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Abstract

We introduce a novel approach to perform first-
order optimization with orthogonal and uni-
tary constraints. This approach is based on a
parametrization stemming from Lie group theory
through the exponential map. The parametrization
transforms the constrained optimization problem
into an unconstrained one over a Euclidean space,
for which common first-order optimization meth-
ods can be used. The theoretical results presented
are general enough to cover the special orthogo-
nal group, the unitary group and, in general, any
connected compact Lie group. We discuss how
this and other parametrizations can be computed
efficiently through an implementation trick, mak-
ing numerically complex parametrizations usable
at a negligible runtime cost in neural networks.
In particular, we apply our results to RNNs with
orthogonal recurrent weights, yielding a new ar-
chitecture called EXPRNN. We demonstrate how
our method constitutes a more robust approach to
optimization with orthogonal constraints, show-
ing faster, accurate, and more stable convergence
in several tasks designed to test RNNs.

1. Introduction

Training deep neural networks presents many difficulties.
One of the most important is the exploding and vanishing
gradient problem, as first observed and studied in (Bengio
et al.,[1994). This problem arises from the ill-conditioning
of the function defined by a neural network as the number
of layers increase. This issue is particularly problematic in
Recurrent Neural Networks (RNNs). In RNNs the eigenval-
ues of the gradient of the recurrent kernel explode or vanish
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exponentially fast with the number of time-steps whenever
the recurrent kernel does not have unitary eigenvalues (Ar{
jovsky et al., 2016)). This behavior is the same as the one
encountered when computing the powers of a matrix, and
results in very slow convergence (vanishing gradient) or a
lack of convergence (exploding gradient).

In the seminal paper (Arjovsky et al.l 2016)), they note that
unitary matrices have properties that would solve the ex-
ploding and vanishing gradient problems. These matrices
form a group called the unitary group and they have been
studied extensively in the fields of Lie group theory and Rie-
mannian geometry. Optimization methods over the unitary
and orthogonal group have found rather fruitful applications

in RNNs in recent years (cf. [Section 2).

In parallel to the work on unitary RNNs, there has been an in-
creasing interest for optimization over the orthogonal group
and the Stiefel manifold in neural networks (Harandi & Fer+
nando, 2016} |(Ozay & Okatani, [2016; [Huang et al., 2017}
Bansal et al.,[2018). As shown in these papers, orthogonal
constraints in linear and CNN layers can be rather beneficial
for the generalization of the network as they act as a form
of implicit regularization. The main problem encountered
while using these methods in practice was that optimiza-
tion with orthogonality constraints was neither simple nor
computationally cheap. We aim to close that bridge.

In this paper we present a simple yet effective way to ap-
proach problems that present orthogonality or unitary con-
straints. We build on results from Riemannian geometry
and Lie group theory to introduce a parametrization of these
groups, together with theoretical guarantees for it.

This parametrization has several advantages, both theoreti-
cal and practical:

1. It can be used with general purpose optimizers.

2. The parametrization does not create additional minima
or saddle points in the main parametrization region.

3. Itis possible to use a structured initializer to take ad-
vantage of the structure of the eigenvalues of the or-
thogonal matrix.

4. Other approaches need to enforce hard orthogonality
constraints, ours does not.
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Most previous approaches fail to satisfy one or many of
these points. The parametrization in (Helfrich et al.l 2018])
and (Maduranga et al., |2018) comply with most of these
points but they suffer degeneracies that ours solves (cf. Re-
mark in [Section 4.2). We compare our architecture with
other methods to optimize over SO(n) and U(n) in the
remarks in[Sections 3|and

High-level idea The matrix exponential maps skew-
symmetric matrices to orthogonal matrices transforming
an optimization problem with orthogonal constraints into
an unconstrained one. We use Padé approximants and the
scale-squaring trick to compute machine-precision approx-
imations of the matrix exponential and its gradient. We
can implement the parametrization with negligible overhead
observing that it does not depend on the batch size.

Structure of the Paper In [Section 3| we introduce the
parametrization and present the theoretical results that
support the efficiency of the exponential parametrization.
In we explain the implementation details of

the layer. Finally, in we present the numeri-
cal experiments confirming the numerical advantages of this

parametrization.

2. Related Work

Riemannian gradient descent. There is a vast literature
on optimization methods on Riemannian manifolds, and in
particular for matrix manifolds, both in the deterministic
and the stochastic setting. Most of the classical convergence
results from the Euclidean setting have been adapted to
the Riemannian one (Absil et al., 2009; Bonnabel, 2013}
Boumal et al., [2016; Zhang et al.,|2016;|Sato et al.,|2017)).
On the other hand, the problem of adapting popular opti-
mization algorithms like RMSPROP (Tieleman & Hintonl
2012), ADAM (Kingma & Ba,[2014) or ADAGRAD (Duchi
et al.,|2011) is a topic of current research (Kumar Roy et al.|
2018} Becigneul & Ganeal, 2019).

Optimization over the Orthogonal and Unitary groups.

The first formal study of optimization methods on manifolds
with orthogonal constraints (Stiefel manifolds) is found in
the thesis (Smith, |1993). These ideas were later simplified
in the seminal paper (Edelman et al., |1998), where they
were generalized to Grassmannian manifolds and extended
to get the formulation of the conjugate gradient algorithm
and the Newton method for these manifolds. After that,
optimization with orthogonal constraints has been a central
topic of study in the optimization community. A rather in
depth literature review of existing methods for optimization
with orthogonality constraints can be found in (Jiang & Dai|
2015). When it comes to the unitary case, the algorithms
used in practice are similar to those used in the real case,
cf. (Manton, [2002; |Abrudan et al., 2008)).

Unitary RNNs. The idea of parametrizing the matrix that
defines an RNN by a unitary matrix was first proposed
in (Arjovsky et al.| |2016). Their parametrization centers on
a matrix-based fast Fourier transform-like (FFT) approach.
As pointed out in (Jing et al., 2017)), this representation,
although efficient in memory, does not span the whole space
of unitary matrices, giving the model reduced expressive-
ness. This second paper solves this issue in the same way
it is solved when computing the FFT—using log(n) iter-
ated butterfly operations. A different approach to perform
this optimization was presented in (Wisdom et al., [2016;
Vorontsov et al., |2017). Although not mentioned explic-
itly in either of the papers, this second approach consists
of a retraction-based Riemannian gradient descent via the
Cayley transform. The paper (Hyland & Ratsch, [2017)) pro-
poses to use the exponential map on the complex case, but
they do not perform an analysis of the algorithm or provide
a way to approximate the map nor the gradients. A third
approach has been presented in (Mhammedi et al.| [2017)
via the use of Householder reflections. Finally, in (Helfrich
et al.,|2018) and the follow-up (Maduranga et al., 2018), a
parametrization of the orthogonal group via the use of the
Cayley transform is proposed. We will have a closer look at

these methods and their properties in and ]

3. Parametrization of Compact Lie Groups

For a much broader introduction to Riemannian geometry
and Lie group theory see [Appendix Al We will restrict
our attention to the special orthogonal |'|and unitary case,
but the results in this section can be generalized to any

connected compact matrix Lie group equipped with a bi-
invariant metric. We prove the results for general connected

compact matrix Lie groups in

3.1. The Lie algebras of SO(n) and U(n)

We are interested in the study of parametrizations of the
special orthogonal group

SO(n) ={B e R"™" | BB =1, det(B) = 1}
and the unitary group
U(n)={BeC""|B*B=1}.

These two sets are compact and connected Lie groups. Fur-
thermore, when seen as submanifolds of R™*" (resp. C"™*")
equipped with the metric induced from the ambient space
(X,Y) = tr(XTY) (resp. tr(X*Y)), they inherit a bi-
invariant metric, meaning that the metric is invariant with
respect to left and right multiplication by matrices of the

"Note that we consider just matrices with determinant equal
to one, since the full group of orthogonal matrices O(n) is not
connected, and hence, not amenable to gradient descent algorithms.
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group. This is clear given that the matrices of the two groups
are isometries with respect to the metric on the ambient
space.

We call the tangent space at the identity element of the group
the Lie algebra of the group. For the two groups of interest,
their Lie algebras are given by

so(n) = {A € R™" | A+ AT = 0},
u(n) = {A € C™" | A+ A* =0},

That is, the skew-symmetric and the skew-Hermitian matri-
ces respectively. Note that these two spaces are isomorphic
to a vector space. For example, for so(n), the isomorphism
is given by

ar R*T s0(n)
A A— AT

n(n—1)

where we identify A € R~ 2
matrix with zeros in the diagonal.

with an upper triangular

3.2. Parametrizing SO(n) and U(n)

In the theory of Lie groups there exists a tight connection
between the structure of the Lie algebra and the geometry
of the Lie group. One of the most important tools that is
used to study one in terms of the other is the Lie exponential
map. The Lie exponential map on matrix Lie groups with a
bi-invariant metric is given by the exponential of matrices.
If we denote the group by G (which would be SO(n) or
U(n) in this case) and its Lie algebra by g, we have the
mapping exp : g — G defined as

exp(A) =1+ A+ 1A%+ ..

This mapping is not surjective in general. On the other
hand, there are particular families of Lie groups in which
the exponential map is, in fact, surjective. Compact Lie
groups are one of such families.

Theorem 3.1. The Lie exponential map on a connected,
compact Lie group is surjective.

Proof. We give a short self-contained proof of this classical

result in[Appendix C| We give an alternative, less abstract
proof of this fact for the groups SO(n) and U(n) as a corol-

lary of [Proposition 3.2]in|{Appendix D] O

Both SO(n) and U(n) are compact and connected, so this
result applies to them. As such, the exponential of matrices
gives a complete parametrization of these groups.

3.3. From Riemannian to Euclidean optimization

In this section we describe some properties of the expo-
nential parametrization which make it a sound choice for
optimization with orthogonal constraints in neural networks.

Fix G to be SO(n) or U(n) equipped with the metri
(X,Y) = tr(X*Y) and let g be its Lie algebra (the space
of skew-symmetric or skew-Hermitian matrices). The expo-
nential parametrization satisfies the following properties.

It can be used with general purpose optimizers. The
exponential parametrization allows us to pullback an opti-
mization problem from the group G back to the Euclidean
space. If we have a problem

min f(B) (1)

BeG

this is equivalent to solving

min f (exp(A)). 2)

We noted in|Section 3.1|that g is isomorphic to a Euclidean
vector space, and as such we can use regular gradient de-

scent optimizers like ADAM or ADAGRAD to approximate a
solution to problem (2)).

A rather natural question to ask is whether using gradient-
based methods to approximate the solution of problem
would give a sensible solution to problem (T)), given that pre-
composing with the exponential map might change the ge-
ometry of the problem. If the parametrization is, for example
not locally unique, this might degrade the gradient flow and
affect the performance of the gradient descent algorithm. In
this section we will show theoretically that this parametriza-
tion has rather desirable properties for a parametrization of
a manifold. We will confirm that these properties have a
positive effect on the convergence of the gradient descent al-
gorithms when compared with other parametrizations when

applied to real problems in

It does not change the minimization problem. It is
clear that a minimizer 53 for problem () and a minimizer A
for problem (2)) will be related by the equation B = exp(A4),
since the exponential map is surjective, so if we find a so-
lution to the second problem we will have a solution to the
first one.

It acts as a change of metric on the group. If the
parametrization did not induce a change of metric on the
manifold it could mean that it would induce saddle points,
which would potentially slow down the convergence of the
optimization algorithm.

A map ¢: M — N with A/ a Riemannian manifold induces
a metric on a differentiable manifold M whenever it is an
immersion, that is, its differential is injective. The Lie
exponential is not just an immersion, it is bi-analytic on an
open neighborhood around the origin. The image of this
neighborhood is sufficiently large to cover almost all the Lie

group.

2Note that in the real case we have that A* = AT.
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Proposition 3.2. Let G be SO(n) or U(n). The exponen-
tial map is analytic, invertible, with analytic inverse on a
bounded open neigborhood V' of the origin and exp(V)
covers almost all G in the sense that the whole group lies in
the closure of exp(V).

Proof. See 0

This proposition assures that, as long as the optimization
problem stays in the neighborhood V, the representation of
the matrices in G is unique, so this parametrization is not
creating spurious minima. Furthermore, given that it is a
diffemorphism, it is not creating saddle points on V either.
Additionally, on this neighborhood, we have the adjoint of
d exp with respect to the metric, that is,

(dexp(X),Y) = (X,dexp”(Y)).

This is the map that induces the new metric on G, through
the pushforward of the canonical metric from the Lie algebra
into the Lie group. As such, the optimization process using
our parametrization can be seen as Riemannian gradient
descent using this new metric, and all the existent results
developed for optimization over manifolds apply to this
setting.

Remark. We saw empirically that whenever the initializa-
tion of the skew-symmetric matrix starts in V', the optimiza-
tion path throughout all the training epochs does not leave V.
For this reason, in practice the exponential parametrization
behaves as a change of metric on the Lie group.

The induced metric is different to the classic one. The
standard first order optimization technique to solve prob-
lem (TJ) is given by Riemannian gradient descent (Absil et al,
2009). In the Riemannian setting, we have the Riemannian
exponential map exp g which maps lines that pass through
the origin on the tangent space 75 G to geodesics on G that
pass through B. In the special orthogonal or unitary case,
when we choose the metric induced by the canonical metric
on the ambient space, for a function defined on the ambient
space, this translates to the update rule

B + Bexp(—nB* grad f(B))

for a learning rate 7 > 0, where exp is the exponential of
matrices and grad f(B) denotes the gradient of the function
restricted to G. We deduce this formula in

Computing the Riemannian exponential map exactly is com-
putationally expensive in many practical situations. For
this reason, approximations are in order. Retractions are of
particular interest.

Definition 3.3 (Retraction). A retraction r for a manifold
M is defined as a family of functions r,.: T, M — M for
every x € M such that

rz(0) =z and (drz)o = Id.

In other words, retractions are a first order approximation
of the Riemannian exponential map. A study of the con-
vergence properties of first and second-order optimization
algorithms when using retractions can be found in (Boumal
et al.,|2016)). In the case of GG, we have that a way to form
retractions is to choose a function ¢: g — G such that it is
a first order approximation of the exponential of matrices
and its image lies in G. Then, the update rule is given by

B + Bo(—nB* grad f(B)).

Remark. For the special orthogonal and the unitary group,
one such function is the Cayley map

P(A) = (I+ 3 A)1 -

This justifies theoretically the optimization methods used
in (Wisdom et al., 2016; Vorontsov et al., [2017) and ex-
tends their work, given that all their architectures can still be
applied with different retractions for these manifolds. In[Sec]
tion 4.2) we give examples of more involved retractions, and
in we explain why it is computationally cheap
to use machine-accuracy approximants to compute the ex-
ponential map both in our approach and in the Riemannian
gradient descent approach. Examples of other retractions
and a deeper treatment of these objects can be found in[Ap]

14y,

The update-rule for the exponential parametrization induces
a retraction-like map for A € g

e + exp(A — nV(f o exp)(A)),

where the gradient is the gradient with respect to the Eu-
clidean metric, that is, the regular gradient, given that foexp
is defined on a Euclidean space. A natural question that
arises is whether this new update rule defines a retraction. It
turns out that this map is not a retraction for SO(n) or U(n).

Proposition 3.4. The step-update map induced by the ex-
ponential parametrization is not a retraction for SO(n) if
n > 2 nor for U(n) ifn > 1.

Proof. 1t is a corollary of [Theorem C.12] where we give

necessary and sufficient conditions for this map to be a
retraction when defined on a compact, connected matrix Lie
group. ]

This tells us that the metric induced by the log map on
SO(n) and U(n) is intrinsically different to the canonical
metric on these manifolds when seen as submanifolds of
R™*™ (resp. C™*™). In particular, it changes the geodesic
flow defined by the metric.

4. Numerical Implementation

As an application of this framework we show how to model
an orthogonal (or unitary) recurrent neural network with it,
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that is, an RNN whose recurrent matrix is orthogonal (or
unitary). We also show how to implement numerically the
ideas of the last section.

4.1. Exponential RNN Architecture

Given a sequence of inputs (z;) € R%, we define an orthog-
onal exponential RNN (EXPRNN) with hidden size p > 0
as

ht+1 = a(exp(A)ht + T$t+1)

where A € Skew(p), T € RP*? and o is some fixed non-
linearity. In our experiments we chose the modrelu non-
linearity, as introduced in (Arjovsky et al., 2016). Note that
generalizing this architecture to the complex unitary case
simply accounts for considering A to be skew-Hermitian
rather than skew-symmetric. We stayed with the real case
because we did not observe any improvement in the empiri-
cal results when using the complex case.

4.2. Approximating the exponential of matrices

There is a myriad of methods to approximate the exponen-
tial of a matrix (Moler & Van Loan, 2003). Riemannian
gradient descent over SO(n) requires that the result of the
approximation is orthogonal. If not, the error would accu-
mulate after each step making the resulting matrix deviate
from the orthogonality constraint exponentially fast in the
number of steps. On the other hand, the approximation
of the exponential in our parametrization does not require
orthogonality. This allows many other approximations of
the exponential function. The requirement is removed be-
cause the orthogonal matrix is implicitly represented as an
exponential of a skew-symmetric matrix. The loss of orthog-
onality in Riemannian gradient descent is due to storing an
orthogonal matrix and updating it directly.

Padé approximants. Padé approximants are rational ap-
proximations of the form exp(A) ~ p,(A)g,(A)~! for
polynomials p,,, g, of degree n. A Padé approximant of de-
gree n agrees with the Taylor expansion of the exponential
to degree 2n. The Cayley transform is the Padé approximant
of degree 1. These methods and their implementations are
described in detail in (Higham, [2009).

Scale-squaring trick. The error of the Padé approximant
scales as O(||A||?"+1). If || A|| > 1 and we have an approx-
imant ¢, the scale-squaring trick accounts for computing
¢(2Ak)2k for the first k£ € N such that H%H < 1. Most types
of approximants, like Padé’s or a truncated Taylor expansion
of the exponential, can be coupled with the scale-squaring

trick to reduce the error (Higham) 2009).

Remark. Given that the Cayley transform is a degree 1
Padé approximant of the exponential, if we choose this ap-
proximant without the scale-squaring trick we essentially
recover the parametrization proposed in (Helfrich et al.|

2018). The Cayley transform suffers from the fact that, if
the optimum has —1 as an eigenvalue, the weights of the
corresponding skew-symmetric matrix will tend to infinity.
The parametrization in (Helfrich et al.| [2018)) is the Cay-
ley transform multiplied by a diagonal matrix D, but the
parametrization still has the same problem, it just moves
it to a different eigenvalue. assures that
the exponential parametrization does not suffer from this
problem.

The follow-up work (Maduranga et al., 2018)) mitigates this
problem learning the diagonal of D as well, but by doing
so it loses the local unicity of the parametrization.
assures that the exponential parametrization is not
only locally unique, but also differentiable with differen-
tiable inverse, thus inducing a metric.

Remark. It is straightforward to show that a degree n Padé
approximant combined with the scaling-squaring trick also
maps the skew-symmetric matrices to the special orthogonal
matrices. This constitutes a much more precise retraction
than the Cayley map at almost no extra computational cost.
This observation can be used to improve the precision of the
method proposed in (Wisdom et al., [2016} |Vorontsov et al.,
2017).

Exact approximation. Combining the methods above we
can get an efficient approximation of the exponential to
machine-precision. The best one known to the authors is
based on the paper (Al-Mohy & Higham, [2009b). It ac-
counts for an efficient use of the scaling-squaring trick and
a Padé approximant. This is the algorithm that we use on
the experiments section to approximate the exponential.

Exact gradients. A problem often encountered in practice
is that of biased gradients. Even though an approximation
might be good, it can significantly bias the gradient. An
example of this would be trying to approximate the function
f = 0on [0,1] by the functions f,(x) = %Tfm) Even
though f,, — f uniformly, their derivatives do not converge
to zero. This problem is rather common when using in-
volved parametrizations, for example, those coming from
Chebyshev polynomials. On the other hand, the gradient
can be implemented separately using a machine-precision
formula.

Proposition 4.1. Let A € Skew(n). For a function
f: R™ ™ — R, denote the matrix B = e, We have that

V(foexp)(A) = B(dexp)_a(L(VS(B)TB-BTVf(B))).

Proof. 1t follows from the discussion in
and in the supplementary material. ~ [J

The differential of the exponential of matrices (d exp) 4 can
be approximated to machine-precision computing the expo-
nential of a 2n x 2n matrix (Al-Mohy & Higham), [2009al).
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We use this algorithm in conjunction with

to implement the gradients.

4.3. Parametrizations are computationally cheap.

At first sight, one may think that an exact computation of
the exponential and its gradient in neural networks is rather
expensive. This is not the case when the exponential is
just used as a parametrization. The value—and hence the
gradient—of a parametrization does not depend on the train-
ing examples used to compute the stochastic gradient. For
this reason, in order to compute the gradient of a function
V(f o ¢)(A) with B = ¢(A), we can first let the auto-
differentiation engine compute the stochastic gradient of
f with respect to B, that is, Vf(B). The value V f(B)
depends on the batch size and the number of appearances
of B as a subexpression in the neural network (think of
a recurrent kernel in an LSTM). We can use V f(B) to
compute—just once per batch—the gradient V(f o ¢)(A),
for example with the formula given in for
¢ = exp. This allows the user to implement rather complex
parametrizations, like the one we showed, without a notice-
able runtime penalty. For instance, for an RNN with batch
size b, sequences of average length ¢, and a hidden size of
n, in each iteration one needs to compute bln matrix-vector
products at the cost of O(n?) operations each. The overhead
incurred using the exponential parametrization is the compu-
tation of two matrix exponentials that run in O(n?), which
is negligible in comparison. In practice, with an EXPRNN
of size 512, we did not observe any noticeable time penalty
when using this parametrization trick with respect to not
imposing orthogonality constraints at all.

4.4. Intialization

For the initialization of the layer with a matrix 4y €
Skew(p), we drew ideas from both (Henaff et al., 2016)
and (Helfrich et al.l 2018). Both initializations sample

blocks of the form
0 Si
—S; 0 ’

for s; i.i.d. and then form Ay as a block-diagonal matrix
with these blocks.

The Henaff initialization consists of sampling s; ~
U[—m, m]. This defines a block-diagonal orthogonal matrix
et with uniformly distributed blocks on the corresponding
torus of block-diagonal 2 x 2 rotations. We sometimes
found that the sampling presented in (Helfrich et al., 2018)
performed better. This initialization, which we call Cay-
ley, accounts for sampling u; ~ U[0, ] and then setting

1—cos(u;)

TFeos(u)” thus biasing the eigenvalues towards 0.

S; = —

We chose as the initial vector hy = 0 for simplicity, as we

did not observe any empirical improvement when using the
initialization given in (Arjovsky et al., 2016)).

5. Experiments

In this section we compare the performance of our
parametrization for orthogonal RNNs with the following
approaches: Long short-term memory (LSTM), Unitary
RNN (URNN), Efficient Unitary RNN (EURNN), Cayley
Parametrization (SCORNN), Riemannian Gradient Descent
(RGD) which can be found in (Hochreiter & Schmidhuber,
1997), (Arjovsky et al., 2016), (Jing et al., 2017), (Helfrich
et al.,[2018) and (Wisdom et al.,|2016)) respectively.

We use three tasks that have become standard to measure
the performance of RNNs and their ability to deal with long-
term dependencies. These are the copying memory task,
the pixel-permuted MNIST task, and the speech prediction
on the TIMIT dataset (Arjovsky et al., 20165 Wisdom et al.,
2016; |[Henaff et al., 2016; Mhammedi et al., 2017; [Helfrich
et al., 2018)).

In we enumerate the hyperparameters used for

the experiments. The sizes of the hidden layer were chosen
to match the number of learnable parameters of the other
architectures.

Remark. We found empirically that having a learning rate
for the orthogonal parameters that is 10 times larger than that
of the non-orthogonal parameters yields a good performance
in practice.

For the other experiments, we executed the code that the
other authors provided with the best hyperparameters that
they reported and a batch of 128. The results for EURNN are
those reported in (Jing et al.,[2017), and for RGD and URNN
are those reported in (Helfrich et al.| 2018)).

The code with the exact configuration and seeds to repli-
cate these results, and a plug-and-play implementation of
EXPRNN and the exponential framework can be found in
https://github.com/Lezcano/expRNN.

5.1. Copying memory task

The copying memory task was first proposed in (Hochreiter
& Schmidhuber, [1997). The task can be defined as fol-
lows. Let A = {a)}}'_, be an alphabet and let <blank>,
<start> be two symbols not contained in A. For a se-
quence length of K and a spacing of length L, the input
sequence would be K ordered characters (b )5, sampled
i.i.d. uniformly at random from .A, followed by L repeti-
tions of the character <blank>, the character <start>
and finally K — 1 repetitions of the character <blank>
again. The output for this sequence would be K + L times
the <blank> character and then the sequence of characters
(br)_,. In other words, the system has to recall the initial
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Figure 1. Cross entropy of the different algorithms in the copying problem for L = 1000 (left) and L = 2000 (right).

K characters and reproduce them after detecting the input of
the character <start>, which appears L time-steps after
the end of the input characters. For example, for N = 4,
K =5, L =10, if we represent <blank> with a dash and
<start> with a colon, and the alphabet A = {1,...,4},
the following sequences could be an element of the dataset:

The loss function for this task is the cross entropy. The stan-
dard baseline for this task is the output of K 4+ L <blank>
symbols, followed by the remaining K symbols being out-
put at random. This strategy yields a cross entropy of
Klog(N)/(L + 2K).

We observe that the training of SCORNN is unstable, which
is probably due to the degeneracies explained in the remark
in In the follow-up paper (Maduranga et al.
2018), SCURNN presents the same instabilities as its pre-
decessor. As explained in EXPRNN does not
suffer of this, and can be observed in our experiments as
a smoother convergence. In the more difficult problem,
L = 2000, EXPRNN is the only architecture that is able to
fully converge to the correct answer.

5.2. Pixel-by-Pixel MNIST

In this task we use the MNIST dataset of hand-written num-
bers (LeCun & Cortes},|2010) of images of size 28 x 28, only
this time the images are flattened and are processed as an
array of 784 pixels, which is treated as a stream that is fed
to the RNN, as described in (Le et al.,|2015). In the unper-
muted task, the stream is processed in a row-by-row fashion,
while in the permuted task, a random permutation of the
784 elements is chosen at the beginning of the experiment,
and all the pixels of all the images in the experiment are
permuted according to this permutation. The final output
of the RNN is processed as the encoding of the number and

Table 1. Best test accuracy at the MNIST and P-MNIST tasks.

MODEL N # PARAMS  MNIST P-MNIST
EXPRNN 170 ~ 16K 0.980 0.949
EXPRNN 360 ~ 69K 0.984 0.962
EXPRNN 512 ~ 137K 0.987 0.966
SCORNN 170 = 16K 0.972 0.948
SCORNN 360 ~ 69K 0.981 0.959
SCORNN 512 ~ 137K 0.982 0.965
LSTM 128 =~ 68K 0.819 0.795
LSTM 256 ~ 270K 0.888 0.888
LSTM 512 ~ 1058 K 0.919 0.918
RGD 116 =~ 16K 0.947 0.925
RGD 512 =~ 270K 0.973 0.947
URNN 512 ~ 9K 0.976 0.945
URNN 2170 =~ 69K 0.984 0.953
EURNN 512 ~ 9K — 0.937

used to solve the corresponding classification task.

In this experiment we observed that EXPRNN is able to satu-
rate the capacity of the orthogonal RNN model for this task
much faster than any other parametrization, as per[Table 1]
We conjecture that coupling the exponential parametrization
with an LSTM cell or a GRU cell would yield a superior
architecture. We leave this for future research.

5.3. TIMIT Speech Dataset

We performed speech prediction on audio data with our
model. We used the TIMIT speech dataset (S Garofolo et al.
1992) which is a collection of real-world speech recordings.
The task accounts for predicting the log-magnitude of in-
coming frames of a short-time Fourier transform (STFT) as
it was first proposed in (Wisdom et al.|[2016).

We use the separation in train / test proposed in the orig-
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Figure 2. Test losses for several models on pixel-by-pixel MNIST (left) and P-MNIST (right).

inal paper, having 3640 utterances for the training set, a
validation set of size 192, and a test set of size 400. The
validation / test division and the whole preprocessing of the
dataset was done according to (Wisdom et al.,2016). The
preprocessing goes as follows: The data is sampled at 8kHz
and then cut into time frames of the same size. These frames
are then transformed into the log-magnitude Fourier space
and finally, they are normalized according to a per-training
set, test set, and validation set basis.

The results for this experiment are shown in Again,
the exponential parametrization beats—by a large margin—
other methods of parametrization over the orthogonal group,
and also the LSTM architecture. The results in are
those reported in (Helfrich et al., 2018)).

Table 2. Test MSE at the end of the epoch with the lowest validation
MSE for the TIMIT task.

MODEL N # PARAMS VAL. MSE TEST MSE
EXPRNN 224 = 83K 5.34 5.30
EXPRNN 322 = 135K 4.42 4.38
EXPRNN 425 = 200K 5.52 5.48
SCORNN 224 =~ 83K 9.26 8.50
SCORNN 322 = 135K 8.48 7.82
SCORNN 425 =~ 200K 7.97 7.36
LSTM 84 =~ 83K 15.42 14.30
LSTM 120 =~ 135K 13.93 12.95
LSTM 158 =~ 200K 13.66 12.62
EURNN 158 =~ 83K 15.57 18.51
EURNN 256 =~ 135K 15.90 15.31
EURNN 378 =~ 200K 16.00 15.15
RGD 128 =~ 83K 15.07 14.58
RGD 192 = 135K 15.10 14.50
RGD 256 =~ 200K 14.96 14.69

As a side note, we must say that the results in this experi-
ment should be interpreted under the following fact: We had

access to two of the implementations for the tests for the
other architectures regarding this experiment, and neither
of them correctly handled sequences with different lengths
present in this experiment. We suspect that the other im-
plementations followed a similar approach, given that the
results that they get are of the same order. In particular,
the implementation released by Wisdom, which is the only
publicly available implementation of this experiment, di-
vides by a larger number than it should when computing
the average MSE of a batch, hence reporting a lower MSE
than the correct one. Even in this unfavorable scenario, our
parametrization is able to get results that are twice as good—
the MSE loss function is a quadratic function—as those from
the other architectures.

6. Conclusion and Future Work

In this paper we have presented three main ideas. First, a
simple approach based on classic Lie group theory to per-
form optimization over compact Lie groups, in particular
SO(n) and U(n), proving its soundness and providing em-
pirical evidence of its superior performance. Second, an
implementation trick that allows for the implementation of
arbitrary parametrizations at a negligible runtime cost. Fi-
nally, we sketched how to improve some existing methods
to perform optimization on Lie groups using Riemannian
gradient descent. Any of these three ideas is of indepen-
dent interest and could have more applications within neural
networks.

The investigation of how to couple these ideas with the
LSTM architecture to improve its performance is left for
future work.

Additionally, it could be of interest to see how orthogonal
constraints help with learning in deep feed forward networks.
In order to make this last point formal, one would have
to generalize the results presented here to homogeneous
Riemannian manifolds, like the Stiefel manifold.
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