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Abstract
Nearest Neighbor Search (NNS) over generalized
weighted space is a fundamental problem which
has many applications in various fields. However,
to the best of our knowledge, there is no sublin-
ear time solution to this problem. Based on the
idea of Asymmetric Locality-Sensitive Hashing
(ALSH), we introduce a novel spherical asymmet-
ric transformation and propose the first two novel
weight-oblivious hashing schemes SL-ALSH and
S2-ALSH accordingly. We further show that both
schemes enjoy a quality guarantee and can answer
the NNS queries in sublinear time. Evaluations
over three real datasets demonstrate the superior
performance of the two proposed schemes.

1. Introduction
In this paper, we study a fundamental problem of Nearest
Neighbor Search (NNS) over the Generalized Weighted
Square Euclidean Distance (GWSED) dw. Given a dataset
D of n data objects and a query object q with a weight
vector w in the Euclidean space Rd, the problem of NNS
over dw is to find the nearest object o∗ ∈ D of q such that

o∗ = arg min
o∈D

dw(o, q). (1)

For any two objects o = (o1, o2, . . . , od) and q =
(q1, q2, . . . , qd) ∈ Rd, the GWSED dw(o, q) between o and
q is computed as follows:

dw(o, q) =

d∑
i=1

wi(oi − qi)2, (2)

where w = (w1, w2, . . . , wd) is a weight vector. Here w
is specified only when q arrives and we consider the gen-
eralized setting of w ∈ Rd without any constraints such as
wi ≥ 0,∀i. Although this generalization makes the distance
dw no longer a metric if wi < 0, it is fundamental and has a
variety of diverse applications.

1School of Computing, National University of Sin-
gapore, Singapore. Correspondence to: Qiang Huang
<huangq@comp.nus.edu.sg>, Anthony K. H. Tung
<atung@comp.nus.edu.sg>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

For example, under the specific setting that wi = 1,∀i,
the problem of NNS over L2 distance (or Euclidean dis-
tance) can be reduced to NNS over dw. Similarly, by setting
wi = −1,∀i, the Furthest Neighbor Search (FNS) over L2

distance can be converted into NNS over dw. In addition, the
problem of Maximum Inner Product Search (MIPS) which
has attracted increasing interests in recent times, as we will
discuss in Sect. 3, can also be reduced to NNS over dw.
Thus, NNS over dw is a very fundamental problem.

There are many scenarios in which the problem of NNS over
dw arises naturally, especially when the negative weight
wi < 0 is allowed. For example, for the Recommendation
systems (Wang et al., 2015; Gu et al., 2016), the weight
vector w makes it possible for users to adjust the impor-
tance of different dimensions of retrieved items, and the
negative weights indicate that users do not expect the search
results which are similar to query item in those particular
dimensions. Another popular scenario is the kNN classifier
(Fernandez et al., 2018; Bhattacharya et al., 2017; Liu et al.,
2015). It is common to set different weights for different di-
mensions. An efficient method for NNS over dw can largely
reduce the tuning time of kNN classifier for the weights of
different dimensions.

The naive solution for NNS over dw is linear scan, which
sequentially compares data objects o ∈ D to the query q
with its corresponding weight vector w. However, the query
time complexity is O(nd), which is not efficient if n or d
is large. Due to the “curse of dimensionality,” the space
and/or query time complexities of traditional space partition
based methods (Guttman, 1984; Bentley, 1990; Katayama
& Satoh, 1997) for exact NNS are exponential in d (Weber
et al., 1998; Beyer et al., 1999). Locality-Sensitive Hashing
(LSH) and its variants (Indyk & Motwani, 1998; Datar et al.,
2004; Andoni & Indyk, 2006; Gan et al., 2012; Sun et al.,
2014; Huang et al., 2015; Zheng et al., 2016; Huang et al.,
2017; Andoni et al., 2018) are the sublinear time methods
for approximate NNS in high-dimensional space, but they
are only suitable for NNS over dw for the specific type of
w with wi = 1,∀i. For the generalized setting of w, it is
not sufficient for NNS over dw. We are interested in the
methods with a weight-oblivious data structure that knows
no information of w during the preprocessing phase but can
answer the NNS queries over dw for arbitrary w of various
types, which can be seen as “one index for all generalized
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weighted space.” However, to the best of our knowledge,
there is no sublinear time method with weight-oblivious
data structure for NNS over dw.

On the other hand, even though inner product is not a metric
which is similar to dw, starting from the pioneering work
of Shrivastava & Li (2014), many sublinear time methods
based on Asymmetric LSH (ALSH) have been proposed for
MIPS (Shrivastava & Li, 2015b; Neyshabur & Srebro, 2015;
Shrivastava & Li, 2015a; Huang et al., 2018; Yan et al.,
2018). Compared with LSH-based schemes, ALSH allows
asymmetric transformations for data objects and queries
so that they can compute the collision probability of inner
product similar to LSH, which motivates us to consider the
ALSH-based methods for NNS over dw.

Based on the idea of ALSH, we propose the first two sub-
linear time ALSH schemes SL-ALSH and S2-ALSH for
NNS over dw. Firstly, we show that there is no ALSH for
NNS over dw in Rd (Sect. 3). Secondly, we propose a novel
spherical asymmetric transformation which converts the
data objects and queries from Rd to R2d. Then, based on this
transformation, we introduce two novel weight-oblivious
ALSH schemes SL-ALSH and S2-ALSH which convert the
problem of NNS over dw into the problem of NNS over
L2 distance and NNS over Angular distance, respectively.
Furthermore, we show that the two proposed schemes enjoy
sublinear query time for NNS over dw (Sect. 4). Experi-
mental evaluations over three real-life datasets show that
SL-ALSH and S2-ALSH lead to significant computational
saving over linear scan and support various types of weight
vectors w (Sect. 5).

2. Preliminaries
Before we introduce the schemes for NNS over dw, we first
review some preliminary knowledge about LSH and ALSH.

2.1. Locality-Sensitive Hashing

LSH schemes are the most popular methods for the problem
of Approximate NNS (ANNS). Formally, an LSH function
family (or simply LSH family) is defined as follows:
Definition 1 (LSH family). A family of hash functionsH is
said to be (R1, R2, p1, p2)-sensitive for a distance function
Dist(·, ·) if, for any o, q ∈ Rd and h ∈ H, H satisfies the
following conditions:

• If Dist(o, q) ≤ R1, then PrH[h(o) = h(q)] ≥ p1;
• If Dist(o, q) ≥ R2, then PrH[h(o) = h(q)] ≤ p2;
• R1 < R2 and p1 > p2.

Under the generalized setting of w, the distance dw can
be negative if wi < 0. Thus, we analyse the theoretical
guarantee using the (R1, R2, p1, p2)-sensitive setting and
consider the problem of (R1, R2)-Near Neighbor Search
((R1, R2)-NNS), which is defined as follows:

Definition 2 ((R1, R2)-NNS). Given a distance function
Dist(·, ·) and two distance thresholds R1 and R2 (R1 <
R2), the problem of (R1, R2)-NNS is to construct a data
structure which, for any query q ∈ Rd, returns an object
o ∈ D such that Dist(o, q) ≤ R2 if there exists any o′ ∈ D
such that Dist(o′, q) ≤ R1.

With an (R1, R2, p1, p2)-sensitive hash family, we have The-
orem 1 (Datar et al., 2004) as follows:
Theorem 1. Given an (R1, R2, p1, p2)-sensitive familyH,
one can build a data structure for the problem of (R1, R2)-
NNS which uses O(n1+ρ) space and O(dnρ log1/p2(n))
query time, where ρ = ln p1/ ln p2.

Notice that (R1, R2)-NNS is simply a decision version of
the ANNS problem. One can reduce the ANNS problem to
(R1, R2)-NNS via a binary-search-like method. Then, the
query time complexity of ANNS is the same (within a log
factor for binary search) as that of the (R1, R2)-NNS prob-
lem. Next, we review two popular LSH schemes E2LSH and
SimHash for NNS over L2 distance and Angular distance,
respectively.

E2LSH was proposed by Datar et al. (2004). Let ‖o‖2
be the L2 norm of an object o. Given any two objects
o, q ∈ Rd, the L2 distance can be computed as ‖o− q‖2 =√∑d

i=1(oi − qi)2. The LSH function is defined as follows:

hl2(o) =

⌊
aT o+ b

r

⌋
, (3)

where a is a d-dimensional vector with each entry chosen
independently and uniformly at random from standard Gaus-
sian distribution N (0, 1); r is a pre-specified bucket width;
b is a random offset chosen uniformly at random from [0, r).

Given any two objects o, q ∈ Rd, let δ = ‖o− q‖2. The
collision probability p(l2)(δ) is computed as follows:

p(l2)(δ) = Pr[hl2(o) = hl2(q)]

= 1− 2Φ(−r/δ)− 2√
2π(r/δ)

(1− e−(r/δ)2/2),

(4)
where Φ(x) =

∫ x
−∞

1√
2π
e−x

2/2 dx (Datar et al., 2004).

SimHash was proposed by Charikar (2002). Given two
objects o, q ∈ Rd, the Angular distance is computed as
θ(o, q) = cos−1( oT q

‖o‖2‖q‖2
). Its LSH function is called Sign

Random Projection (SRP), which is defined as follows:

hsrp(o) = sign(aT o), (5)

where a is a d-dimensional vector with each entry generated
independently and uniformly at random from N (0, 1).

Given any two objects o, q ∈ Rd, let δ = θ(o, q). The
collision probability p(srp)(δ) is computed as follows:

p(srp)(δ) = Pr[hsrp(o) = hsrp(q)] = 1− δ

π
. (6)
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2.2. Asymmetric LSH

ALSH schemes can solve the MIPS with sublinear query
time. Formally, the ALSH family is defined as follows:
Definition 3 (ALSH family). A family of hash functions
H, along with two vector transformations P : Rd → Rd′

(Preprocessing transformation) and Q : Rd → Rd′ (Query
transformation), is said to be (R1, R2, p1, p2)-sensitive for
a distance function Dist(·, ·) if, for any o, q ∈ Rd and
h ∈ H,H satisfies the following conditions:

• IfDist(o, q) ≤ R1, then PrH[h(P (o)) = h(Q(q))] ≥
p1;

• IfDist(o, q) ≥ R2, then PrH[h(P (o)) = h(Q(q))] ≤
p2;

• R1 < R2 and p1 > p2.

Simple-LSH (Neyshabur & Srebro, 2015) is one of the state-
of-the-art ALSH schemes. It has the same preprocessing
transformation P and query transformation Q as follows:

P (x) = Q(x) = [x;

√
1− ‖x‖22].

Notice that they assume ‖o‖2 ≤ 1 for all o ∈ D and limit
‖q‖2 = 1 for the query q. Thus, different normalizations
are used for data objects and queries. From this perspective,
it also shares the same nature of ALSH schemes.

3. No ALSH over Rd

Neyshabur & Srebro (2015) demonstrated that there is no
ALSH for MIPS over Rd. By leveraging their results, we
show that there is no ALSH for NNS over dw over Rd.

At first, we show that the problem of MIPS can be reduced
to the problem of NNS over dw.
Lemma 1. If we have an (R1, R2, p1, p2)-sensitive ALSH
family for NNS over dw for any R1 < R2 and p1 > p2
over Rd, d ≥ 5, we can then construct an (S, cS, p1, p2)-
sensitive ALSH family for MIPS over Rb(d−1)/2c for any
S > 0 and 0 < c < 1.

Proof. Suppose H along with two vector transformations
P and Q is an (R1, R2, p1, p2)-sensitive ALSH family for
NNS over dw over Rd.

We first consider the case of odd d ≥ 5. Consider the
problem of MIPS. For any o, q ∈ Rb(d−1)/2c, we construct
two vector transformations f : Rb(d−1)/2c → Rd and g :
Rb(d−1)/2c → Rd:

f(o) = [o; o; 0],

g(q) = [q;−q; 1],

and the weight vector w = [ R2−R1

4(1−c)S ;− R2−R1

4(1−c)S ; R2−cR1

1−c ].
Then, we have

dw(f(o), g(q)) =
(R1 −R2)

(1− c)S oT q +
R2 − cR1

1− c ,

and

dw(f(o), g(q)) ≤ R1 ⇐⇒ oT q ≥ S,
dw(f(o), g(q)) ≥ R2 ⇐⇒ oT q ≤ cS.

(7)

Combining Eq. 7 with Definition 3, we infer that

oT q ≥ S =⇒ Pr
H

[h(P ◦ f(o)) = h(Q ◦ g(q))] ≥ p1,

oT q ≤ cS =⇒ Pr
H

[h(P ◦ f(o)) = h(Q ◦ g(q))] ≤ p2.

Thus, H along with P ◦ f and Q ◦ g is an (S, cS, p1, p2)-
sensitive ALSH family for MIPS over Rb(d−1)/2c.

For the case of even d ≥ 6, we could add one more di-
mension to w, f, g with 0, and construct an (S, cS, p1, p2)-
sensitive ALSH familyH for MIPS over Rb(d−1)/2c as well.

Therefore, Lemma 1 is proved.

Based on Lemma 1, we have Theorem 2 as follows.
Theorem 2. For any d ≥ 5, R1 < R2, and p1 > p2, there
is no (R1, R2, p1, p2)-sensitive ALSH family for NNS over
dw over Rd.

Proof. Suppose there exists an (R1, R2, p1, p2)-sensitive
ALSH family for NNS over dw over Rd for any d ≥
5. According to Lemma 1, we are able to construct
an (S, cS, p1, p2)-sensitive ALSH family for MIPS over
Rb(d−1)/2c for any S > 0 and 0 < c < 1, where
b(d− 1)/2c ≥ 2. This contradicts Theorem 3.1 in
(Neyshabur & Srebro, 2015) which states that there is
no (S, cS, p1, p2)-ALSH family for MIPS over Rd for any
d ≥ 2. Thus, Theorem 2 is proved.

Theorem 2 formally demonstrates that there is no ALSH
family for NNS over dw over Rd. Fortunately, this is not re-
quired for the problem of NNS over dw. Next, we will intro-
duce a spherical asymmetric transformation which converts
the data objects and queries from Rd to R2d and propose
two ALSH schemes for NNS over dw accordingly.

4. Our Proposed Methods
4.1. Spherical Asymmetric Transformation

We now introduce the spherical asymmetric transformation.
Suppose o, q ∈ [0, U ]d ⊂ Rd for all o ∈ D and q for a
fixed 0 < U ≤ π. Otherwise, we can shift and/or rescale
o ∈ D and q without changing the order of the NNS results.
In addition, unless w = [0, 0, . . . , 0] where the problem
of NNS over dw is trivial, we assume ‖w‖1 = 1, where
‖w‖1 =

∑
i |wi| is the L1 norm of w. Otherwise, we can

also rescale w to get the same order of the NNS results.

For any object o = (o1, o2, . . . , od), let COS and SIN be
the element-wise cos and sin, respectively, i.e.,

COS(o) = [cos(o1), cos(o2), . . . , cos(od)],

SIN(o) = [sin(o1), sin(o2), . . . , sin(od)].
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Given a data object o = (o1, o2, . . . , od) and a query q =
(q1, q2, . . . , qd) with a weight vectorw = (w1, w2, . . . , wd),
the vector transformations P : Rd → R2d and Q : Rd →
R2d are defined as follows:

P (o) = [COS(o);SIN(o)], (8)

Q(q, w) = [w ⊗ COS(q);w ⊗ SIN(q)], (9)

where⊗ denotes element-wise product, i.e., w⊗COS(q) =
(w1 cos(q1), w2 cos(q2), . . . , wd cos(qd)).

Notice that ‖P (o)‖2 =
√
d for all o ∈ D and ‖Q(q, w)‖2 =

‖w‖2 for each q. This asymmetric transformation maps o
and q over Rd to the hypersphere over R2d with radii

√
d

and ‖w‖2, respectively. Thus, we call it spherical asym-
metric transformation. In addition, since the preprocessing
transformation P is independent ofw, this asymmetric trans-
formation is weight-oblivious.

The intuition of the spherical asymmetric transformation
comes from the fact that 1 − cos(δ) ≈ δ2

2 when δ 7→ 0.
Based on the Taylor expansion, we have Fact 1 as follows:

Fact 1. For any δ ∈ R, δ
2

2 − δ4

24 ≤ 1− cos(δ) ≤ δ2

2 .

Let w− be
w− =

∑
i:wi≤0

wi. (10)

Then, we have∑
i:wi≥0

wi =
∑
i

|wi|+ w− = 1 + w−, (11)

∑
i

wi =
∑
i

|wi|+ 2w− = 1 + 2w−. (12)

According to Fact 1, based on Eqs. 10 and 11, we have:

Lemma 2. Given a fixed U > 0, for any x ∈ [−U,U ]d and
w ∈ Rd, we have∑

i

wi(1−cos(xi)) ≥
1

2

∑
i

wix
2
i−

1

24
(1+w−)U4, (13)

∑
i

wi(1− cos(xi)) ≤
1

2

∑
i

wix
2
i −

1

24
w−U4. (14)

Let x = o−q. Lemma 2 shows that
∑
i wi(1−cos(oi−qi))

is a good approximation to dw(o, q).

Until now, we have presented the spherical asymmetric
transformation and discussed some theoretical properties
behind its intuition. Next, we will discuss the choice of LSH
functions after the spherical asymmetric transformation, and
present two ALSH schemes Spherical L2-ALSH (or simply
SL-ALSH) and Spherical SRP-ALSH (or simply S2-ALSH)
which convert NNS over dw into NNS over L2 distance and
NNS over Angular distance, respectively.

4.2. SL-ALSH

We first introduce SL-ALSH which converts NNS over dw
into NNS over L2 distance. We apply the LSH function
hl2(·) after the spherical asymmetric transformation.

According to Eqs. 8 and 9, we have:

‖P (o)−Q(q, w)‖22
=
∑
i

(1− wi)2 + 2
∑
i

wi(1− cos(oi − qi)). (15)

Thus, based on Eqs. 4 and 15, the collision probability for
certain o, q, w is computed as follows:

Pr[hl2(P (o)) = hl2(Q(q, w))]

= p(l2)

√∑
i

(1− wi)2 + 2
∑
i

wi(1− cos(oi − qi))

 .

(16)

Let R1 < R2. Based on Lemma 2, if dw(o, q) ≤ R1, then

Pr[hl2(P (o)) = hl2(Q(q, w))]

≥ p(l2)
(√∑

i

(1− wi)2 +R1 − 1

12
w−U4

)
;

(17)

If dw(o, q) ≥ R2, then

Pr[hl2(P (o)) = hl2(Q(q, w))]

≤ p(l2)
(√∑

i

(1− wi)2 +R2 − 1

12
(1 + w−)U4

)
.

(18)

Let p(l2)1 and p(l2)2 be the right-hand side of Inequalities 17
and 18, respectively. In order to satisfy p(l2)1 > p

(l2)
2 , we

require
U < 4

√
12(R2 −R1), (19)

which can be satisfied by selecting a small U .

Thus, we have Lemma 3 as follows:

Lemma 3. A family of hash functions hl2(·), along with
P : Rd → R2d and Q : Rd → R2d as defined by Eqs. 8
and 9, is (R1, R2, p

(l2)
1 , p

(l2)
2 )-sensitive for the distance dw,

where R1 < R2 and p(l2)1 > p
(l2)
2 .

According to Theorem 1, the hashing quality of SL-ALSH

can be computed as ρ(l2) =
ln(p

(l2)
1 )

ln(p
(l2)
2 )

. As we discussed,

rescalingw does not change the order of the NNS results, but
it will change the ρ(l2) value. Since we assume ‖w‖1 = 1,
we introduce a scale factor λ (λ > 0) to rescale w and
consider the weight vector w′ = λw. We discover that ρ(l2)

is minimized when λ =
√
d/ ‖w‖2. The detailed proof

can be found in the supplementary file. Let η =
√
d ‖w‖2.
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Based on Eqs. 4 and 16 and Inequalities 17 and 18, the
minimum value of ρ(l2) is computed as follows:

ρ
(l2)
min

= min
r,U

ln(p(l2)(
√

2η − 2(1 + 2w−) +R1 − 1
12
w−U4))

ln(p(l2)(
√

2η − 2(1 + 2w−) +R2 − 1
12
(1 + w−)U4))

.

(20)

Thus, based on Lemma 3, we have Theorem 3 as follows:
Theorem 3. Given a family of hash functions hl2(·),
along with P and Q as defined by Eqs. 8 and 9, which
is (R1, R2, p

(l2)
1 , p

(l2)
2 )-sensitive, SL-ALSH is a weight-

oblivious data structure for (R1, R2)-NNS over dw with
O(n1+ρ

(l2)
min) space and O(dnρ

(l2)
min log1/p2(n)) query time,

where ρ(l2)min is defined by Eq. 20.

Even though ρ(l2)min is achieved when λ =
√
d/ ‖w‖2, we

still need to check a large number of combinations of r and
U to find ρ(l2)min. Next, we will introduce a simple ALSH
scheme S2-ALSH which is independent of r.

4.3. S2-ALSH

We now introduce S2-ALSH which reduces NNS over dw
to NNS over Angular distance. We apply the LSH function
hsrp(·) after the spherical asymmetric transformation.

According to Eqs. 8 and 9, we have

P (o)TQ(q, w)

‖P (o)‖2 ‖Q(q, w)‖2
=

∑
i wi −

∑
i wi(1− cos(oi − qi))√
d ‖w‖2

.

(21)
Based on Eqs. 6, 12, and 21, the collision probability for
certain o, q, w is computed as follows:

Pr[hsrp(P (o)) = hsrp(Q(q, w))]

= 1− 1

π
cos−1

(
1 + 2w− −∑i wi(1− cos(oi − qi))

η

)
.

(22)

Let R1 < R2. Based on Lemma 2, if dw(o, q) ≤ R1, then

Pr[hsrp(P (o)) = hsrp(Q(q, w))]

≥ 1− 1

π
cos−1

(
1 + 2w− − 1

2
R1 +

1
24
w−U4

η

)
;

(23)

If dw(o, q) ≥ R2, then

Pr[hsrp(P (o)) = hsrp(Q(q, w))]

≤ 1− 1

π
cos−1

(
1 + 2w− − 1

2
R2 +

1
24
(1 + w−)U4

η

)
.

(24)

Let p(srp)1 and p(srp)2 be the right-hand side of Inequalities
23 and 24, respectively. In order to satisfy p(srp)1 > p

(srp)
2 ,

we have the same condition as defined in Inequality 19.

Thus, we have Lemma 4 as follows:

Lemma 4. A family of hash functions hsrp(·), along with
P : Rd → R2d and Q : Rd → R2d as defined by Eqs. 8
and 9, is (R1, R2, p

(srp)
1 , p

(srp)
2 )-sensitive for the distance

dw, where R1 < R2 and p(srp)1 > p
(srp)
2 .

According to Theorem 1, the hashing quality of S2-ALSH

is computed as ρ(srp) =
ln(p

(srp)
1 )

ln(p
(srp)
2 )

. Based on Eq. 22 and

Inequalities 23 and 24, we compute the minimum value of
ρ(srp) as follows:

ρ
(srp)
min

= min
U

ln

(
1− 1

π
cos−1

(
1+2w−− 1

2
R1+

1
24
w−U4

η

))
ln
(
1− 1

π
cos−1

(
1+2w−− 1

2
R2+

1
24

(1+w−)U4

η

)) .
(25)

Thus, based on Lemma 4, we have Theorem 4 as follows:

Theorem 4. Given a family of hash functions hsrp(·),
along with P and Q as defined by Eqs. 8 and 9, which
is (R1, R2, p

(srp)
1 , p

(srp)
2 )-sensitive, S2-ALSH is a weight-

oblivious data structure for (R1, R2)-NNS over dw with
O(n1+ρ

(srp)
min ) space and O(dnρ

(srp)
min log1/p2(n)) query time,

where ρ(srp)min is defined by Eq. 25.

4.4. Computational Analysis of Hashing Quality

According to Theorems 3 and 4, the query time complexities
of SL-ALSH and S2-ALSH depend on the hashing quality
ρ. A smaller value of ρ leads to less query time of a method.

We now present a computational analysis of ρ(l2)min and
ρ
(srp)
min between SL-ALSH and S2-ALSH. According to

Eqs. 20 and 25, the values of ρ(l2)min and ρ(srp)min depend on
R1, R2, w

−, and η only. R1 and R2 are the pre-specified
distance threshold. Since o, q ∈ [0, U ]d, we derive that
w−U2 ≤ R1 < R2 ≤ (1 + w−)U2. w− represents the
negativity of w, where w− ∈ [−1, 0]. Intuitively, η repre-
sents the sparsity of w, where η ∈ [1,

√
d]. For example, η

gets the minimum value 1 when w is a dense vector with
wi = 1/d,∀i, while for a sparse case where 80% of wi are
0 and 20% of wi are 5/d (we assume ‖w‖1 = 1), η =

√
5

which is independent of d.

To show the relationship between ρ
(l2)
min and ρ

(srp)
min , we

plot the contour diagram of ρ(l2)min and ρ
(srp)
min w.r.t R1

and R2 for SL-ALSH and S2-ALSH under different set-
tings of w− and η. We consider three special cases
ρ
(l2)
min, ρ

(srp)
min ∈ {0.3, 0.6, 0.9} for all combinations of w− ∈

{0.0,−0.25,−0.5,−0.75,−1.0} and η ∈ {1.0, 1.5, 2.0},
where w−U2 ≤ R1 < R2 ≤ (1+w−)U2. From Fig. 1, for
the same R1 and R2, ρ(l2)min and ρ(srp)min have the maximum
value when w− = 0.5. Moreover, ρ(l2)min and ρ(srp)min increase
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Figure 1. Contour diagram of ρ(l2)min and ρ(srp)min of SL-ALSH and S2-ALSH w.r.t R1 and R2 under different settings of w− and η.

as η increases. Except for the case η = 1 and w− = 0,
for certain R1 and R2, ρ(l2)min > ρ

(srp)
min . Thus, we have two

important findings: Firstly, the closer w− is to −0.5 and
the larger η is, the worse performance SL-ALSH and S2-
ALSH have. Secondly, for certain R1 and R2, S2-ALSH
outperforms SL-ALSH in most cases of w− and η.

5. Evaluation
In this section, we study the performance of SL-ALSH and
S2-ALSH for NNS over dw on three real-life datasets, i.e.,
Mnist,1 Sift,2 and MovieLens Full3 (or simply MovieLens).
For Mnist and Sift, we randomly sample 1,000 objects from
their test sets as queries. For the collaborative filtering
dataset MovieLens, we follow the standard pureSVD pro-
cedure (Cremonesi et al., 2010) to generate user and item
latent vectors and set the latent dimension d = 150 (Cre-
monesi et al., 2010; Shrivastava & Li, 2014; Neyshabur &
Srebro, 2015). We randomly sample 1,000 vectors from
item vectors as queries and use the rest item vectors as
dataset. The statistics of datasets are displayed in Table 1.

In order to demonstrate that both SL-ALSH and S2-ALSH
are weight-oblivious, we generate w from five typical distri-
butions, which are illustrated in Table 2.

We follow Shrivastava & Li (2014); Neyshabur & Srebro
(2015) and evaluate the performance of SL-ALSH and S2-
ALSH with a precision-recall curve. For this task, given
a query q with its weight vector w, we first compute the

1http://yann.lecun.com/exdb/mnist/
2http://corpus-texmex.irisa.fr/
3https://grouplens.org/datasets/movielens/

Table 1. Statistics of datasets and queries

Datasets #Objects #Queries d

Mnist 60,000 1,000 784
Sift 1,000,000 1,000 128

MovieLens 52,889 1,000 150

Table 2. Illustrations of five types of weight vectors w

Types Illustrations

identical all “1”s
binary uniformly distributed in {0, 1}d
normal d-dimensional normal distribution N (0, I)
uniform uniformly distributed in [0, 1]d

negative all “-1”s

top-10 exact NNs based on dw(o, q). Then, we compute K
different hash values for each q. Finally, we sort and scan
all data objects according to the common hash values they
match with q. The results are averaged over all queries.

5.1. Impact of Parameters

We study the impact of parameters of SL-ALSH and S2-
ALSH. We mainly focus on U and the number of hash
functions K.4 To be concise, we show results on Sift for the
binary and normal types of w only. Similar trends can be
observed from other datasets and other types of w.

We first study the impact of U . We fix K = 256 and plot

4Compared with S2-ALSH, there is an extra parameter r for
SL-ALSH. We set the bucket width r to be 56, 23, and 3 for Mnist,
Sift, and MovieLens, respectively, to achieve their best results.
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Figure 3. Impact of K

the precision-recall curves of SL-ALSH and S2-ALSH with
U ∈ {π/4, π/2, π}. From Fig. 2, both schemes achieve
the (nearly) best accuracy when U = π. It seems counter-
intuitive because we need to select a small U to satisfy
Inequality 19 as we discussed in Sects. 4.2 and 4.3. How-
ever, for most real-life datasets, Inequality 19 is too strict,
in this case, a large U which violates Inequality 19 is still
sufficient to preserve the LSH property. Thus, the (nearly)
best precision-recall curves are achieved when U = π over
the three real-life datasets.

We then study the impact of K. We fix U = π and consider
K ∈ {128, 256, 512}. From Fig. 3, the accuracy increases
as K increases. However, the number of hash tables and the
corresponding running time increase as K increases. Thus,
both schemes have a better trade-off between accuracy and
efficiency when K = 256.

Based on the above results, we use the settings ofU = π and
K = 256 for both schemes in the subsequent experiments.

5.2. Ranking Experiments

In this section, we study the hash code quality of SL-ALSH
and S2-ALSH over five types of w. For the identical type
of w, we plot the precision-recall curves of E2LSH as the
baseline in comparison with SL-ALSH and S2-ALSH.5

From Fig. 4, S2-ALSH outperforms SL-ALSH by a large
margin in most types of w. These results are consistent with

5For E2LSH, we shift and rescale the datasets into [0, 1]d, and
set the bucket width r to 8, 1, and 0.002 for Mnist, Sift, and
MovieLens, respectively, to achieve their best results.

the computational analysis on ρ(l2)min and ρ(srp)min in Sect. 4.4.
Moreover, both schemes work better on Mnist and Sift than
on MovieLens, because there exist a tiny fraction of data
objects in MovieLens whose L2 norms are much larger than
others. Thus, most of data objects locate inside the center
of bounded space after data normalization, and hence the
ALSH functions cannot distinguish them. For the negative
type of w, we observe an interesting step-like pattern on
MovieLens. The reason is that the data objects with much
large L2 norms can be distinguished easily.

In addition, E2LSH outperforms SL-ALSH and S2-ALSH,
because SL-ALSH and S2-ALSH which use P and Q for
asymmetric transformation will introduce a bit distortion for
L2 distance compared to using E2LSH directly. However,
the gap is small on Mnist and Sift, which verifies our expla-
nation that U = π satisfies the LSH property in Sect. 5.1.
Furthermore, E2LSH only works with the identical type of
w, but SL-ALSH and S2-ALSH are weight-oblivious.

5.3. Bucketing Experiments

Although the precision-recall curve is a good indicator of
the accuracy of SL-ALSH and S2-ALSH, it, however, does
not always reflect their efficiency. Thus, we further study
the performance of SL-ALSH and S2-ALSH with the imple-
mentation of the vanilla (m,L)-bucketing algorithm (Indyk
& Motwani, 1998; Datar et al., 2004). For the identical type
of w, we also implement E2LSH as a benchmark method.

The performance of an (m,L)-bucketing algorithm is highly
sensitive to the settings of m and L for different datasets.
To reduce the impacts of m and L, we follow Shrivastava &
Li (2014) and construct 300 hash tables for different m ∈
{1, 2, . . . , 30}. We then check the candidate set formed by
the first L out of 300 hash tables for each query, where
L ∈ {1, 2, . . . , 300}. We plot the smallest fraction of data
objects to scan, i.e., the ratio between the size of candidate
set and the cardinality of dataset, to achieve certain level of
recall for top-10 NNs among all combinations of m and L.

From Fig. 5, clear sublinear time curves of SL-ALSH and
S2-ALSH are observed from most types of w. Specifically,
for Mnist and Sift with identical, binary, and uniform types
of w, both schemes outperform linear scan by one to two
orders of magnitudes. Moreover, S2-ALSH outperforms
SL-ALSH in most types of w, which is consistent with the
results from Sect. 5.2. For MovieLens with the normal and
negative types of w, there is an interesting pattern that a part
of NNs can be found easily. These results are consistent
with those from Sect. 5.2 and can also be explained by the
long-tailed L2 norm property of MovieLens.

Furthermore, S2-ALSH is comparable to E2LSH on Mnist
and Sift, because despite accuracy loss introduced by P and
Q, the binary signatures of S2-ALSH have better hashing
quality than the integer ones of E2LSH. For MovieLens,
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Figure 4. Ranking Experiments. Precision-recall curves of retrieving top-10 NNs (higher is better).
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Figure 5. Bucketing Experiments. The best fraction of dataset to scan to achieve certain level of recalls among all combinations of
m ∈ {1, 2, . . . , 30} and L ∈ {1, 2, . . . , 300} (Lower is better).

E2LSH outperforms both schemes by a large margin due to
the long-tailed L2 norm property of MovieLens.

5.4. Summary

Based on the above results, we have three important obser-
vations: Firstly, SL-ALSH and S2-ALSH answer the NNS
queries in sublinear time. Specifically, their running time
is much less than that of linear scan by up to two orders of
magnitudes. Secondly, both schemes are weight-oblivious,
which support five different types of w, while E2LSH only
works with the identical type ofw. Finally, for most types of
w, S2-ALSH outperforms SL-ALSH in terms of accuracy.

6. Conclusion
In this paper, we study a fundamental problem of NNS over
generalized weighted space. We first demonstrate that there
is no ALSH scheme for NNS over dw in Rd. To address
this challenging problem, we introduce a novel spherical
asymmetric transformation and propose the first two sublin-
ear time ALSH schemes SL-ALSH and S2-ALSH which
are weight-oblivious data structures. Both SL-ALSH and
S2-ALSH enjoy a quality guarantee. Extensive experiments
over three real-life datasets verify that SL-ALSH and S2-
ALSH answer the NNS queries in sublinear time and support
various types of weight vectors.
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