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1. Optimal λ for SL-ALSH
In this section, we show that ρ(l2) is minimized when λ =√
d/ ‖w‖2.

Let the weight vector w′ be w′ = λw, where λ > 0. For
any o and q, since dw′(o, q) = λdw(o, q), the problem
of (R1, R2)-NNS for w is equivalent to the problem of
(λR1, λR2)-NNS for w′. Hence, for SL-ALSH, the mini-
mum value of ρ(l2) is computed as follows:

ρ
(l2)
min

= min
λ,r,U

ln(p(l2)(
√∑

i(1− λwi)2 + λR1 − λ
12
w−U4))

ln(p(l2)(
√∑

i(1− λwi)2 + λR2 − λ
12
(1 + w−)U4))

,

(1)

where

p(l2)(δ) = Prhl2
∈H[hl2(o) = hl2(q)]

= 1− 2Φ(−r/δ)− 2√
2π(r/δ)

(1− e−(r/δ)2/2)

(2)
and Φ(x) =

∫ x
−∞

1√
2π
e−x

2/2 dx.

Let pr(x) = p(l2)(
√
x). From Equation 2, we observe that,

for any α > 0,

pr(x) = pαr(α
2x). (3)

Let κ1(λ,U) =
∑
i(1 − λwi)

2 + λR1 − λ
12w

−U4 and
κ2(λ,U) =

∑
i(1 − λwi)2 + λR2 − λ

12 (1 + w−)U4. We
then consider the minimum value of following function

ρ(l2/λ)(r, U, λ) =
ln(pr(κ1(λ,U)/λ))

ln(pr(κ2(λ,U)/λ))
. (4)

Lemma 1. For r > 0, 0 < U ≤ π, and λ > 0,

ρ
(l2/λ)
min = min

r,U,λ
ρ(l2/2)(r, U, λ) = ρ

(l2)
min. (5)

Proof. Let r∗, U∗, and λ∗ be the optimal r, U , and λ that
minimize ρ(l2), i.e., for r > 0, 0 < U ≤ π, and λ > 0,

ρ
(l2)
min =

ln(pr∗(κ1(λ∗, U∗)))

ln(pr∗(κ2(λ∗, U∗)))
≤ ln(pr(κ1(λ,U)))

ln(pr(κ2(λ,U)))
(6)

Based on Equations 3 and 6, we have

ln(pr(κ1(λ,U)/λ))

ln(pr(κ2(λ,U)/λ))
=

ln(pr
√
λ(κ1(λ,U)))

ln(pr
√
λ(κ2(λ,U)))

≥ ln(pr∗(κ1(λ∗, U∗)))

ln(pr∗(κ2(λ∗, U∗)))

= ρ
(l2)
min,

and the equality holds when r = r∗/
√
λ∗, λ = λ∗, and

U = U∗.

According to Lemma 1

ρ
(l2)
min

= min
λ,r,U

ln(p(l2)(

√∑
i(1−λwi)2

λ
+R1 − 1

12
w−U4))

ln(p(l2)(

√∑
i(1−λwi)2

λ
+R2 − 1

12
(1 + w−)U4))

.

(7)

We have Lemma 2 as follows:

Lemma 2. pr(x) is strictly convex w.r.t x, where x > 0.

Proof. We first consider a special case r = 1. Let p1(x) =
pr(x)|r=1. The second derivative of p1(x) w.r.t x can be
computed as follows:

∂2p1(x)

∂x2
=

√
2

4
√
π

(x−2.5e−
1
2x + x−1.5(1− e− 1

2x )).

It can be verified that ∂
2p1(x)
∂x2 > 0,∀x > 0, which means

p1(x) is strictly convex for x, where x > 0.

Next, we show the convexity of pr(x) holds for all r > 0.
For any 0 < α < 1, x1 > 0, x2 > 0, r > 0, based on
Equation 3, we derive that

αpr(x1) + (1− α)pr(x2)

= αp1(x1/r
2) + (1− α)p1(x2/r

2)

< p1(αx1/r
2 + (1− α)x2/r

2)

= pr(αx1 + (1− α)x2).

Thus, according to the definition of convex function (Bert-
sekas et al., 2003), pr(x) is a strictly convex function w.r.t
x, where x > 0.

Let f(x) = ln(pr(x)) = ln(p(l2)(
√
x)). Since pr(x) >

0,∀x > 0, f(x) is logarithmically convex. Thus, we have

f ′′(x)f(x) > (f ′(x))2. (8)

Let g(x) = f ′(x)/f(x). We get Lemma 3 as follows:

Lemma 3. g(x) is monotonically increasing w.r.t x, where
x > 0.

Proof. From Equation 8, it is easy to see that

g′(x) =
f(x)f ′′(x)− f ′(x)2

f(x)2
> 0.

Thus, Lemma 3 is proved.

According to Lemma 3, g(x) < g(x+ c),∀c > 0, i.e.,

f ′(x)/f(x) > f ′(x+ c)/f(x+ c). (9)
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Figure 1. Spherical asymmetric transformation visualization on the 2-dimensional synthetic data objects.

We define ρ(x) as follows:

ρ(x) =
ln(p(l2)(

√
x))

ln(p(l2)(
√
x+ c))

=
f(x)

f(x+ c)
. (10)

Then, we achieve Lemma 4 as follows:

Lemma 4. ρ(x) is monotonically increasing w.r.t x, where
x > 0.

Proof. The derivative of ρ(x) w.r.t x is computed as:

ρ′(x) =
f ′(x)f(x+ c)− f(x)f ′(x+ c)

f(x+ c)2
.

From Equation 9, f ′(x)f(x+c)−f(x)f ′(x+c) > 0 given
the fact f(x) < 0,∀x > 0. Thus, ρ′(x) > 0,∀x > 0.
Lemma 4 is proved.

Theorem 5. ρ(l2)min is achieved when λ =
√
d/ ‖w‖2.

Proof. Based on the condition p1 > p2, we have

R2 −R1 >
1

12
U4.

Let x =
∑

i(1−λwi)
2

λ +R1− 1
12w

−U4 and c = R2−R1−
1
12U

4 > 0. Then, ρ(x) as defined by Equation 10 has the
same formula with the function we want to minimize in
Equation 7 and has the minimum value when

∑
i(1−λwi)

2

λ is
minimized because of Lemma 4. According to the AM-GM
inequality,

∑
i(1−λwi)

2

λ is minimized when λ =
√
d/ ‖w‖2.

Therefore, ρ(l2)min is achieved when λ =
√
d/ ‖w‖2.

By replacing λ =
√
d/ ‖w‖2 and η =

√
d ‖w‖2 into Equa-

tion 7, we have

ρ
(l2)
min

= min
r,U

ln(p(l2)(
√

2η − 2(1 + 2w−) +R1 − 1
12
w−U4))

ln(p(l2)(
√

2η − 2(1 + 2w−) +R2 − 1
12
(1 + w−)U4))

.

2. Transformation Visualization
In order to show how the spherical asymmetric transforma-
tion works, we visualize the spherical asymmetric transfor-
mation on synthetic 2-dimensional data objects in Figure
1. The synthetic 2-dimensional data objects are generated
uniformly at random from [0, π]2. We randomly sample 6
data objects and mark all of them as stars with various col-
ors. Then, we generate 40,000 queries with equal distance
on each dimension from [0, π]. We plot each query with
the same color of its NN over dw. The results of the data
objects and queries in the original Euclidean space R2 are
shown in the first row of Figure 1.

Next, we visualize the data objects and queries in the trans-
formed space. According to the vector transformations P
and Q as defined by Equations 9 and 10 in the paper, each
object and query will be mapped to a 2-dimensional mani-
fold in a 4-dimensional space, i.e., a data object o = [o1, o2]
is mapped to

P (o) = [cos(o1), cos(o2), sin(o1), sin(o2)], (11)
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and a query q = [q1, q2] is mapped to

Q(q, w) = [w1 cos(q1), w2 cos(q2), w1 sin(q1), w2 sin(q2)].
(12)

For a weight vector w, since the L1 norm of w does not
change the order of NNS results over dw, a d-dimensional
weight vector w indeed has only (d− 1) degree of freedom,
For example, let w = (w1, w2) and w2 > 0. A query q
with w has as same order of NNS results as q with w′ =
(w1/w2, 1). Notice that 4-dimensional objects are hard to
visualize. In order to straightforwardly visualize the data ob-
jects and queries in the transformed space, we set the weight
vector asw = (t, 1) and consider five cases of t for visualiza-
tion, where t ∈ {−1.0,−0.5, 0.0, 0.5, 1.0}. From Equation
12, Q(q, w) = [t cos(q1), cos(q2), t sin(q1), sin(q2)]. We
observe that the second and fourth dimensions of Q(q, w)
are independent of w and have only 1 degree of freedom.
Thus, we visualize the data objects and queries in the
transformed space with P ′(o) = [o2, cos(o1), sin(o1)] and
Q′(q, w) = [q2, t cos(q1), t sin(q1)], respectively. The data
objects are of the same color with their corresponding ob-

jects in the original space. For the queries, we plot each
query with the same color of its NN over L2 distance and
Angular distance in the transformed space. The results are
shown in the second and third row of Figure 1.

From Figure 1, we observe that the figures of these two rows
are nearly identical. A clear one-to-one correspondence for
the data objects and queries between original space and
transformed space can be easily found. These results empir-
ically support that our proposed spherical asymmetric trans-
formation can indeed preserve the NNs of queries. Note
that the spherical asymmetric transformation is essentially
dimension-wise. Therefore, the intuition from visualizing
low-dimensional space can be applied to high-dimensional
space as well.
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