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Figure A.1. Accuracy and detection rates of DBX, GBY, and GBZ against PGD-based white-box (WB) attacks (ε = 0.2, λdetect = 0.1) on
MNIST. The solid area denotes accuracy and the hatched area denotes the proportion of detected successful attacks with each considered
detector. See text for the descriptions of the labels.

Table A.1. WB+S+L attacks on MNIST with ε = 0.2 and λdetect ∈ {0.0, 0.1, 1.0, 10.0} (for attacking logit detection). The λdetect values
are shown in parentheses. The WB+S attack uses λdetect = 0. The white-box (WB) attack (against classifier only) results in the main text
are included for reference.

model metric WB WB+S (0) WB+S+L (0.1) WB+S+L (1.0) WB+S+L (10.0)

GBZ victim acc. 57.4 35.5 44.6 71.2 90.5
detect rate 66.3 90.7 69.9 22.4 11.5

GBY victim acc. 35.9 22.0 52.0 71.2 93.3
detect rate 79.3 91.9 66.9 22.4 17.2

A. Further experiments
A.1. A white-box attack against both the classifier and the detection mechanism

We design a white-box attack against both the classifier and the detection mechanism, where the attacker knows everything
about the victim system: it has access to the training data, can differentiate through both the classifier and the detector, and
knows the usage of random z samples by the VAE-based classifiers (Biggio et al., 2013; Carlini & Wagner, 2017b). This
PGD-based `∞ attack is designed following Carlini & Wagner (2017b): we construct an (approximate) Bayes classifier
pk(y|x) using (2) for each set of samples {zkc }Cc=1, and minimize the following with PGD:

L(η) =

K∑
k=1

log pk(y|x+ η) + λdetect max(0,Φ(x+ η,y)− δ), pk(y|x) = softmaxCc=1

[
log

p(x,y = yc, z
k
c )

q(zkc |x,y = yc)

]
. (3)

The detection statistic Φ(x+ η,y) is − log p(x+ η) for marginal detection, and δ is the corresponding threshold computed
on training data. For logit/KL detection, the detection statistics and thresholds are constructed accordingly.

We refer the attack that considers the random sampling of z in the classifier only as the ”white-box+sampling (WB+S)”
attack, which corresponds to the case that λdetect = 0. When λdetect is non-zero and the marginal log probability is used
as the detection statistic, the corresponding attack is labelled as ”white-box+sampling+marginal detection (WB+S+M)”.
Similarly we also label the attacks for logit and KL detections as WB+S+L and WB+S+K, respectively. The white-box
attack presented in the main text did not consider either randomness or detection, and we label this attack as WB.

Results are visualised in Figure A.1 for MNIST (ε = 0.2, λdetect = 0.1). Here we consider two metrics: the accuracy of the
classifier against the attack (shown by solid bars), and the detection rates of successful attacks (shown by hatched bars, as
the absolute percentage of detected successful attacks in all tested inputs). We see that although the attacker can reduce
detection levels, this comes with the trade-off of increasing accuracy, suggesting that an adversary cannot break both the
classifier and detector working in tandem.

To further understand how the generative model’s classifier and detector components interact, we tune the λdetect parameters
to trade-off between the classification loss and the detection loss. With larger λdetect values the attack focuses on fooling
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Figure A.2. Accuracy and detection rates of DBX, GBY, and GBZ against PGD-based white-box (WB) attacks (ε = 0.1, λdetect = 1.0) on
CIFAR binary task. The solid area denotes accuracy and the hatched area denotes the proportion of detected successful attacks with each
considered detector. See text for the descriptions of the labels.

the detection algorithm, on the other hand with small λdetect values the attack focuses on making the generative classifier
predict wrong class labels. More specifically when λdetect = 0, the corresponding WB+S attack only focuses on fooling
the classifier and thus it should achieve the highest success rate. Indeed this is shown in Table A.1 for attacks on MNIST:
WB+S achieves the lowest victim accuracy when compared with other WB+S+L attacks with non-zero λdetect values, also
it out-performs the WB attack by a large margin. However the success in fooling the classifier comes with the price of
increased logit detection rates: the detection rate increases when the victim accuracy decreases. Therefore these results
provide evidence that the designed attack cannot break both the classifier and the detector simultaneously.

Figure A.2 shows the WB+S+(M/L/K) attacks on CIFAR-binary (ε = 0.1, λdetect = 1.0). Again we see that on GBZ,
although the attack is effective for the detection schemes, it comes with the price of decreased mis-classification rates.
Interestingly GBY seems to be robust to this attack, where the accuracy on the crafted adversarial examples increase.
Another surprising finding is that the attack results seem to be insensitive to the λdetect values in use. E.g. for WB+S+L
attacks we tuned λdetect ∈ {0.1, 1.0, 10.0, 100.0, 1000.0, 10000.0}, and the results are almost the same as reported in Figure
A.2: victim accuracy results are around 60%/30% for GBZ/GBY, and logit detection rates are around 6%/1%. As the
low detection rates indicate that the adversarial examples are close the generative model’s manifold, we conjecture that the
reason for this insensitivity is that the adversary has found the same “hole” of model density near the model manifold for
all λdetect settings. This also indicates that the generative model’s manifold might not be a good approximation to the data
manifold, due to the use of `2 likelihood function in pixel space which is sub-optimal for natural images. See discussions in
the main text and also section C.
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Figure A.3. Accuracy and detection rates against white-box `∞ attacks on MNIST, with varied bottleneck layer sizes.

Table A.2. Clean test accuracy on MNIST classification (with varied bottleneck layer sizes).
dim(z) = 16 dim(z) = 32 dim(z) = 64 dim(z) = 128

DBX 99.11% 99.01% 98.98% 98.91%
GBZ 97.11% 97.08% 97.45% 96.62%
GBY 98.82% 98.95% 98.72% 98.75%

A.2. Quantifying the effect of the bottleneck layer

We see from the main text that classifiers with bottleneck structure may be preferred for resisting adversarial examples. To
quantify this bottleneck effect, we train on MNIST models DBX, GBZ and GBY with z dimensions in {16, 32, 64, 128}
(the main text experiments use dim(z) = 64). The clean test accuracy is shown in Table A.2, showing that all models in test
perform reasonably well.

We repeat the same white-box `∞ attack experiments as done in the main text, where results are presented in Figure A.3. It is
clear that for discriminative classifiers, DBX, the models become less robust as the bottleneck dimension dim(z) increases.
Interestingly DBX classifiers seem to be very robust against FGSM attacks, which agrees with the results in Alemi et al.
(2017). For the generative ones, we also observe similar trends (although less significant) of decreased robustness for GBY
classifiers, and for GBZ the trend is unclear, presumably due to local optimum issues in optimisation. In summary, GBZ
classifiers are generally more robust compared to GBY classifiers. More importantly, when the accuracy of generative
classifiers on adversarial images decreases to zero, the detection rates with marginal/logit detection increases to 100%. This
clearly shows that the three attacks tested here cannot fool the generative classifiers without being detected.
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Figure A.4. Results on cross-model transfer attacks on MNIST. Here we select ε = 0.3. The horizontal axis corresponds to the source
victim that the adversarial examples are crafted on, and the vertical axis corresponds to the target victim that the attacks are transferred to.
The higher (i.e. the lighter) the better.

Figure A.5. Results on cross-model transfer attacks on CIFAR-binary. Here we select ε = 0.1. The horizontal axis corresponds to the
source victim that the adversarial examples are crafted on, and the vertical axis corresponds to the target victim that the attacks are
transferred to. The higher (i.e. the lighter) the better.

A.3. Cross-model attack transferability

Papernot et al. (2016a) has shown that adversarial examples transfer well between classifiers that have similar decision
boundaries. Therefore we consider the cross-model transferability of the attacks crafted on generative models to discrimina-
tive classifiers (and vise versa), in order to understand whether the difference between them are significant. Here we take
adversarial examples crafted in the white-box setting with PGD and MIM on one classifier, and transfer successful attacks to
other classifiers.

We report in Figure A.4 and Figure A.5 the transferability results of the crafted adversarial examples between different
models. We see that in both MNIST and CIFAR-binary experiments, adversarial example transfer is relatively effective
between generative classifiers but not from generative to discriminative (and vice versa). Within the class of generative
classifiers, GBZ is the most robust one against transferred attacks. Meanwhile, GBZ’s adversarial examples transfer less well
to other generative classifiers. This means the decision boundary of GBZ might be different from the other three generative
classifiers, which potentially explains GBZ’s best robustness performance in white-box attack experiments (see main text).
On the other hand, the attacks crafted on DBX do not transfer in general, while at the same time, DBX is the least robust
model in this case.

For detection, the generative classifiers obtain very high detection rates on all transferred attacks on MNIST (> 95%).
However, on CIFAR-binary the TP rates for logit detection are significantly lower than in the MNIST case, which is similar
to the observations in white-box attack experiments (see Figure 4). Nevertheless, the detection rates for the “discriminative
to generative” transfer are considerably higher.

In summary, the transferrability test indicate that generative and discriminative classifiers are very diferrent in terms of the
decision boundaries. Also generative classifiers are more robust against the tested transfer attacks across different models.



Are Generative Classifiers More Robust to Adversarial Attacks?

Figure B.1. Victim accuracy, detection rates and minimum `∞ perturbation against white-box MIM attack on MNIST. The higher the
better. The visualised adversarial examples are crafted with `∞ distortion ε growing from 0.1 to 0.5.

Figure B.2. Victim accuracy, detection rates and minimum `∞ perturbation against white-box MIM attack on CIFAR-binary. The higher
the better. The visualised adversarial examples are crafted with `∞ distortion ε growing from 0.01 to 0.2.

Table B.1. Clean test accuracy on CIFAR plane-vs-frog classification.
BNN GFZ GFY DFZ DFX DBX GBZ GBY

97.00% 91.60% 91.20% 94.85% 95.65% 96.00% 89.35% 90.65

Table B.2. Clean test accuracy on CIFAR-10 classification.
VGG16 GBZ-FC1 GBY-FC1 DBX-FC1 GBZ-CONV9 GBY-CONV9 DBX-CONV9
93.59% 92.55% 93.21% 93.49% 91.76% 88.33% 93.21%

B. Additional results for main text experiments
B.1. White-box MIM attack results

We visualise the white-box MIM attack results in Figure B.1 for MNIST and Figure B.2 for CIFAR-binary, respectively.
Again the generative classifiers are generally more robust than the discriminative ones. Similarly the logit/marginal detection
methods successfully detect the adversarial examples when ε increases.

Interestingly DBX seems to be robust to MIM on MNIST (but not on CIFAR-binary). This robustness is also indicated by
the minimum perturbation figures, where on MNIST the mean minimum perturbation on DBX is the highest. Since MIM is
an iterative optimisation version of FGSM, this result seems to agree with FGSM results on MNIST (see main text), as
well as the observations in Alemi et al. (2017). Furthermore, a sanity check shows that MIM achieves 100% success rate
on DBX when ε = 0.9, therefore gradient masking is unlikely to explain the success of the bottleneck effect on MNIST
classifiers (Athalye et al., 2018).

B.2. Clean test accuracy on CIFAR-binary & CIFAR-10

We present in Table B.1 the clean accuracy on CIFAR-binary test images (2000 in total).

We present in Table B.2 the clean accuracy for the fusion models on CIFAR-10 test images.

B.3. Full results for the fusion model experiments

We present in B.3 the full results of the CIFAR-10 experiments. The observations in MIM experiments are similar to those in
FGSM & PGD experiments, specifically for GBZ, using CONV9 features returns significantly improved robustness results.
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Figure B.3. Victim accuracy and detection rates against white-box attacks on CIFAR-10. The higher the better.

B.4. Visualising CW-`2 adversarial examples

We visualise in Figure B.4 the crafted adversarial images using white-box CW attack, where successful attacks are in red
rectangles. We clearly see that many of the successful adversarial examples crafted on the generative classifiers sit at the
boundary of two classes (thus ambiguous). For example, many digit “4” clean images are distorted to resemble digit ”9”.
Similarly many digit “1” clean images are distorted to resemble digits “7” and (very thin) “3” and “8”. On the other hand,
we see less ambiguity from the successful attacks on discriminative classifiers. Therefore we conclude that the perceptual
distortion of CW attacks on generative and discriminative classifiers are very different.
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(a) clean inputs (b) adv. inputs (BNN) (c) adv. inputs (GFZ)

(d) adv. inputs (GFY) (e) adv. inputs (DFZ) (f) adv. inputs (DFX)

(g) adv. inputs (DBX) (h) adv. inputs (GBZ) (i) adv. inputs (GBY)

Figure B.4. Visualising the clean inputs of MNIST and the CW (c = 10) adversarial examples crafted on all the classifiers. Digits in red
rectangles are successful attacks, and digits in green rectangles are unsuccessful attacks.
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C. Further discusssions
C.1. The fusion model for vision tasks: connections to perceptual loss

The CIFAR-binary experiments in the main text indicate that likelihood functions based on per-pixel `2 loss in the observation
space are less suitable for modelling natural images. This observation has also been made in the deep generative models
literature, and in particular, the generative adversarial network approach (GAN Goodfellow et al., 2014) can be viewed as
evaluating the quality of “perceptually realistic image generations” using discriminative features. Following this principle,
researchers have scaled GAN-based approaches to generate high resolution images (Karras et al., 2018).

Similarly, the computer vision community has discovered that “distances” defined on the features of a discriminatively
trained deep CNN work surprisingly well to perceptually measure the similarity of two images. Indeed, recent research
proposed the perceptual loss (Dosovitskiy & Brox, 2016; Johnson et al., 2016) as the `2 distance between convolutional
features extracted from a very deep CNN (e.g. VGG):

`perceptual(x1,x2) := ||φ(x1)− φ(x2)||2, φ(x) = CNN-conv-layer(x).

This perceptual loss has been successfully applied to neural style transfer, super-resolution and conditional image synthesis
(Gatys et al., 2016; Dosovitskiy & Brox, 2016; Ledig et al., 2017; Johnson et al., 2016).

Critically, we highlight an empirical study from Zhang et al. (2018): when comparing the “perceptual similarity” between
two images, decisions based on the perceptual loss are well-aligned with human judgements. This alignment of perceptual
loss to human vision also explains the success of the fusion model presented in the main text. Here the discriminative VGG
features are used to construct the perceptual loss, which is used by the generative classifiers to measure the closeness of a
new input x∗ to the manifold of clean images (estimated from training data). By contrast, discriminative classifiers (e.g. the
original VGG classifier), when making decisions, do not explicitly take into account the “perceptual similarity” of the input
to the images in the predicted catergory. Therefore an adversarial image containing a “cat” can easily fool the discriminative
classifier to predict a “dog” class label.

Still we note that the fusion model in practice is unlikely to be robust to all attacks. The alignment of human vision and
the perceptual loss with current deep CNNs is not perfect, therefore under the white-box setting against the whole system,
an attacker might be able to craft an adversarial example that has minimum `2, `∞ or even `0 distortion, but at the same
time has minimum “perceptual distance” to the image manifold of the incorrect class. Much future work is to be done on
improving representation learning for perceptual losses, as well as on investigating the adversarial robustness of the fusion
model under different threat models.
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D. Model architectures
MNIST experiments The VAEs are constructed with convolutional encoders and deconvolutional generators. More
specifically, the encoder network for q(z|x,y) is the same across all VAE-based classifiers. It starts with a 3-layer
convolutional neural network with 5× 5 filters and 64 channels, with a max-pooling operation after each convolution. Then,
the convolutional network is followed by a MLP with 2 hidden layers, each with 500 units, to produce the mean and variance
parameters of q. The label y is injected into the MLP at the first hidden layer, as a one hot encoding (i.e. for MNIST, the
first hidden layer has 500+10 units). The latent dimension is dim(z) = 64.

The p models’ architectures are the following:

• GFZ: For p(y|z) we use a MLP with 1 hidden layer composed of 500 units. For p(x|y, z) we used an MLP with 2
hidden layers, each with 500 units, and 4× 4× 64 dimension output, followed by a 3-layer deconvolutional network
with 5× 5 kernel size, stride 2 and [64, 64, 1] channels.

• GFY: We use an MLP with 1 hidden layer composed of 500 units for p(z|y), and the same architecture as GFZ for
p(x|y, z).

• DFZ: We use almost the same deconvolutional network architecture for p(x|z) as GFZ’s p(x|y, z) network, except
that the input is z only. For p(y|x, z) we use almost the same architecture as q(z|x,y) except that the injected input
to the MLP is z and the MLP output is the set of logit values for y.

• DFX: We use the same architecture as G3 for p(y|x, z). The network for p(z|x) is almost identical except that there is
no injected input to the MLP, and the network returns the mean and variance parameters for q(z|x).

• DBX: We use GFZ’s architecture for p(y|z) and DFX’s architecture for p(z|x).

• GBY: We use GFY’s architecture for p(z|y) and DFZ’s architecture for p(x|z).

• GBZ: We use GFZ’s architecture for p(y|z) and DFZ’s architecture for p(x|z).

The BNN has almost the same architecture as the encoder network q, except that it uses 2x the hidden units/channels, and
the last layer is 10 dimensions. Note that here we used dropout as it is convenient to implement, and we expect better
approximate inference methods (such as stochastic gradient MCMC) to return better results for robustness and detection.

CIFAR-binary experiments The model architectures are almost the same as used in MNIST experiments, except that the
hidden layer dimensions for the MLP layers are increased to 1000. For the encoder q, the channels are increased to [64, 128,
256]. For the p models, the deconvolutional networks have different channel values, [128, 64, 3], and the MLP before the
deconvolution outputs a 4× 4× 256 vector (before reshaping). The BNN has 2x the channels but still uses 1000 hidden
units.

CIFAR-10 experiments The pre-trained VGG16 network is downloaded from https://github.com/geifmany/
cifar-vgg, where the CONV9 and FC1 layers correspond to:

• CONV9: https://github.com/geifmany/cifar-vgg/blob/master/cifar10vgg.py#L82

• FC1: https://github.com/geifmany/cifar-vgg/blob/master/cifar10vgg.py#L109

The VAE-based classifiers build fully connected networks on top of the extracted features, and use dim(z) = 128 for
bottleneck. The encoder q(z|φ(x),y) has the network architectures [dim(φ(x)) + dim(y), 1000, 1000, dim(z) × 2], and
we use the same encoder architecture across all classifiers. The decoder architectures are as follows:

• DBX: We use an MLP of layers [dim(z), 1000, dim(y)] for p(y|z) and an MLP of layers [dim(φ(x)), 1000, 1000,
dim(z) × 2] for p(z|φ(x)).

• GBZ: We use an MLP of layers [dim(z), 1000, 1000, dim(y)] for p(y|z) and an MLP of layers [dim(z), 1000, 1000,
dim(φ(x))] for p(φ(x)|z).

• GBY: We use an MLP of layers [dim(y), 1000, dim(z) × 2] for p(z|y) and GBZ’s architecture for p(φ(x)|z).

https://github.com/geifmany/cifar-vgg
https://github.com/geifmany/cifar-vgg
https://github.com/geifmany/cifar-vgg/blob/master/cifar10vgg.py#L82
https://github.com/geifmany/cifar-vgg/blob/master/cifar10vgg.py#L109
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E. Attack settings
We use the Cleverhans package to perform attacks. We use the default hyper-parameters, if not specifically stated.

PGD: We perform the attack for 40 iterations with step-size 0.01.

MIM: We perform the attack for 40 iterations with step-size 0.01 and decay factor 1.0.

CW-`2: We use learning rate 0.01 for c = 0.1, 1, 10, learning rate 0.03 for c = 100, and learning rate 0.1 for c = 1000. We
set the confidence parameter to 0, and we optimise the loss for 1000 iterations.

SPSA: We use almost the same hyper-parameters as in Uesato et al. (2018) except for the number of samples for gradient
estimates. In detail, we perform the attack for 100 iterations with perturbation size 0.01, Adam learning rate 0.01, stopping
threshold -5.0 and 2000 samples for each gradient estimate.

E.1. Jacobian-based dataset augmentation

The black-box distillation attack is based on Papernot et al. (2017b), which trains a substitute CNN using Jacobian-based
dataset augmentation. Assume y = F (x) is the output one-hot vector of the victim, and p(x) is the probability vector
output of the substitute model, then at the tth outer-loop, we train the substitute CNN on dataset Dt = {(xn,yn)} with
queried yn for 10 epochs, and augment the dataset by

Dt+1 = Dt ∪ {(x̂, F (x̂)) | x̂ = x+ λ∇xp(x)Ty, (x,y) ∈ Dt}. (4)

We initialise D1 with 200× 10 datapoints from the MNIST test set, select λ = 0.1, and run the algorithm for 6 outer-loops.
On MNIST, this results in 64, 000 queried inputs, and∼ 96% accuracy of the substitute model on test data. On CIFAR binary
classification, we use 200× 2 datapoints for the inital query set D1, resulting in 12, 800 queries in total. The substitutes
achieved almost the same accuracy as their corresponding victim models on clean test datapoints.
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F. Results in tables
We present in tables the full results of the experiments.

See Tables F.1 to F.10 for the white-box attacks.

See Tables F.11 to F.16 for the grey-box attacks.

See Tables F.17 to F.22 for the black-box attacks.

See Tables F.23 to F.25 for CIFAR-10 results with VGG-based classifiers.

See Tables F.26 to F.28 for bottleneck effect quantification results.
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Table F.1. FGSM white-box attack results on MNIST.
acc. (adv) TP marginal TP logit TP KL

ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50
BNN 92.4 67.8 40.5 26.2 20.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 93.0 94.2 95.4 95.5 96.5
GFZ 94.2 74.5 38.9 12.9 5.7 43.6 79.8 100.0 100.0 100.0 56.4 89.6 99.9 100.0 100.0 89.2 91.7 92.2 92.5 92.2
GBZ 92.5 80.3 62.0 42.4 27.2 37.0 81.7 100.0 100.0 100.0 57.6 93.5 100.0 100.0 100.0 91.6 90.9 90.3 91.1 91.5
GFY 94.3 74.8 46.5 21.7 10.5 53.1 92.6 100.0 100.0 100.0 66.2 97.9 100.0 100.0 100.0 90.8 93.1 93.8 94.2 94.2
GBY 93.6 76.4 47.5 22.3 10.7 41.9 84.5 100.0 100.0 100.0 57.7 92.5 100.0 100.0 100.0 89.3 92.7 92.8 92.9 92.9
DFX 70.1 14.8 1.0 0.4 0.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 93.6 93.8 93.8 93.5 94.3
DBX 91.6 77.8 58.1 44.5 36.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.6 93.6 95.2 96.3 97.0
DFZ 75.2 19.0 2.4 1.1 1.0 12.6 50.6 100.0 100.0 100.0 26.9 65.7 100.0 100.0 100.0 93.1 95.1 94.5 94.9 94.8

Table F.2. PGD white-box attack results on MNIST.
acc. (adv) TP marginal TP logit TP KL

ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50
BNN 83.2 12.0 0.5 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.1 92.1 88.7 20.4 0.2
GFZ 86.7 37.7 7.7 1.2 0.3 43.2 71.8 91.4 99.4 100.0 55.8 77.1 94.8 99.6 100.0 90.3 92.1 90.9 90.4 89.7
GBZ 85.1 57.4 32.5 19.3 11.6 33.7 50.3 84.4 99.7 100.0 52.2 66.3 91.5 99.8 100.0 90.0 91.5 91.5 91.7 91.8
GFY 79.7 27.4 5.6 1.2 0.3 58.1 87.9 98.0 100.0 100.0 68.7 92.2 99.3 100.0 100.0 92.6 92.5 90.7 90.7 85.4
GBY 86.7 35.9 9.0 1.7 0.4 45.3 76.1 94.6 99.7 100.0 56.9 79.3 95.6 99.9 100.0 90.1 92.1 91.6 91.7 91.4
DFX 47.6 0.7 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.8 89.8 13.3 31.4 42.8
DBX 58.0 18.3 6.0 1.3 0.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.7 94.0 94.1 93.7 84.8
DFZ 49.6 1.0 0.0 0.0 0.0 11.8 44.3 94.1 100.0 100.0 25.9 57.6 94.5 99.9 100.0 93.9 89.8 12.1 22.9 28.0

Table F.3. MIM white-box attack results on MNIST.
acc. (adv) TP marginal TP logit TP KL

ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50
BNN 82.0 7.2 0.1 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.2 91.1 72.0 64.5 7.1
GFZ 87.0 40.4 9.0 1.2 1.2 43.5 83.8 98.4 99.4 99.4 57.6 89.3 98.6 99.2 99.2 91.5 92.3 92.0 90.6 90.6
GBZ 79.6 27.4 5.6 1.5 0.5 36.1 86.3 100.0 100.0 100.0 53.5 93.1 99.9 100.0 100.0 91.3 91.4 91.9 92.2 92.7
GFY 80.8 30.1 6.8 1.4 1.4 56.0 93.7 99.8 100.0 100.0 68.1 96.6 99.9 100.0 100.0 90.9 92.4 92.0 91.6 91.6
GBY 84.9 22.9 1.5 0.1 0.0 47.4 91.2 99.9 100.0 100.0 59.8 92.8 99.9 100.0 100.0 91.4 92.1 91.2 86.8 29.0
DFX 48.4 0.8 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 93.2 89.6 9.2 17.5 17.5
DBX 66.7 28.7 19.7 17.2 17.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 93.5 94.3 94.6 94.7 94.7
DFZ 50.5 1.2 0.0 0.0 0.0 11.9 50.7 99.4 100.0 100.0 26.4 63.2 99.0 100.0 100.0 94.3 89.8 11.5 17.3 17.3

Table F.4. CW white-box attack results on MNIST.
acc. (adv) TP marginal TP logit TP KL

ε 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00
BNN 98.6 50.2 24.4 19.7 38.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 85.6 96.2 93.6 94.0 96.5
GFZ 98.7 76.7 28.6 20.8 28.4 45.4 25.1 11.7 17.9 49.2 62.0 39.2 25.3 29.9 57.4 91.1 94.9 95.3 93.5 94.8
GBZ 97.3 95.3 81.5 80.2 66.6 35.1 29.0 10.8 14.0 38.2 56.3 50.6 26.2 29.2 55.8 85.3 89.9 90.8 91.8 91.7
GFY 98.7 70.4 28.6 25.0 33.7 52.7 37.5 21.2 29.0 59.7 68.5 51.1 33.5 39.4 67.2 91.4 96.3 96.0 94.4 95.3
GBY 98.5 77.7 32.7 26.8 38.1 44.7 26.4 12.1 18.8 52.8 56.8 39.7 22.3 27.1 59.6 90.0 95.5 94.5 92.9 94.8
DFX 96.5 64.7 20.3 11.8 2.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 96.7 99.9 100.0 99.7 97.8
DBX 97.1 83.3 30.2 10.9 29.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 90.0 93.4 96.7 96.1 97.5
DFZ 95.9 51.2 13.6 9.6 16.0 17.3 7.2 9.2 17.9 41.6 30.6 21.5 22.4 31.9 54.0 96.2 99.8 99.5 98.6 98.2
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Table F.5. WB+S+(M/L/K) attacks on MNIST. This is done using the PGD attack with ε = 0.2 and λdetect = 0.1. ‘WB’ stands for attacks against the classifier only, ‘WB+S’ means the
adversary has knowledge of the K samples but not of the detection system. ‘WB+S+M’, ‘WB+S+L’, and ‘WB+S+K’ are attacks where the adversary has knowledge of the K samples
and of the marginal, logit and KL detection mechanisms respectively.

WB WB+S WB+S+M WB+S+L WB+S+K
acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL

DBX 18.3 N/A N/A 94 17 N/A N/A 93.1 N/A N/A N/A N/A N/A N/A N/A N/A 35.9 N/A N/A 93.9
GBZ 57.4 50.3 66.3 91.5 35.5 82.2 90.7 91.4 47.9 36.5 67.4 91.3 44.6 50.5 69.9 91.0 45 73.0 84.8 91.5
GBY 35.9 76.1 79.3 92.1 22 90.8 91.9 92.1 43.8 47.0 61.9 91.1 52.0 56.4 66.9 90.6 32.8 89.2 91.8 93.3

Table F.6. FGSM white-box attack results on CIFAR plane-vs-frog binary classification.
acc. (adv) TP marginal TP logit TP KL

ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20
BNN 98.2 93.2 58.5 14.5 6.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 58.6 55.1 65.5 54.0 58.5
GFZ 97.1 94.7 81.8 56.4 31.4 11.4 10.1 5.9 17.4 99.3 11.4 10.4 6.8 17.2 99.3 58.6 40.1 35.9 41.0 50.6
GBZ 95.1 93.5 87.1 74.9 62.0 26.0 18.6 15.5 38.6 99.6 26.3 20.3 19.1 41.9 99.6 35.5 41.5 47.0 43.7 45.6
GFY 96.5 94.2 80.7 56.7 32.0 9.6 9.2 6.9 18.8 99.0 17.6 13.1 8.1 20.8 99.1 46.6 43.7 36.1 39.5 49.3
GBY 96.1 92.9 82.0 60.5 36.3 17.2 15.1 8.1 28.5 99.2 20.2 18.1 10.0 31.1 99.2 49.7 48.0 39.2 38.7 47.3
DFX 83.8 42.2 0.7 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 63.3 66.6 48.4 97.7 100.0
DBX 90.9 78.6 50.7 31.7 18.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 50.7 58.7 56.8 59.7 57.2
DFZ 83.9 52.1 2.9 0.0 0.0 6.6 3.8 2.2 3.9 60.6 6.9 4.2 2.4 3.3 60.4 57.5 62.3 54.8 66.7 99.8

Table F.7. PGD white-box attack results on CIFAR plane-vs-frog binary classification.
acc. (adv) TP marginal TP logit TP KL

ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20
BNN 97.9 86.7 19.7 1.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 41.7 59.4 55.7 68.4 98.9
GFZ 98.0 93.9 67.7 21.7 3.5 3.3 6.6 5.6 7.8 32.9 5.0 9.5 6.0 8.2 33.0 37.5 45.1 34.5 44.0 57.7
GBZ 94.6 93.7 83.9 67.4 52.8 19.8 17.9 12.8 14.3 43.1 22.8 19.5 17.4 17.0 44.3 32.1 39.3 40.2 37.1 33.2
GFY 98.4 95.0 67.9 25.8 4.1 4.2 6.7 6.4 7.8 35.7 3.1 8.2 7.6 7.8 33.8 31.2 43.6 32.9 39.6 53.3
GBY 96.4 92.9 67.3 25.7 6.9 11.1 8.4 7.9 11.6 41.4 13.1 11.5 9.2 12.2 40.3 43.0 43.0 33.6 39.1 52.2
DFX 82.7 35.7 0.3 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 64.1 64.7 69.6 100.0 100.0
DBX 83.3 34.6 4.2 0.7 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 59.8 59.5 65.1 78.7 93.4
DFZ 82.4 36.9 0.4 0.0 0.0 4.9 3.8 5.1 12.3 91.1 6.5 4.1 5.5 12.3 91.3 56.3 60.3 54.7 99.7 100.0

Table F.8. MIM white-box attack results on CIFAR plane-vs-frog binary classification.
acc. (adv) TP marginal TP logit TP KL

ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20
BNN 96.9 84.6 18.7 0.9 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 35.9 54.7 56.3 62.4 78.8
GFZ 96.9 91.5 58.1 15.2 1.9 6.5 6.2 6.4 10.6 86.1 10.0 8.3 6.6 11.3 84.5 31.0 39.0 32.1 47.2 77.1
GBZ 92.5 89.4 71.5 40.4 17.9 15.0 13.2 11.0 24.0 95.9 16.4 14.8 12.8 25.1 96.0 42.5 37.5 31.0 37.4 55.0
GFY 97.6 92.3 59.5 16.5 2.3 5.6 6.9 6.3 13.3 88.1 5.7 6.2 6.8 13.8 87.6 23.8 41.4 33.8 43.9 74.6
GBY 95.1 88.8 56.5 14.6 1.3 15.1 9.5 8.6 19.2 97.3 15.3 10.7 9.9 18.5 97.0 51.1 43.2 31.7 46.7 87.6
DFX 82.5 35.2 0.3 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 65.5 67.1 69.6 100.0 100.0
DBX 82.5 38.8 6.1 1.2 0.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 54.6 60.0 61.5 78.8 88.5
DFZ 81.5 36.1 0.4 0.0 0.0 5.4 3.9 5.0 13.4 96.9 6.2 4.1 5.5 13.8 96.8 61.1 58.5 55.3 99.9 100.0
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Table F.9. CW white-box attack results on CIFAR plane-vs-frog binary classification.
acc. (adv) TP marginal TP logit TP KL

ε 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00
BNN 98.0 68.9 38.5 19.5 9.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 56.2 79.0 79.5 71.5 65.3
GFZ 99.5 95.6 76.5 56.7 43.4 0.0 4.5 2.6 5.9 14.7 0.0 4.6 3.0 6.4 14.0 29.2 30.4 25.6 28.1 33.2
GBZ 96.0 93.6 88.9 80.6 69.8 16.7 11.5 7.8 11.7 33.8 18.9 13.7 9.3 13.6 37.5 41.1 51.4 40.4 36.0 37.9
GFY 99.8 95.9 78.8 60.6 42.7 0.0 6.6 4.1 5.2 15.9 0.0 6.6 4.8 5.7 15.6 75.0 37.3 26.0 28.2 31.5
GBY 97.5 93.1 76.7 61.6 47.7 15.8 14.6 6.0 6.4 19.9 18.9 13.9 6.0 7.5 21.3 42.6 34.3 27.2 25.2 33.9
DFX 82.6 44.2 34.3 28.6 4.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 100.0 100.0 100.0 99.9 64.6
DBX 96.5 72.2 26.3 12.1 11.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 61.6 79.4 85.2 75.2 70.2
DFZ 94.5 72.3 29.9 12.9 4.8 7.3 5.8 4.3 4.6 5.7 14.1 6.9 5.0 4.9 6.3 82.6 97.3 97.1 90.0 68.8

Table F.10. WB+S+(M/L/K) attacks on CIFAR binary task. This is done using the PGD attack with ε = 0.1 and λdetect = 1.0. ‘WB’ stands for attacks against the classifier only,
‘WB+S’ means the adversary has knowledge of the K samples but not of the detection system. ‘WB+S+M’, ‘WB+S+L’, and ‘WB+S+K’ are attacks where the adversary has knowledge
of the K samples and of the marginal, logit and KL detection mechanisms respectively.

WB WB+S WB+S+M WB+S+L WB+S+K
acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL

DBX 0.7 N/A N/A 78.7 0.7 N/A N/A 82.5 N/A N/A N/A N/A N/A N/A N/A N/A 0.6 N/A N/A 82.6
GBZ 67.4 14.3 17.0 37.1 57 40.6 45.1 49 58.4 9.6 18.5 46.9 58.5 1.8 7.8 47.8 59.9 25.5 27.6 42.4
GBY 25.7 11.6 12.2 39.1 28.5 22.0 22.6 49 29.5 5.6 7.6 45.9 29.2 0.8 1.8 45.4 27.9 15.6 15.9 45

Table F.11. Grey-box PGD attack results on MNIST.
substitute acc victim acc TP logit

ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50
GFZ 86.7 14.3 0.0 0.0 0.0 96.6 83.3 51.3 26.8 17.2 49.5 73.8 99.7 100.0 100.0
GBZ 81.2 9.1 0.0 0.0 0.0 93.5 80.1 55.3 35.0 25.2 46.7 73.3 99.6 100.0 100.0
GFY 84.8 6.4 0.0 0.0 0.0 96.7 82.3 55.2 33.5 24.0 58.7 88.8 100.0 100.0 100.0
GBY 86.7 15.0 0.0 0.0 0.0 95.8 81.6 51.0 27.5 18.1 50.1 78.5 99.9 100.0 100.0
DFX 74.2 5.2 0.5 0.0 0.0 91.7 57.7 19.6 4.3 1.4 N/A N/A N/A N/A N/A
DBX 80.6 5.1 0.0 0.0 0.0 93.2 59.2 22.5 10.9 8.2 N/A N/A N/A N/A N/A
DFZ 69.6 3.4 0.3 0.0 0.0 91.9 57.2 21.4 6.3 2.6 33.6 55.1 91.7 100.0 100.0

Table F.12. Grey-box MIM attack results on MNIST.
substitute acc victim acc TP logit

ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50
GFZ 87.2 16.1 0.0 0.0 0.0 96.5 82.4 42.8 14.2 3.7 50.6 82.5 100.0 100.0 100.0
GBZ 81.8 9.1 0.0 0.0 0.0 93.3 78.6 45.3 17.0 5.2 46.2 81.7 100.0 100.0 100.0
GFY 85.2 6.9 0.0 0.0 0.0 96.6 80.8 48.0 18.9 7.4 59.8 96.0 100.0 100.0 100.0
GBY 87.0 15.9 0.0 0.0 0.0 95.7 79.9 41.8 13.0 4.0 51.4 87.1 100.0 100.0 100.0
DFX 76.5 12.3 3.6 2.1 2.1 91.5 56.1 22.2 9.9 9.9 N/A N/A N/A N/A N/A
DBX 85.1 19.9 0.6 0.1 0.1 93.4 57.0 14.1 6.3 6.3 N/A N/A N/A N/A N/A
DFZ 70.9 3.2 0.0 0.0 0.0 91.8 54.6 16.4 2.7 0.3 34.5 63.8 98.9 100.0 100.0
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Table F.13. Grey-box CW attack results on MNIST.
substitute acc victim acc TP logit

ε 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00
GFZ 98.4 4.6 0.0 0.0 0.0 98.8 96.9 96.0 93.4 90.2 53.4 44.2 41.6 40.6 43.7
GBZ 98.4 63.2 0.0 0.0 0.0 97.4 95.4 92.9 88.6 84.5 45.9 39.7 33.0 31.2 38.6
GFY 98.1 0.9 0.0 0.0 0.0 99.0 97.6 97.0 95.7 94.0 61.0 55.2 49.2 49.5 52.7
GBY 98.3 5.3 0.0 0.0 0.0 98.7 96.8 96.0 93.8 91.2 54.2 41.5 37.6 38.7 43.6
DFX 85.1 0.0 0.0 0.0 0.0 97.6 93.3 91.2 90.4 89.8 N/A N/A N/A N/A N/A
DBX 97.3 46.0 0.4 0.0 0.0 98.7 93.9 88.4 85.5 76.3 N/A N/A N/A N/A N/A
DFZ 80.5 0.0 0.0 0.0 0.0 97.2 94.6 92.3 91.5 91.2 32.9 28.6 28.1 36.5 44.5

Table F.14. Grey-box PGD attack results on CIFAR plane-vs-frog binary classification.
substitute acc victim acc TP logit

ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20
GFZ 96.7 88.1 41.7 4.5 0.1 97.0 94.9 84.0 48.3 8.3 8.4 11.2 6.1 7.5 49.8
GBZ 92.9 83.1 37.8 5.5 0.0 95.3 94.8 91.8 83.1 65.6 15.5 12.8 10.9 19.9 79.8
GFY 96.9 88.1 33.7 3.3 0.1 96.9 95.9 85.3 54.2 12.7 2.6 2.0 5.0 8.5 61.2
GBY 95.2 85.6 32.4 2.8 0.1 96.8 95.3 86.4 59.8 18.5 21.8 14.3 10.5 12.5 75.2
DFX 95.7 80.8 10.1 0.2 0.0 99.1 96.7 79.4 28.3 0.9 N/A N/A N/A N/A N/A
DBX 95.7 80.5 30.5 1.7 0.0 99.5 98.2 91.1 65.1 21.8 N/A N/A N/A N/A N/A
DFZ 96.5 81.9 10.5 0.3 0.0 99.1 96.9 76.9 26.2 1.3 4.5 16.5 6.1 8.5 59.6

Table F.15. Grey-box MIM attack results on CIFAR plane-vs-frog binary classification.
substitute acc victim acc TP logit

ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20
GFZ 96.3 87.9 42.1 4.7 0.1 97.1 94.8 83.0 44.8 4.9 8.7 11.1 5.8 8.5 75.1
GBZ 92.9 82.5 36.9 4.9 0.0 95.5 94.7 91.4 81.7 49.5 14.8 12.6 13.9 21.9 97.8
GFY 96.8 87.9 34.1 3.5 0.1 96.9 95.6 84.6 49.1 6.9 2.6 2.0 6.7 10.3 81.1
GBY 95.1 85.5 32.0 2.6 0.1 96.8 95.5 85.7 56.2 10.9 21.8 14.8 9.2 13.4 97.6
DFX 95.5 80.5 10.5 0.2 0.0 99.1 96.5 77.3 24.0 0.2 N/A N/A N/A N/A N/A
DBX 95.6 81.1 34.5 2.2 0.0 99.5 98.3 89.3 58.9 9.9 N/A N/A N/A N/A N/A
DFZ 96.3 81.5 10.7 0.5 0.0 99.1 96.9 74.9 21.9 0.3 4.5 16.6 6.4 9.9 80.2

Table F.16. Grey-box CW attack results on CIFAR plane-vs-frog binary classification.
substitute acc victim acc TP logit

ε 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00
GFZ 98.7 61.9 0.0 0.0 0.0 98.6 95.8 94.3 93.8 93.2 11.7 10.2 10.9 9.9 8.5
GBZ 96.3 69.8 3.3 0.0 0.0 95.9 95.7 94.7 94.7 94.5 13.5 12.7 12.3 13.7 14.4
GFY 98.4 54.4 0.0 0.0 0.0 98.1 96.1 95.3 95.1 94.3 0.0 2.2 3.7 4.6 7.6
GBY 97.6 52.9 2.2 0.0 0.0 97.7 95.6 94.5 94.3 93.7 25.8 15.7 14.2 13.7 18.0
DFX 64.4 0.0 0.0 0.0 0.0 98.5 97.2 97.1 96.7 95.5 N/A N/A N/A N/A N/A
DBX 91.3 56.2 0.3 0.0 0.0 99.7 99.0 99.0 98.9 98.1 N/A N/A N/A N/A N/A
DFZ 80.3 0.0 0.0 0.0 0.0 99.2 97.9 97.5 97.3 95.4 0.0 15.7 14.6 8.8 6.1
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Table F.17. Black-box PGD attack results on MNIST.
substitute acc victim acc TP logit

ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50
GFZ 44.2 0.7 0.0 0.0 0.0 97.3 88.4 62.7 33.8 21.8 48.7 61.0 92.3 99.8 100.0
GBZ 7.4 0.0 0.0 0.0 0.0 94.8 87.1 70.7 52.9 41.3 51.0 68.6 97.7 100.0 100.0
GFY 49.4 0.8 0.0 0.0 0.0 97.4 86.5 58.1 31.9 21.0 52.5 70.8 97.4 99.8 100.0
GBY 21.7 0.0 0.0 0.0 0.0 96.9 89.3 70.0 49.7 37.8 51.2 70.8 98.2 100.0 100.0
DFX 49.2 1.3 0.0 0.0 0.0 91.4 52.1 13.9 2.2 0.7 N/A N/A N/A N/A N/A
DBX 43.1 0.7 0.0 0.0 0.0 95.0 67.0 26.2 9.7 6.5 N/A N/A N/A N/A N/A
DFZ 53.8 1.7 0.0 0.0 0.0 92.9 56.3 15.2 3.4 1.5 34.7 52.8 94.0 99.9 100.0

Table F.18. Black-box MIM attack results on MNIST.
substitute acc victim acc TP logit

ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50
GFZ 45.5 2.8 0.0 0.0 0.0 97.2 86.6 50.3 17.0 17.0 51.1 68.0 97.5 99.5 99.5
GBZ 8.4 0.0 0.0 0.0 0.0 94.7 85.9 63.5 35.2 17.1 51.2 74.4 99.0 100.0 100.0
GFY 53.1 2.5 0.3 0.1 0.1 97.2 83.7 49.2 20.1 20.1 55.1 80.6 99.0 99.9 99.9
GBY 24.5 0.0 0.0 0.0 0.0 96.8 88.3 62.8 31.7 13.3 49.3 77.6 99.9 100.0 100.0
DFX 51.3 2.3 0.1 0.0 0.0 91.4 51.7 13.3 1.9 1.9 N/A N/A N/A N/A N/A
DBX 47.8 1.6 0.1 0.0 0.0 94.8 67.0 23.2 7.6 7.6 N/A N/A N/A N/A N/A
DFZ 56.1 2.9 0.1 0.0 0.0 92.7 56.0 13.1 2.8 2.8 35.2 59.9 97.6 100.0 100.0

Table F.19. Black-box CW attack results on MNIST.
substitute acc victim acc TP logit

ε 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00
GFZ 65.2 0.3 0.0 0.0 0.0 98.8 98.7 97.4 94.3 92.0 52.3 50.8 39.6 44.7 55.3
GBZ 76.6 0.4 0.0 0.0 0.0 97.3 97.2 95.9 92.7 90.4 45.7 46.1 41.5 40.3 45.7
GFY 88.4 3.8 0.0 0.0 0.0 99.0 98.9 98.0 94.8 92.0 60.0 59.2 51.9 47.6 57.2
GBY 76.0 1.3 0.0 0.0 0.0 98.7 98.6 97.3 95.1 93.5 53.4 52.2 41.8 39.7 46.7
DFX 82.4 0.0 0.0 0.0 0.0 98.8 96.8 92.4 86.2 84.9 N/A N/A N/A N/A N/A
DBX 82.5 0.6 0.0 0.0 0.0 98.9 98.4 95.5 85.2 83.1 N/A N/A N/A N/A N/A
DFZ 86.5 0.2 0.0 0.0 0.0 98.8 94.5 89.3 81.5 79.3 42.9 25.5 22.3 27.7 38.2

Table F.20. Black-box PGD attack results on CIFAR plane-vs-frog binary classification.
substitute acc victim acc TP logit

ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20
GFZ 95.5 89.9 45.5 6.8 0.1 97.6 95.6 88.7 68.8 29.7 6.2 6.7 6.0 10.8 71.8
GBZ 92.0 84.1 33.8 3.5 0.0 95.6 94.9 92.7 85.0 65.9 16.7 14.6 12.8 17.9 76.8
GFY 95.3 89.1 38.7 2.5 0.0 97.3 96.6 90.0 72.9 35.5 0.0 2.3 6.8 10.4 72.3
GBY 91.8 80.5 29.7 6.1 0.2 97.2 95.9 90.2 70.8 30.3 21.8 16.4 9.6 13.6 77.3
DFX 89.1 74.5 19.1 0.9 0.0 99.7 98.7 92.6 64.8 9.9 N/A N/A N/A N/A N/A
DBX 85.5 76.4 42.5 4.5 0.0 99.6 99.0 94.8 77.5 24.5 N/A N/A N/A N/A N/A
DFZ 85.5 73.5 21.1 1.5 0.0 99.5 99.2 93.8 70.1 15.1 0.0 5.0 8.9 15.9 85.1
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Table F.21. Black-box MIM attack results on CIFAR plane-vs-frog binary classification.
substitute acc victim acc TP logit

ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20
GFZ 95.5 89.7 46.4 7.7 0.2 97.5 95.7 88.5 66.5 20.5 6.2 6.7 5.9 12.7 82.7
GBZ 91.8 84.0 33.1 3.4 0.0 95.6 94.9 92.3 85.1 60.7 16.7 15.5 14.2 21.6 97.9
GFY 95.3 88.9 40.5 3.1 0.0 97.3 96.7 89.5 70.6 31.9 0.0 2.4 7.6 12.5 88.0
GBY 91.7 80.2 29.5 5.9 0.1 97.3 95.9 89.6 69.0 26.1 22.2 16.1 9.7 14.0 95.9
DFX 89.0 74.5 19.4 0.9 0.0 99.6 98.7 92.1 63.0 10.9 N/A N/A N/A N/A N/A
DBX 85.5 76.3 42.7 4.5 0.0 99.6 99.0 95.1 76.5 27.2 N/A N/A N/A N/A N/A
DFZ 85.3 73.4 21.4 1.6 0.0 99.6 99.1 92.9 67.7 14.9 0.0 4.5 7.5 14.2 91.9

Table F.22. Black-box CW attack results on CIFAR plane-vs-frog binary classification.
substitute acc victim acc TP logit

ε 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00
GFZ 96.3 41.5 0.5 0.0 0.0 98.7 94.7 93.4 93.3 92.3 13.3 8.6 7.7 7.7 8.9
GBZ 94.9 73.3 1.4 0.0 0.0 95.9 95.3 94.6 94.5 94.5 13.5 11.8 11.8 13.2 13.1
GFY 96.4 62.0 1.3 0.0 0.0 98.1 96.7 94.8 94.7 94.1 0.0 2.8 6.5 6.1 6.8
GBY 93.5 33.6 1.7 0.0 0.0 97.7 95.9 95.4 95.4 95.0 25.8 16.4 15.9 18.6 19.8
DFX 90.3 10.9 0.0 0.0 0.0 99.9 98.8 98.5 98.5 97.9 N/A N/A N/A N/A N/A
DBX 87.2 31.8 0.0 0.0 0.0 99.9 97.1 94.5 93.9 94.7 N/A N/A N/A N/A N/A
DFZ 84.9 22.7 0.0 0.0 0.0 99.9 99.0 98.3 98.3 97.8 0.0 3.8 2.3 2.3 11.0

Table F.23. FGSM white-box attack results on CIFAR-10.
acc. (adv) TP marginal TP logit TP KL

ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20
VGG16 44.5 25.8 16.6 11.9 10.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 95.1 95.7 97.0 97.5 97.1

GBZ-FC1 63.7 49.7 34.3 18.9 12.7 60.0 62.4 80.6 90.9 94.1 63.7 65.0 80.6 95.0 98.4 90.1 90.8 92.3 92.6 92.6
GBY-FC1 64.9 50.0 36.1 19.5 11.3 52.2 59.0 80.4 90.1 92.5 54.6 61.9 80.3 95.6 98.4 90.7 91.3 92.1 92.4 90.3
DBX-FC1 57.3 45.7 31.8 16.3 10.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.8 93.2 94.0 94.3 92.8

GBZ-CONV9 81.6 74.1 58.5 48.9 45.8 13.7 17.0 28.4 76.0 90.2 18.3 20.6 31.7 64.3 71.6 91.7 91.5 91.7 93.3 86.4
GBY-CONV9 75.8 66.0 39.7 22.5 17.5 14.0 18.2 29.4 74.4 88.9 17.7 20.8 25.8 55.2 68.9 89.6 89.9 90.0 89.1 89.2
DBX-CONV9 59.0 45.7 31.8 17.8 11.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 93.7 94.1 94.9 95.2 93.7

Table F.24. PGD white-box attack results on CIFAR-10.
acc. (adv) TP marginal TP logit TP KL

ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20
VGG16 18.8 0.6 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 93.9 91.8 67.4 69.9 66.4

GBZ-FC1 37.7 6.1 0.1 0.0 0.0 30.7 22.2 76.0 92.0 94.1 33.5 24.9 77.0 91.7 90.2 90.8 93.7 97.3 98.5 95.9
GBY-FC1 31.2 8.5 2.6 1.5 0.6 32.0 20.3 82.3 95.1 97.6 36.6 29.5 84.1 93.7 90.4 90.3 94.1 97.7 97.3 96.9
DBX-FC1 23.4 1.7 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 91.9 91.0 5.6 7.4 5.9

GBZ-CONV9 61.1 38.3 24.2 10.2 2.3 19.2 60.3 96.7 98.9 99.6 20.1 60.3 96.8 98.3 98.7 90.3 93.1 97.7 98.7 99.6
GBY-CONV9 66.5 26.6 3.2 0.4 0.0 17.0 55.6 95.7 99.2 99.6 17.8 52.7 95.3 98.6 97.6 89.6 91.8 98.7 99.4 96.9
DBX-CONV9 24.0 3.0 0.3 0.1 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 91.3 93.1 99.3 99.6 99.2
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Table F.25. MIM white-box attack results on CIFAR-10.
acc. (adv) TP marginal TP logit TP KL

ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20
VGG16 13.1 0.4 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.2 92.4 72.3 77.1 79.0

GBZ-FC1 24.5 2.7 0.1 0.0 0.0 34.8 40.9 88.5 95.8 96.0 38.8 44.0 90.4 96.4 96.6 91.3 95.0 95.7 97.9 96.8
GBY-FC1 33.0 19.6 11.8 7.2 4.9 29.1 38.7 95.7 99.1 99.3 38.4 49.2 96.3 99.3 99.4 90.7 95.0 97.8 97.9 97.9
DBX-FC1 17.3 0.9 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 91.1 89.6 9.6 14.5 16.0

GBZ-CONV9 57.6 43.5 29.1 24.1 22.6 27.4 78.5 99.4 99.6 99.7 29.1 78.3 99.6 99.7 99.8 90.2 94.4 97.5 98.0 98.2
GBY-CONV9 39.1 18.1 4.3 1.9 1.5 25.6 70.4 98.6 99.6 99.8 28.2 71.1 98.6 99.7 99.8 89.6 94.5 99.4 99.8 99.7
DBX-CONV9 19.2 3.2 0.5 0.4 0.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.1 96.7 99.9 100.0 100.0

Table F.26. FGSM white-box attack results on MNIST (with varied bottleneck layer sizes).
acc. (adv) TP marginal TP logit TP KL

ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50
DBX-16 92.6 85.6 76.4 64.7 52.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 90.3 92.4 92.3 92.7 94.2
DBX-32 92.6 84.4 71.1 57.2 46.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.2 92.3 92.8 94.9 95.0
DBX-64 91.6 77.8 58.1 44.5 36.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.6 93.6 95.2 96.3 97.0
DBX-128 87.8 47.6 20.1 12.7 10.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 94.4 97.6 97.8 97.1 96.4
GBZ-16 92.0 75.8 52.5 34.0 21.7 28.7 71.5 99.9 100.0 100.0 49.2 86.3 99.9 100.0 100.0 90.8 90.6 92.0 91.9 90.9
GBZ-32 91.1 74.4 52.4 33.4 21.6 26.5 73.5 99.7 100.0 100.0 49.4 87.2 99.9 100.0 100.0 91.0 90.6 91.8 91.4 91.6
GBZ-64 92.5 80.3 62.0 42.4 27.2 37.0 81.7 100.0 100.0 100.0 57.6 93.5 100.0 100.0 100.0 91.6 90.9 90.3 91.1 91.5

GBZ-128 90.8 76.8 57.5 38.9 24.8 26.6 63.0 99.6 100.0 100.0 44.9 78.7 99.8 100.0 100.0 87.9 90.1 90.7 91.1 90.6
GBY-16 94.2 77.7 49.4 23.9 12.1 41.9 84.1 100.0 100.0 100.0 52.9 91.9 100.0 100.0 100.0 86.6 92.0 93.0 93.1 92.6
GBY-32 94.5 76.9 45.4 20.0 9.6 41.4 83.3 100.0 100.0 100.0 56.3 92.8 100.0 100.0 100.0 89.0 91.6 93.3 93.2 93.0
GBY-64 93.6 76.4 47.5 22.3 10.7 41.9 84.5 100.0 100.0 100.0 57.7 92.5 100.0 100.0 100.0 89.3 92.7 92.8 92.9 92.9

GBY-128 93.0 72.9 42.2 18.5 9.0 37.4 71.6 100.0 100.0 100.0 50.1 81.9 99.9 100.0 100.0 90.7 91.4 91.8 91.4 92.0

Table F.27. PGD white-box attack results on MNIST (with varied bottleneck layer sizes).
acc. (adv) TP marginal TP logit TP KL

ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50
DBX-16 69.8 36.6 16.0 5.9 1.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 91.2 91.9 92.8 93.3 93.7
DBX-32 63.5 26.8 12.5 6.2 2.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 91.5 92.1 92.7 92.9 93.5
DBX-64 58.0 18.3 6.0 1.3 0.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.7 94.0 94.1 93.7 84.8

DBX-128 42.3 3.0 1.1 0.3 0.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 97.1 97.1 98.4 98.4 98.6
GBZ-16 88.3 62.8 37.4 23.1 15.5 27.1 35.8 71.9 98.9 100.0 46.3 53.0 82.3 99.3 100.0 89.6 91.7 92.3 91.4 91.8
GBZ-32 87.1 61.9 40.2 28.0 20.4 24.0 39.1 76.7 98.9 100.0 41.5 56.4 85.4 99.7 100.0 91.3 91.0 91.1 91.3 91.1
GBZ-64 85.1 57.4 32.5 19.3 11.6 33.7 50.3 84.4 99.7 100.0 52.2 66.3 91.5 99.8 100.0 90.0 91.5 91.5 91.7 91.8
GBZ-128 84.4 57.5 36.8 25.2 16.8 25.4 35.4 66.1 96.6 100.0 41.5 50.5 76.4 97.7 100.0 88.6 90.4 90.4 90.0 90.6
GBY-16 90.4 49.7 15.0 4.2 1.6 42.6 64.7 89.9 99.3 100.0 51.1 70.8 92.8 99.5 100.0 91.9 93.1 91.9 90.7 91.0
GBY-32 88.4 39.8 9.5 1.8 0.6 45.6 74.3 92.8 99.5 100.0 56.8 78.2 94.8 99.8 100.0 90.8 92.2 91.7 91.0 90.6
GBY-64 86.7 35.9 9.0 1.7 0.4 45.3 76.1 94.6 99.7 100.0 56.9 79.3 95.6 99.9 100.0 90.1 92.1 91.6 91.7 91.4
GBY-128 83.3 35.1 8.7 2.3 0.8 39.1 63.9 86.7 98.3 100.0 51.7 69.1 89.2 98.9 100.0 89.8 90.7 90.4 89.7 89.5
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Table F.28. MIM white-box attack results on MNIST (with varied bottleneck layer sizes).
acc. (adv) TP marginal TP logit TP KL

ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50
DBX-16 72.2 37.1 20.7 14.7 11.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 91.8 92.3 92.8 93.4 93.9
DBX-32 66.7 27.6 16.8 12.5 10.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 91.8 92.5 92.4 93.2 93.5
DBX-64 66.7 28.7 19.7 17.2 17.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 93.5 94.3 94.6 94.7 94.7
DBX-128 42.3 1.3 0.2 0.1 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 97.2 97.6 98.6 98.9 99.1
GBZ-16 83.8 36.4 8.9 2.3 0.9 26.9 79.8 99.7 100.0 100.0 43.3 88.0 99.8 100.0 100.0 91.6 92.1 91.2 91.6 92.6
GBZ-32 82.7 35.5 9.5 3.0 1.1 26.6 83.2 99.7 100.0 100.0 45.8 90.0 99.8 100.0 100.0 90.3 91.7 91.4 92.5 92.6
GBZ-64 79.6 27.4 5.6 1.5 0.5 36.1 86.3 100.0 100.0 100.0 53.5 93.1 99.9 100.0 100.0 91.3 91.4 91.9 92.2 92.7

GBZ-128 79.2 32.1 8.7 2.6 1.2 26.1 68.5 99.2 100.0 100.0 41.2 79.1 99.4 100.0 100.0 89.7 91.5 91.4 91.4 92.5
GBY-16 89.2 34.6 3.5 0.2 0.0 44.8 88.1 99.8 100.0 100.0 55.9 91.7 99.7 100.0 100.0 89.4 92.5 91.0 90.6 36.9
GBY-32 86.7 25.8 1.6 0.1 0.0 45.1 91.2 100.0 100.0 100.0 58.6 94.0 100.0 100.0 100.0 90.9 91.8 91.1 68.6 31.1
GBY-64 84.9 22.9 1.5 0.1 0.0 47.4 91.2 99.9 100.0 100.0 59.8 92.8 99.9 100.0 100.0 91.4 92.1 91.2 86.8 29.0

GBY-128 82.1 23.7 1.9 0.0 0.0 40.4 83.0 99.7 100.0 100.0 51.7 87.5 99.6 100.0 100.0 91.2 91.2 89.8 82.8 44.4


