖θk‖22 + 3‖Φ‖22‖θk,t‖22).

Proof: By the definition of g(θk,t) in SGD of Algorithm 4, we have

E[g(θk,t)|θk,t, θk] =E[φ(s)(rπ(s) + φT (s′)θk − φ(s)T θk,t)|θk,t, θk]

=E[ΦT es(r
π(s) + eTs′Φθk − eTs Φθk,t)|θk,t, θk]

=E[ΦT ese
T
s (Rπ + ese

T
s′Φθk − Φθk,t)|θk,t, θk]

=ΦTD(Rπ + PπΦθk − Φθk,t)

= ∇θ
(

1

2
‖Rπ + PπΦθk − Φθ‖2D

)∣∣∣∣
θ=θk,t

,

proving the first equation. For the second result, we have

‖g(θk,t)‖22 =‖ΦT es(rπ(s) + eTs′Φθk − eTs Φθk,t)‖22
≤‖Φ‖22‖rπ(s) + eTs′Φθk − eTs Φθk,t‖22
≤‖Φ‖22(3‖rπ(s)‖22 + 3‖eTs′Φθk‖22 + 3‖eTs Φθk,t‖22)

≤‖Φ‖22(3σ2 + 3‖Φ‖22‖θk‖22 + 3‖Φ‖22‖θk,t‖22),

proving the second result. �

The first result in Lemma 10 implies that g(θk,t) is an unbiased stochastic estimation of ∇F (θk,t). The second result
in Lemma 10 means that the second moment of the stochastic gradient estimation is bounded by a quantity which is
dependent on ‖θk‖22. Based on Lemma 10, we bound the variance of the gradient in the next lemma. Before proceeding, we
introduce an inequality which will be frequently used.

Lemma 11 For any a, b ∈ Rn, we have

‖a+ b‖22 ≤ (1 + ε)‖a‖22 + (1 + ε−1)‖b‖22,
‖a+ b‖22 ≥ (1− ε)‖a‖22 + (1− ε−1)‖b‖22

where ε > 0 is any real number.
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Proof: We obtain the first upper bound by

‖a+ b‖22 =‖a‖22 + ‖b‖22 + 2aT b

≤‖a‖22 + ‖b‖22 + 2|aT b|
≤‖a‖22 + ‖b‖22 + ε‖a‖22 + ε−1‖b‖22

for any ε > 0, where the last inequality is due to the Young’s inequality, |aT b| ≤ ε‖a‖22/2 + ε−1‖b‖22/2. Similarly, the
lower bound can be obtained by

‖a+ b‖22 =‖a‖22 + ‖b‖22 + 2aT b

≥‖a‖22 + ‖b‖22 − 2|aT b|
≥‖a‖22 + ‖b‖22 − ε‖a‖22 − ε−1‖b‖22.

This completes the proof. �

Lemma 12 (Bounded variance) The variance of the gradient is bounded as follows:

V[g(θk,t)|θk,t, θk] ≤ ξ1 + ξ2‖θk‖22 + ξ3‖∇F (θk,t)‖22,

where

ξ1 := 3σ2‖Φ‖22 + 2(1 + ξ3)2‖ΦTDRπ‖22
ξ2 := 3‖Φ‖42 + 2(1 + ξ3)2λmax(ΦT (Pπ)TDΦΦTDPπΦ)

ξ3 :=
3‖Φ‖42

λmin(ΦTDΦΦTDΦ)
.

Proof: Using the definition of V[g(θt)|θk,t, θk] in Assumption 5 and the bound on E[‖g(θk,t)‖22|θk,t, θk] in Lemma 10, we
have

V[g(θk,t)|θk,t, θk] = E[‖g(θk,t)‖22|θk,t, θk]− ‖E[g(θk,t)|θk,t, θk]‖22
= E[‖g(θk,t)‖22|θk,t, θk]− ‖∇F (θk,t)‖22
= E[‖g(θk,t)‖22|θk,t, θk]− (1 +K)‖∇F (θk,t)‖22 +K‖∇F (θk,t)‖22
≤ ‖Φ‖22(3σ2 + 3‖Φ‖22‖θk‖22 + 3‖Φ‖22‖θk,t‖22)− (1 +K)‖∇F (θk,t)‖22 +K‖∇F (θk,t)‖22 (10)

for any K > 0. A main issue in (10) is the presence of the term depending on θk,t. We will obtain a bound on the first two
terms which does not depend on θk,t. To this end, a lower bound on ‖∇F (θk,t)‖22 is obtained as follows:

‖∇F (θk,t)‖22 =‖ΦTDRπ + ΦTDPπΦθk − ΦTDΦθk,t‖22
≥(1− ε−1)‖ΦTDΦθk,t‖22 + (1− ε)‖ΦTDRπ + ΦTDPπΦθk‖22
≥(1− ε−1)λmin(ΦTDΦΦTDΦ)‖θk,t‖22 − (1− ε)‖ΦTDRπ + ΦTDPπΦθk‖22,

for any ε > 0 such that 1− ε−1 > 0, where the first inequality is due to Lemma 11. Combining the last inequality with (10)
yields

V[g(θk,t)|θk,t, θk] ≤3σ2‖Φ‖22 + 3‖Φ‖42‖θk‖22 + {3‖Φ‖42 − (1 +K)(1− ε−1)λmin(ΦTDΦΦTDΦ)}‖θk,t‖22
− (1 +K)(1− ε)‖ΦTDRπ + ΦTDPπΦθk‖22 +K‖∇F (θk,t)‖22. (11)

Note that by appropriately choosing ε > 0 and K > 0, the term related to ‖θk,t‖22 can be removed. In particular, we can
choose ε > 0 and K > 0 such that 3‖Φ‖42 − (1 +K)(1− ε−1)λmin(ΦTDΦΦTDΦ) = 0. A solution is

ε =
δλmin(ΦTDΦΦTDΦ) + 3‖Φ‖42

δλmin(ΦTDΦΦTDΦ)



Target TD-Learning

and

K =
3‖Φ‖42

λmin(ΦTDΦΦTDΦ)
− 1 + δ

for any δ > 0. Setting δ = 1 and substituting these expressions for ε and K in (11) result in

V[g(θk,t)] ≤3σ2‖Φ‖22 + 3‖Φ‖42‖θk‖22 + (1 + ξ3)ξ3‖ΦTDRπ + ΦTDPπΦθk‖22 +K‖∇F (θk,t)‖22
≤3σ2‖Φ‖22 + 3‖Φ‖42‖θk‖22 + (1 + ξ3)2‖ΦTDRπ + ΦTDPπΦθk‖22 +K‖∇F (θk,t)‖22 (12)

where

ξ3 :=
3‖Φ‖42

λmin(ΦTDΦΦTDΦ)
.

Applying Lemma 11 again for ‖ΦTDRπ + ΦTDPπΦθk‖22 in (12) yields

V[g(θk,t)|θk,t, θk] ≤ ξ1 + ξ2‖θk‖22 + ξ3‖∇F (θk,t)‖22,

where

ξ1 := 3σ2‖Φ‖22 + 2(1 + ξ3)2‖ΦTDRπ‖22
ξ2 := 3‖Φ‖42 + 2(1 + ξ3)2λmax(ΦT (Pπ)TDΦΦTDPπΦ)

which is the desired conclusion. �

We are now ready to prove Proposition 1.

Proof of Proposition 1: The first statement of Proposition 1 is proven in Lemma 12. To prove the remaining conditions
of Proposition 1, we note that all the results of this section prove that Assumption 5 is satisfied with µ = µG = 1, c =
λmin(ΦTDΦ), L =

√
λmax(ΦTDΦΦTDΦ),M = ξ1 + ξ2‖θk‖22, MV = ξ3, and Finf = minθ F (θ), where the positive

real numbers ξ1, ξ2, and ξ3 are given in Lemma 12. Then, by using Lemma 8, it can be proved that if the SGD method
in Algorithm 4 is run with a stepsize sequence such that, for all t ≥ 0,

βt =
β

κ+ t+ 1

for some β > 1/λmin(ΦTDΦ) and κ > 0 such that

β0 =
β

κ+ 2
≤ 1√

λmax(ΦTDΦΦTDΦ)(ξ3 + 1)
,

then, for all 0 ≤ t ≤ Lk − 1, the expected optimality gap satisfies

E[F (θk,t)− F (θ∗k+1)|θk] ≤ ν

κ+ t+ 1
(13)

with

ν = max

{
β2
√
λmax(ΦTDΦΦTDΦ)(ξ1 + ξ2‖θk‖22)

2(βλmin(ΦTDΦ)− 1)
, (κ+ 1)(F (θk)− F (θ∗k+1))

}
.

Note that θ∗k+1 is the solution that minimizes F , which is different from θ∗. By the definition of the strong convexity, we
have

F (x) +∇F (x)T (y − x) +
λmin(ΦTDΦ)

2
‖x− y‖22 ≤ F (y), ∀x, y ∈ Rn.
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Letting x = θ∗k+1, y = θk,t in the above inequality yields

λmin(ΦTDΦ)

2
‖θ∗k+1 − θk,t‖22 ≤ F (θk,t)− F (θ∗k+1),

where we use the fact that θ∗k+1 minimizes F . Combining the last inequality with (13), we get

E[‖θ∗k+1 − θk,t‖22|θk] ≤ 2

λmin(ΦTDΦ)

ν

κ+ t+ 1
. (14)

For later analysis, we will further polish the upper bound. Using F (θ∗k+1) ≥ 0 and the triangle inequality, we have

ν = max

{
β2
√
λmax(ΦTDΦΦTDΦ)(ξ1 + ξ2‖θk‖22)

2(βλmin(ΦTDΦ)− 1)
, (κ+ 1)(F (θk)− F (θ∗k+1))

}

≤ max

{
β2
√
λmax(ΦTDΦΦTDΦ)

(
ξ1 + ξ2‖θ∗‖22 + ξ2‖θk − θ∗‖22

)
2(βλmin(ΦTDΦ)− 1)

, (κ+ 1)F (θk)

}
, (15)

where θ∗ is the solution of the projected Bellman equation, Φθ∗ = F(Φθ∗), that we want to find, and it should not be
confused with θ∗k+1, which is the solution that minimizes F .

Next, F (θk) is bounded as

F (θk) =
1

2
‖Rπ + PπΦθk − Φθk‖2D

=
1

2
‖Rπ + PπΦθk − Φθk − (Rπ + PπΦθ∗ − Φθ∗) + (Rπ + PπΦθ∗ − Φθ∗)‖2D

≤ 1

2
‖Rπ + PπΦθk − Φθk − (Rπ + PπΦθ∗ − Φθ∗)‖2D +

1

2
‖Rπ + PπΦθ∗ − Φθ∗‖2D

=
1

2
‖(PπΦ− Φ)(θk − θ∗)‖2D +

1

2
‖Rπ + PπΦθ∗ − Φθ∗‖2D

≤ 1

2
λmax((PπΦ− Φ)TD(PπΦ− Φ))‖θk − θ∗‖22 +

1

2
‖Rπ + PπΦθ∗ − Φθ∗‖2D,

where the first inequality is due to the triangle inequality. We combine this result with (15) to obtain

ν ≤max

{
β2
√
λmax(ΦTDΦΦTDΦ)(ξ1 + ξ2‖θ∗‖22 + ξ2‖θk − θ∗‖22)

2(βλmin(ΦTDΦ)− 1)
,

(κ+ 1)

2
λmax((PπΦ− Φ)TD(PπΦ− Φ))‖θk − θ∗‖22 +

(γ + 1)

2
‖Rπ + PπΦθ∗ − Φθ∗‖2D

}
≤
β2
√
λmax(ΦTDΦΦTDΦ)

(
ξ1 + ξ2‖θ∗‖22 + ξ2‖θk − θ∗‖22

)
2(βλmin(ΦTDΦ)− 1)

+
(κ+ 1)

2
λmax((PπΦ− Φ)TD(PπΦ− Φ))‖θk − θ∗‖22 +

(κ+ 1)

2
‖Rπ + PπΦθ∗ − Φθ∗‖2D

=χ1 + χ2‖θk − θ∗‖22,

where the second inequality is due to the inequality max{a, b} ≤ a+ b and

χ1 =
β2
√
λmax(ΦTDΦΦTDΦ)(ξ1 + ξ2‖θ∗‖22)

2(βλmin(ΦTDΦ)− 1)
+

(κ+ 1)

2
‖Rπ + PπΦθ∗ − Φθ∗‖2D,

χ2 =
β2ξ2

√
λmax(ΦTDΦΦTDΦ)

2(βλmin(ΦTDΦ)− 1)
+

(κ+ 1)

2
λmax((PπΦ− Φ)TD(PπΦ− Φ)).

Plugging the upper bound into ν in (14) and after simplifications, the desired result follows. �
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F. Proof of Proposition 2
To prove the sample complexity, we will make use of Proposition 1. A tricky part is due to the fact that the constant factor of
the convergence rate depends on ‖θk − θ∗‖22. We will prove that ‖θk − θ∗‖22 is bounded by a constant in expectation, which
plays a key role in the proof.

Lemma 13 Suppose that Algorithm 4 is run with εi = ε for all k ≥ i ≥ 1. Then,

E[‖θi − θ∗‖22] ≤ ω1ε+ ω2, ∀0 ≤ i ≤ k,

where

ω1 :=
2
(

1+γ2

1−γ2

)
‖Φ‖2Dλmax(D)

λmin(ΦTDΦ)(1− γ2)
, ω2 :=

E[‖Φθ0 − Φθ∗‖2D]

λmin(ΦTDΦ)
.

Proof: We follow the procedure similar to that of Theorem 3. The main difference relies on the fact that we need a bound on
the squared norm. First, we obtain the chain of inequalities

E[‖Φθi+1 − Φθ∗‖2D|θi]
=E[‖Φθi+1 − Φθ∗i+1 + Φθ∗i+1 − Φθ∗‖2D|θi]
≤(1 + δ−1)E[‖Φθi+1 − Φθ∗i+1‖2D|θi] + (1 + δ)E[‖Φθ∗i+1 − Φθ∗‖2D|θi]
≤(1 + δ−1)E[‖Φ‖2D‖θi+1 − θ∗i+1‖2D|θi] + (1 + δ)E[‖Φθ∗i+1 − Φθ∗‖2D|θi]
≤(1 + δ−1)‖Φ‖2Dλmax(D)E[‖θi+1 − θ∗i+1‖22|θi] + (1 + δ)E[‖Φθ∗i+1 − Φθ∗‖2D|θi]
=(1 + δ−1)‖Φ‖2Dλmax(D)E[‖θi+1 − θ∗i+1‖22|θi] + (1 + δ)E[‖F(Φθi)− F(Φθ∗)‖2D|θi]
≤(1 + δ−1)‖Φ‖2Dλmax(D)E[‖θi+1 − θ∗i+1‖22|θi] + (1 + δ)γ2‖Φθi − Φθ∗‖2D,

where 0 ≤ i ≤ k − 1, the first equality is due to Lemma 11, the second equality follows from Lemma 6, and the last
inequality is due to Lemma 5. Since γ ∈ [0, 1), there exists δ > 0 such that (1 + δ)γ2 < 1, which is equivalent to δ < 1−γ2

γ2 .

We simply choose δ = 1−γ2

2γ2 , yielding

E[‖Φθi+1 − Φθ∗‖2D|θi] ≤
(

1 +
2γ2

1− γ2

)
‖Φ‖2Dλmax(D)E[‖θi+1 − θ∗i+1‖22|θi] +

γ2 + 1

2
‖Φθi − Φθ∗‖2D.

Taking the total expectation on both sides and using the hypothesis, E[‖θi+1 − θ∗i+1‖22] ≤ ε for all 0 ≤ i ≤ k − 1, yield

E[‖Φθi+1 − Φθ∗‖2D] ≤
(

1 +
2γ2

1− γ2

)
‖Φ‖2Dλmax(D)ε+

γ2 + 1

2
E[‖Φθi − Φθ∗‖2D], ∀0 ≤ i ≤ k − 1.

By the induction argument in i, we have

E[‖Φθi − Φθ∗‖2D] ≤
(

1 +
2γ2

1− γ2

)
‖Φ‖2Dλmax(D)ε

i−1∑
t=0

(
γ2 + 1

2

)t
+

(
γ2 + 1

2

)i
E[‖Φθ0 − Φθ∗‖2D]

≤
(

1 +
2γ2

1− γ2

)
‖Φ‖2Dλmax(D)ε

1

1− γ2+1
2

+

(
γ2 + 1

2

)i
E[‖Φθ0 − Φθ∗‖2D]

≤
(

1 +
2γ2

1− γ2

)
‖Φ‖2Dλmax(D)ε

1

1− γ2+1
2

+ E[‖Φθ0 − Φθ∗‖2D], ∀1 ≤ i ≤ k,

where the second inequality is obtained by letting i → ∞ and the last inequality is due to
(
γ2+1

2

)i
< 1. Since the

first term on the right hand side is nonnegative, the last inequality holds for i = 0. By using E[‖Φθk − Φθ∗‖2D] ≥
λmin(ΦTDΦ)E[‖θk − θ∗‖22] and arranging terms, we arrive at the conclusion. �

Lemma 13 states that if the subproblems are solved such that E[‖θi − θ∗i ‖22] ≤ ε for k ≥ i ≥ 1, then E[‖θi − θ∗‖22] is
bounded by a constant depending on ε for all k ≥ i ≥ 0. Using this property, we introduce another version of Proposition 1
which drops the dependency of ‖θk − θ∗‖22.
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Proposition 4 Suppose that the SGD method in Algorithm 4 is run with a stepsize sequence such that, for all t ≥ 0,

βt =
β

κ+ t+ 1

for some β > 1/λmin(ΦTDΦ) and κ > 0 such that

β0 =
β

κ+ 2
≤ 1√

λmax(ΦTDΦΦTDΦ)(ξ3 + 1)
.

Moreover, suppose that Algorithm 4 is run with εi = ε for all k − 1 ≥ i ≥ 1. Then, for all 0 ≤ t ≤ Lk − 1, the expected
optimality gap satisfies

E[‖θ∗k+1 − θk,t‖22] ≤ 2

λmin(ΦTDΦ)

χ1 + χ2(ω1ε+ ω2)

κ+ t+ 1
.

Proof: The proof is completed by taking the total expectation on both sides of (??) in Proposition 1 and using the bound
in Lemma 13. �

From Proposition 4, we concludes that with the number of subproblem iterations such that

2(χ1 + χ2(ω1ε+ ω2))

λmin(ΦTDΦ)ε
− κ− 1 ≤ Lk,

each subproblem achieves ε-optimality in expectation. Based on this observation, we will now prove the sample complexity.
By Theorem 3, E[‖θT+1 − θ∗‖D] ≤ ε holds if

‖Φ‖D max
s∈S

d(s)

√
ε

1− γ
+ γTE[‖Φθ0 − Φθ∗‖D] ≤ ε. (16)

Again, it holds if

‖Φ‖D max
s∈S

d(s)

√
ε

1− γ
≤ aε (17)

and

γTE[‖Φθ0 − Φθ∗‖D] ≤ bε. (18)

for any real numbers a, b > 0 such that a+ b = 1. The condition (18) holds if

T ≥ ln

(
bε

E[‖Φθ0 − Φθ∗‖D]

)
/ ln γ. (19)

The condition (17) holds if

ε ≤ a2ε2(1− γ)2

‖Φ‖2D maxs∈S d(s)
. (20)

Combined with Proposition 1 and Lemma 13, a sufficient condition of (20) is

2

λmin(ΦTDΦ)

χ1 + χ2ω1ε+ χ2ω2

κ+ Lk + 1
≤ a2ε2(1− γ)2

‖Φ‖2D maxs∈S d(s)
.

Using the upper bound in (20) and arranging terms, we have that the condition (20) (and hance (17)) holds if the number of
iteration, Lk, for the subproblem at iteration k is lower bounded by

2(χ1 + χ2ω2)

λmin(ΦTDΦ)

‖Φ‖2D maxs∈S d(s)

a2ε2(1− γ)2
+

2χ2ω1

λmin(ΦTDΦ)
− κ− 1 ≤ Lk (21)
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Combining (19) and (21), we conclude that (16) holds with SO calls at most

1

ln γ−1

{
2(χ1 + χ2ω2)

λmin(ΦTDΦ)

‖Φ‖2D maxs∈S d(s)

a2ε2(1− γ)2
+

2χ2ω1

λmin(ΦTDΦ)
− κ− 1

}{
ln

(
E[‖Φθ0 − Φθ∗‖D]

bε

)}
.

To simplify the expression, a > 0 and b > 0 are set to be a =
√

maxs∈S d(s) and b = 1−
√

maxs∈S d(s), respectively.
Plugging the explicit expressions for ω1, ω2 in Lemma 13 and further simplifications lead to the desired conclusion.

G. Additional Simulations for Section 6
We consider the same MDP as in Section 6 with a linear function approximation using the feature vector

φ(s) =

[
exp(−(s−0)2)

2×102

exp(−(s−10)2)
2×102

]
∈ R2.

Figure 4(a) depicts the error evolution of the standard TD-learning with different step-sizes, αk = α/(k + 10000),
α = 1000, 4000, by which one concludes that the step-size αk = 1000/(k + 10000) provides reasonable performance.
Figure 4(b) illustrates the error evolution of A-TD with step-size αk = 1000/(k + 10000) and δ = 0.1, 0.2, 0.5, 0.7, 0.9.
From Figure 4(b), we can observe that the smaller the δ, the slower the convergence rate.

(a) Standard TD (b) A-TD

Figure 4: (a) Errors of the standard TD-learning with different step-sizes, αk = α/(k + 10000), α = 1000, 4000. (b)
Errors of A-TD with step-size αk = 1000/(k + 10000) and δ = 0.1, 0.2, 0.5, 0.7, 0.9. The shaded areas depict empirical
variances obtained with several realizations.

Next, we consider the same MDP as in Section 6 with a linear function approximation using the feature vector

φ(s) =


exp(−(s−0)2)

2×102

exp(−(s−10)2)
2×102

exp(−(s−20)2)
2×102

 ∈ R3.

Simulation results (error evolution) for the standard TD are given in Figure 5(a) with different step-sizes αk =
α/(10000 + k) and α = 1000, 2000, . . . , 10000. Moreover, simulation results of P-TD are given in Figure 5(b) with
Lk = 5, 10, 20, 40, 80, 160, 320, where the following different step-sizes are used: βt = 4000/(10000 + t) in Figure 5(b),
βt = 6000/(10000 + t) in Figure 5(c), βt = 8000/(10000 + t) in Figure 5(d).

Figure 6 illustrates the error plots of P-TD for step-sizes, βt = β/(10000 + t), β = 1000, 2000, . . . , 8000 and different
Lk = 10 (Figure 6(a)), Lk = 20 (Figure 6(b)), and 40 (Figure 6(c)).

From Figure 4 and Figure 6, one observes that the error evolution for β = 8000 has large fluctuations.
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(a) Standard TD (b) Periodic TD, βt = 4000/(10000 + t)

(c) Periodic TD, βt = 6000/(10000 + t) (d) Periodic TD, βt = 8000/(10000 + t)

Figure 5: (a) Error evolution of the standard TD-learning with different step-sizes, αk = α/(k + 10000), α =
1000, 2000, . . . , 10000. Error evolution of P-TD with Lk = 5, 10, 20, 40, 80, 160, 320 and the step-sizes, (b) βt =
4000/(10000 + t), (c) βt = 6000/(10000 + t), (d) βt = 8000/(10000 + t). The shaded areas depict empirical vari-
ances obtained with several realizations.
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(a) Periodic TD, Lk = 10 (b) Periodic TD, Lk = 20

(c) Periodic TD, Lk = 40

Figure 6: Error evolution of P-TD with different step-sizes, βt = β/(10000 + t), β = 1000, 2000, . . . , 8000. Each subplot
uses different Lk: (a) Lk = 10; (b) Lk = 20; (c) Lk = 40. The shaded areas depict empirical variances obtained with
several realizations.


