Supplementary Material for Set Transformer

Juho Lee'? Yoonho Lee? Jungtaek Kim* Adam R. Kosiorek ' > Seungjin Choi* Yee Whye Teh '

1. Proofs

Lemma 1. The mean operator mean({x1,...,x,}) = = >.I' | x; is a special case of dot-product attention with softmax.

Proof. Lets =0 € R?and X € R"*4,

sX T 1
Att(s, X, X; softmax) = softmax [—= | X = — Zwl
Vd

O
Lemma 2. The decoder of a Set Transformer, given enough nodes, can express any element-wise function of the form
1
15)%
(5 i 7).
Proof. We first note that we can view the decoder as the composition of functions

Decoder(Z) = rFF(H) (1)
where H = 1FF(MAB(Z,1FF(Z))))

We focus on H in (2). Since feed-forward networks are universal function approximators at the limit of infinite nodes, let
the feed-forward layers in front and back of the MAB encode the element-wise functions z — 2” and z — z%, respectively.
We let h = d, so the number of heads is the same as the dimensionality of the inputs, and each head is one-dimensional. Let
the projection matrices in multi-head attention (VVJ-Q, WjK , ij) represent projections onto the jth dimension and the output
matrix (W ©) the identity matrix. Since the mean operator is a special case of dot-product attention, by simple composition,
we see that an MAB can express any dimension-wise function of the form

1 - ,
Mp(zl’...7zn):<n2zf> . 3)
1=1

Lemma 3. A PMA, given enough nodes, can express sum pooling (> | z;).

Proof. We prove this by construction.

Set the seed s to a zero vector and let w(-) = 1 + f(-), where f is any activation function such that f(0) = 0. The identiy,
sigmoid, or relu functions are suitable choices for f. The output of the multihead attention is then simply a sum of the
values, which is Z in this case. O

We additionally have the following universality theorem for pooling architectures:

Theorem 1. Models of the form rFF(sum(rFF(+))) are universal function approximators in the space of permutation
invariant functions.

Proof. See Appendix A of Zaheer et al. (2017). O

Supplementary Material for Set Transformer

By Lemma 3, we know that decoder(Z) can express any function of the form rFF(sum(Z2)). Using this fact along with
Theorem 1, we can prove the universality of Set Transformers:

Proposition 1. The Set Transformer is a universal function approximator in the space of permutation invariant functions.

Proof. By setting the matrix W to a zero matrix in every SAB and ISAB, we can ignore all pairwise interaction terms
in the encoder. Therefore, the encoder(X) can express any instance-wise feed-forward network (Z = rFF(X)). Directly
invoking Theorem 1 concludes this proof. O

While this proof required us to ignore the pairwise interaction terms inside the SABs and ISABs to prove that Set
Transformers are universal function approximators, our experiments indicated that self-attention in the encoder was crucial
for good performance.

2. Experiment Details

In all implementations, we omit the feed-forward layer in the beginning of the decoder (rFF(Z)) because the end of the
previous block contains a feed-forward layer. All MABs (inside SAB, ISAB and PMA) use fully-connected layers with
ReLU activations for rFF layers.

In the architecture descriptions, FC(d, f) denotes the fully-connected layer with d units and activation function f. SAB(d, h)
denotes the SAB with d units and h heads. ISAB,,,(d, h) denotes the ISAB with d units, h heads and m inducing points.
PMA,(d, h) denotes the PMA with d units, i heads and k vectors. All MABs used in SAB and PMA uses FC layers with
ReLU activations for FF layers.

2.1. Max Regression

Given a set of real numbers {1, ..., x,}, the goal of this task is to return the maximum value in the set max(z1,- - , Z).
We construct training data as follows. We first sample a dataset size n uniformly from the set of integers {1,--- ,10}. We
then sample real numbers z; independently from the interval [0, 100]. Given the network’s prediction p, we use the actual
maximum value max(z1, - -+ , Z,) to compute the mean absolute error |p — max(z1,- - ,z,)|. We don’t explicitly consider
splits of train and test data, since we sample a new set {1, ..., x,} at each time step.

Table 1. Detailed architectures used in the max regression experiments.

Encoder Decoder
FF SAB Pooling PMA
FC(64,ReLU) SAB(64,4) mean,sum,max PMA;(64,4)
FC(64,ReLU) SAB(64,4) FC(64,ReLU) FC(1,-)
FC(64, ReLU) FC(1,-)
FC(64, —)

We show the detailed architectures used for the experiments in Table 1. We trained all networks using the Adam opti-
mizer (Kingma & Ba, 2015) with a constant learning rate of 10~2 and a batch size of 128 for 20,000 batches, after which
loss converged for all architectures.

2.2. Counting Unique Characters

The task generation procedure is as follows. We first sample a set size n uniformly from the set of integers {6,...,10}.
We then sample the number of characters ¢ uniformly from {1,...,n}. We sample ¢ characters from the training set of
characters, and randomly sample instances of each character so that the total number of instances sums to n and each set of
characters has at least one instance in the resulting set.

We show the detailed architectures used for the experiments in Table 3. For both architectures, the resulting 1-dimensional
output is passed through a softplus activation to produce the Poisson parameter . The role of softplus is to ensure that -y is
always positive.

Supplementary Material for Set Transformer

Architecture Accuracy
rFF + Pooling 0.4366 + 0.0071
rFF + PMA 0.4617 £ 0.0073
rFFp-mean + Pooling 0.4617 &+ 0.0076
rFFp-max + Pooling 0.4359 4 0.0077
rFF + Dotprod 0.4471 £+ 0.0076
SAB + Pooling 0.5659 £ 0.0067
SAB + Dotprod 0.5888 £ 0.0072
SAB + PMA (1) 0.6037 + 0.0072
SAB + PMA (2) 0.5806 £+ 0.0075

SAB + PMA (4)
SAB + PMA (8)

0.5945 £ 0.0072
0.6001 £ 0.0078

Table 2. Detailed results for the unique character counting experiment.

Table 3. Detailed architectures used in the unique character counting experiments.

Encoder Decoder
rFF SAB Pooling PMA

Conv(64,3,2,BN,ReLU) Conv(64, 3,2, BN, ReLU) mean PMA;(8,8)
Conv(64,3,2,BN,ReLU) Conv(64,3,2,BN,ReLU) FC(64,ReLU) FC(1,softplus)
Conv(64,3,2,BN,ReLU) Conv(64,3,2,BN,ReLU) FC(1,softplus)
Conv(64,3,2, BN, ReLU) Conv(64, 3,2, BN, ReL.U)

FC(64,ReLU) SAB(64,4)

FC(64, ReLU) SAB(64,4)

FC(64,ReLU)

FC(64, —)

The loss function we optimize, as previously mentioned, is the log likelihood log p(z|y) = zlog(y) — v — log(z!). We
chose this loss function over mean squared error or mean absolute error because it seemed like the more logical choice when
trying to make a real number match a target integer. Early experiments showed that directly optimizing for mean absolute
error had roughly the same result as optimizing ~ in this way and measuring |y — z|. We train using the Adam optimizer
with a constant learning rate of 10~* for 200,000 batches each with batch size 32.

2.3. Solving maximum likelihood problems for mixture of Gaussians
2.3.1. DETAILS FOR 2D SYNTHETIC MIXTURES OF GAUSSIANS EXPERIMENT

We generated the datasets according to the following generative process.
1. Generate the number of data points, n ~ Unif(100, 500).
2. Generate k centers.

wia~ Unif(—4,4), j=1,...,4, d=1,2. 4)
3. Generate cluster labels.

7~ Dir([1,1]7), 2 ~ Categorical(n), i =1,...,n. %)

4. Generate data from spherical Gaussian.

z; ~ N (s, (0.3)%1). (6)

Supplementary Material for Set Transformer

Table 4 summarizes the architectures used for the experiments. For all architectures, at each training step, we generate 10
random datasets according to the above generative process, and updated the parameters via Adam optimizer with initial
learning rate 10~3. We trained all the algorithms for 50k steps, and decayed the learning rate to 10~* after 35k steps.
Table 5 summarizes the detailed results with various number of inducing points in the ISAB. Figure 4 shows the actual
clustering results based on the predicted parameters.

Table 4. Detailed architectures used in 2D synthetic experiments.

Encoder Decoder
rFF SAB ISAB Pooling PMA
FC(128,ReLU) SAB(128,4) ISAB,,(128,4) mean PMA,(128,4)
FC(128,ReLU) SAB(128,4) ISAB,,(128,4) FC(128,ReLU) SAB(128,4)
FC(128,ReLU) FC(128, ReLU) FCA4-(1+2-2),—)
FC(128,ReLU) FC(128,ReLU)

FC(4-(1+2-2),-)

Table 5. Average log-likelihood/data (LLO/data) and average log-likelihood/data after single EM iteration (LL1/data) the clustering
experiment. The number inside parenthesis indicates the number of inducing points used in the SABs of encoder. For all PMAs, four seed
vectors were used.

Architecture LLO/data LL1/data
Oracle -1.4726
rFF + Pooling -2.0006 £+ 0.0123 -1.6186 = 0.0042

rFFp-mean + Pooling -1.7606 £ 0.0213 -1.5191 £ 0.0026
rFFp-max + Pooling -1.7692 £ 0.0130 -1.5103 + 0.0035
rFF+Dotprod -1.8549 £ 0.0128 -1.5621 =£ 0.0046
SAB + Pooling -1.6772 £ 0.0066 -1.5070 £ 0.0115
ISAB (16) + Pooling -1.6955 £ 0.0730 -1.4742 £ 0.0158
ISAB (32) + Pooling -1.6353 £ 0.0182 -1.4681 £ 0.0038
ISAB (64) + Pooling -1.6349 +0.0429 -1.4664 + 0.0080
rFF + PMA -1.6680 £ 0.0040 -1.5409 £ 0.0037
SAB + PMA -1.5145 + 0.0046 -1.4619 = 0.0048
ISAB (16) + PMA -1.5009 + 0.0068 -1.4530 % 0.0037
ISAB (32) + PMA -1.4963 + 0.0064 -1.4524 + 0.0044
ISAB (64) + PMA -1.5042 £ 0.0158 -1.4535 +£ 0.0053

2.3.2. 2D SYNTHETIC MIXTURES OF GAUSSIANS EXPERIMENT ON LARGE-SCALE DATA

To show the scalability of the set transformer, we conducted additional experiments on large-scale 2D synthetic clustering
dataset. We generated the synthetic data as before, except that we sample the number of data points n Unif (1000, 5000)
and set kK = 6. We report the clustering accuracy of a subset of comparing methods in Table 6. The set transformer with only
32 inducing points works extremely well, demonstrating its scalability and efficiency.

2.3.3. DETAILS FOR CIFAR-100 AMORTIZED CLUTERING EXPERIMENT

We pretrained VGG net (Simonyan & Zisserman, 2014) with CIFAR-100, and obtained the test accuracy 68.54%. Then, we
extracted feature vectors of 50k training images of CIFAR-100 from the 512-dimensional hidden layers of the VGG net (the
layer just before the last layer). Given these feature vectors, the generative process of datasets is as follows.

1. Generate the number of data points, n ~ Unif (100, 500).
2. Uniformly sample four classes among 100 classes.

3. Uniformly sample n data points among four sampled classes.

Supplementary Material for Set Transformer

Table 6. Average log-likelihood/data (LLO/data) and average log-likelihood/data after single EM iteration (LL1/data) the clustering
experiment on large-scale data. The number inside parenthesis indicates the number of inducing points used in the SABs of encoder. For
all PMAs, six seed vectors were used.

Architecture LLO/data LL1/data
Oracle -1.8202
rFF + Pooling -2.5195 £ 0.0105 -2.0709 =+ 0.0062
rFFp-mean + Pooling -2.3126 £ 0.0154 -1.9749 £ 0.0062
rFF + PMA (6) -2.0515 £ 0.0067 -1.9424 4 0.0047

SAB (32) + PMA (6) -1.8928 £ 0.0076 -1.8549 + 0.0024

Table 7. Detailed architectures used in CIFAR-100 meta clustering experiments.

Encoder Decoder
rFF SAB ISAB rFF PMA
FC(256,ReLU) SAB(256,4) ISAB,,(256,4) mean PMA4(128,4)
FC(256,ReLU) SAB(256,4) ISAB..(256,4) FC(256,ReLU) SAB(256,4)
FC(256,ReLU) SAB(256,4) ISAB,,(256,4) FC(256, ReLU) SAB(256,4)
FC(256,ReLU) FC(256,ReLU)) FC(4-(1+2-512),—)
FC(256, ReLU) FC(256, ReLU

FC(256, —) FC(256, ReLU;
FC(4-(1+2-512),—-)

Table 7 summarizes the architectures used for the experiments. For all architectures, at each training step, we generate 10
random datasets according to the above generative process, and updated the parameters via Adam optimizer with initial
learning rate 10~%. We trained all the algorithms for 50k steps, and decayed the learning rate to 10~° after 35k steps.
Table 8 summarizes the detailed results with various number of inducing points in the ISAB.

2.4. Set Anomaly Detection

Table 9 describes the architecture for meta set anomaly experiments. We trained all models via Adam optimizer with
learning rate 10~ and exponential decay of learning rate for 1,000 iterations. 1,000 datasets subsampled from CelebA
dataset (see Figure 5) are used to train and test all the methods. We split 800 training datasets and 200 test datasets for the
subsampled datasets.

2.5. Point Cloud Classification

We used the ModelNet40 dataset for our point cloud classification experiments. This dataset consists of a three-dimensional
representation of 9,843 training and 2,468 test data which each belong to one of 40 object classes. As input to our
architectures, we produce point clouds with n = 100, 1000, 5000 points each (each point is represented by (z,y, z)
coordinates). For generalization, we randomly rotate and scale each set during training.

We show results our architectures in Table 10 and additional experiments which used n = 100, 5000 points in Table 4. We
trained using the Adam optimizer with an initial learning rate of 10~3 which we decayed by a factor of 0.3 every 20,000
steps. For the experiment with 5,000 points (Table 4), we increased the dimension of the attention blocks (ISAB14(512,4)
instead of ISAB14(128, 4)) and also decayed the weights by a factor of 10~7. We also only used one ISAB block in the
encoder because using two lead to overfitting in this setting.

3. Additional Experiments
3.1. Runtime of SAB and ISAB

We measured the runtime of SAB and ISAB on a simple benchmark (Figure 1). We used a single GPU (Tesla P40) for this
experiment. The input data was a constant (zero) tensor of n three-dimensional vectors. We report the number of seconds it

Supplementary Material for Set Transformer

Table 8. Average clustering accuracies measured by Adjusted Rand Index (ARI) for CIFAR100 clustering experiments. The number
inside parenthesis indicates the number of inducing points used in the SABs of encoder. For all PMAs, four seed vectors were used.

Architecture ARIO ARI1
Oracle 09151
rFF + Pooling 0.5593 +£0.0149 0.5693 £ 0.0171

rFFp-mean + Pooling
rFFp-max + Pooling

0.5673 £ 0.0053
0.5369 £ 0.0154

0.5798 £+ 0.0058
0.5536 + 0.0186

rFF+Dotprod 0.5666 + 0.0221 0.5763 +£ 0.0212
SAB + Pooling 0.5831 £0.0341 0.5943 £ 0.0337
ISAB (16) + Pooling 0.5672 £ 0.0124 0.5805 + 0.0122
ISAB (32) + Pooling 0.5587 £0.0104 0.5700 + 0.0134
ISAB (64) + Pooling 0.5586 £ 0.0205 0.5708 + 0.0183
rFF + PMA 0.7612 £ 0.0237 0.7670 £ 0.0231
SAB + PMA 0.9015 £ 0.0097 0.9024 + 0.0097
ISAB (16) + PMA 0.9210 = 0.0055 0.9223 + 0.0056
ISAB (32) + PMA 09103 £0.0061 0.9119 + 0.0052

0.9141 £ 0.0040

0.9153 £ 0.0041

ISAB (64) + PMA

Table 9. Detailed architectures used in CelebA meta set anomaly experiments. Conv(d, k, s, r, f) is a convolutional layer with d output
channels, k kernel size, s stride size, r regularization method, and activation function f. If d is a list, each element in the list is distributed.
FC(d, f,r) denotes a fully-connected layer with d units, activation function f and r regularization method. If d is a list, each element in
the list is distributed. SAB(d, h) denotes the SAB with d units and h heads. PMA(d, h, nseeda) denotes the PMA with d units, & heads
and ngeed vectors. All MABs used in SAB and PMA uses FC layers with ReLU activations for rFF layers.

Encoder Decoder
rFF SAB Pooling PMA
Conv([32, 64, 128], 3, 2, Dropout, ReLLU) mean PMA4(128,4)
FC([1024, 512, 256], —, Dropout) FC(128,ReLU, —) SAB(128,4)

FC(256, —, —) FC(128,ReLU, —) FC(256-8,—,—)

FC([128,128,128],ReLU, —) SAB(128,4) FC(128,ReLU, —)

FC([128,128,128], ReLU, —) SAB(128,4) FC(256-8,—,—)
FC (128, ReLU, —) SAB(128,4)
FC(128, —,) SAB(128,4)

took to process 10,000 sets of each size. The maximum set size we report for SAB is 2,000 because the computation graph
of bigger sets could not fit on our GPU. The specific attention blocks used are ISAB4(64, 8) and SAB(64, 8).

References

Kingma, D. P. and Ba, Jimmy, L. Adam: a method for stochastic optimization. In Proceedings of the International
Conference on Learning Representations (ICLR), 2015.

Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv e-prints,
arXiv:1409.1556, 2014.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. Deep sets. In Advances in
Neural Information Processing Systems (NeurIPS), 2017.

Supplementary Material for Set Transformer

Table 10. Detailed architectures used in the point cloud classification experiments
Encoder Decoder
rFF ISAB Pooling PMA
FC(256, ReLU) ISAB(256,4) max Dropout(0.5)
FC(256, ReLU) ISAB(256,4) Dropout(0.5) PMA,(256,4)
FC(256, ReLU) FC(256,ReLU) Dropout(0.5)
FC(256, —) Dropout(0.5) FC(40,—)
FC(40,—)
1000 { —®- ISAB "
SAB B
[
!
]
800 i
]
[
i
!
1
~ 600 i
a]
v /
E I
= |
400 - e
i
’
'
!
[}
200 »
'
/
- ’.
-
0- T e o P LTI I ok B =k bt =
T T T T
102 103 10* 10°

10° 101

Figure 1. Runtime of a single SAB/ISAB block on dummy data. x axis is the size of the input set and y axis is time (seconds). Note that

the x-axis is log-scale.

Set size

