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A. Extra Details on Model Architectures

In the propagation layers of the graph embedding and match-
ing models, we used an MLP with one hidden layer as the
fmessage module, with a ReLU nonlinearity on the hidden
layer. For node state vectors (the h(t)

i
vectors) of dimension

D, the size of the hidden layer and the output is set to 2D.
We found it to be beneficial to initialize the weights of this
fmessage module to be small, which helps stablizing train-
ing. We used the standard Glorot initialization with an extra
scaling factor of 0.1. When not using this small scaling
factor, at the begining of training the message vectors when
summed up can have huge scales, which is bad for learning.

One extra thing to note about the propagation layers is that
we can make all the propagation layers share the same set of
parameters, which can be useful if this is a suitable inductive
bias to have.

We tried different fnode modules in both experiments, and
found GRUs to generally work better than one-hidden layer
MLPs, and all the results reported uses GRUs as fnode, with
the sum over edge messages

P
j
mj!i treated as the input

to the GRU for the embedding model, and the concatenation
of

P
j
mj!i and

P
j0 µj0!i

as the input to the GRU for
the matching model.

In the aggregator module, we used a single linear layer for
the node transformation MLP and the gating MLPgate in
Eq.3. The output of this linear layer has a dimensionality the
same as the required dimensionality for the graph vectors.
�(x) = 1

1+e�x is the logistic sigmoid function, and � is
the element-wise product. After the weighted sum, another
MLP with one hidden layers is used to further transform
the graph vector. The hidden layer has the same size as the
output, with a ReLU nonlinearity.

For the matching model, the attention weights are computed
as
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i
,h(t)

j0 ))
. (16)

We have tried the Euclidean similarity sh(hi,hj) =
�khi � hjk2 for sh, as well as the dot-product similar-
ity sh(hi,hj) = h>

i
hj , and they perform similarly without

significant difference.

B. Extra Experiment Details

We fixed the node state vector dimensionality to 32, and
graph vector dimensionality to 128 throughout both the
graph edit distance learning and binary function similar-
ity search tasks. We tuned this initially on the function
similarity search task, which clearly performs better than
smaller models. Increasing the model size however leads to
overfitting for that task. We directly used the same setting

for the edit distance learning task without further tuning.
Using larger models there should further improve model
performance.

B.1. Learning Graph Edit Distances

In this task the nodes and edges have no extra features
associated with them, we therefore initialized the xi and xij

vectors as vectors of 1s, and the encoder MLP in Eq.1 is
simply a linear layer for the nodes and an identity mapping
for the edges.

We searched through the following hyperparameters: (1)
triplet vs pair training; (2) number of propagation layers;
(3) share parameters on different propagation layers or not.
Learning rate is fixed at 0.001 for all runs and we used the
Adam optimizer (Kingma & Ba, 2014). Overall we found:
(1) triplet and pair training performs similarly, with pair
training slightly better, (2) using more propagation layers
consistently helps, and increasing the number of propaga-
tion layers T beyond 5 may help even more, (3) sharing
parameters is useful for performance more often than not.

Intuitively, the baseline WL kernel starts by labeling each
node by its degree, and then iteratively updates a node’s
representation as the histogram of neighbor node patterns,
which is effectively also a graph propagation process. The
kernel value is then computed as a dot product of graph rep-
resentation vectors, which is the histogram of different node
representations. When using the kernel with T iterations
of computation, a pair of graphs of size |V | can have as
large as a 2|V |T dimensional representation vector for each
graph, and these sets of effective ‘feature’ types are differ-
ent for different pairs of graphs as the node patterns can be
very different. This is an advantage for WL kernel over our
models as we used a fixed sized graph vector regardless of
the graph size. We evaluate WL kernel for T up to 5 and
report results for the best T on the evaluation set.

In addition to the experiments presented in the main paper,
we have also tested the generalization capabilities of the
proposed models, and we present the extra results in the
following.

Train on small graphs, generalize to large graphs. In
this experiment, we trained the GSL models on graphs with
n sampled uniformly from 20 to 50, and p sampled from
range [0.2, 0.5] to cover more variability in graph sizes and
edge density for better generalization, and we again fix kp =
1, kn = 2. For evaluation, we tested the best embedding
models and matching models on graphs with n = 100, 200
and p = 0.2, 0.5, with results shown in Table 3. We can see
that for this task the GSL models trained on small graphs
can generalize to larger graphs than they are trained on.
The performance falls off a bit on much larger graphs with
much more nodes and edges. This is also partially caused
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Eval Graphs WL kernel GNN GMN
n = 100, p = 0.2 98.5 / 99.4 96.6 / 96.8 96.8 / 97.7
n = 100, p = 0.5 86.7 / 97.0 79.8 / 81.4 83.1 / 83.6
n = 200, p = 0.2 99.9 / 100.0 88.7 / 88.5 89.4 / 90.0
n = 200, p = 0.5 93.5 / 99.2 72.0 / 72.3 68.3 / 70.1

Table 3. Generalization performance on large graphs for the GSL
models trained on small graphs with 20  n  50 and 0.2  p 
0.5.

by the fact that we are using a fixed sized graph vector
throughout the experiments , but the WL kernel on the
other hand has much more effective ‘features’ to use for
computing similarity. On the other hand, as shown before,
when trained on graphs from distributions we care about,
the GSL models can adapt and perform much better.

Train on some kp, kn combinations, test on other combi-

nations. We have also tested the model trained on graphs
with n 2 [20, 50], p 2 [0.2, 0.5], kp = 1, kn = 2, on graphs
with different kp and kn combinations. In particular, when
evaluated on kp = 1, kn = 4, the models perform much
better than on kp = 1, kn = 2, reaching 1.0 AUC and
100% triplet accuracy easily, as this is considerably sim-
pler than the kp = 1, kn = 2 setting. When evaluated on
graphs with kp = 2, kn = 3, the performance is workse
than kp = 1, kn = 2 as this is a harder setting.

In addition, we have also tried training on the more diffi-
cult setting kp = 2, kn = 3, and evaluate the models on
graphs with kp = 1, kn = 2 and n 2 [20, 50], p 2 [0.2, 0.5].
The performance of the models on these graphs are ac-
tually be better than the models trained on this setting
of kp = 1, kn = 2, which is surprising and clearly
demonstrates the value of good training data. However,
in terms of generalizing to larger graphs models trained on
kp = 2, kn = 3 does not have any significant advantages.

B.2. Binary Function Similarity Search

In this task the edges have no extra features so we initialize
them to constant vectors of 1s, and the encoder MLP for
the edges is again just an identity mapping. When using the
CFG graph structure only, the nodes are also initialized to
constant vectors of 1s, and the encoder MLP is a linear layer.
In the case when using assembly instructions, we have a list
of assembly code associated with each node. We extracted
the operator type (e.g. add, mov, etc.) from each instruc-
tion, and then embeds each operator into a vector, the initial
node representation is a sum of all operator embeddings.

We searched through the following hyperparameters: (1)
triplet or pair training, (2) learning rate in {10�3

, 10�4}, (3)
number of propagation layers; (4) share propagation layer
parameters or not; (5) GRU vs one-layer MLP for the fnode
module.

Overall we found that (1) triplet training performs slightly
better than pair training in this case; (2) both learning rates
can work but the smaller learning rate is more stable; (3)
increasing number of propagation layers generally helps; (4)
using different propagation layer parameters perform better
than using shared parameters; (5) GRUs are more stable
than MLPs and performs overall better.

In addition to the results reported in the main paper, we have
also tried the same models on another dataset obtained by
compiling the compression software unrar with different
compilers and optimization levels. Our graph similarity
learning methods also perform very well on the unrar data,
but this dataset is a lot smaller, with around 400 functions
only, and overfitting is therefore a big problem for any learn-
ing based model, so the results on this dataset are not very
reliable to draw any conclusions.

A few more control-flow graph examples are shown in Fig-
ure 5. The distribution of graph sizes in the training set is
shown in Figure 6.

C. Extra Attention Visualizations

A few more attention visualizations are included in Figure 7,
Figure 8 and Figure 9. Here the graph matching model
we used has shared parameters for all the propagation and
matching layers and was trained with 5 propagation layers.
Therefore we can use a number T different from the num-
ber of propagation layers the model is being trained on to
test the model’s performance. In both visualizations, we
unrolled the propagation for up to 9 steps and the model still
computes sensible attention maps even with T > 5.

Note that the attention maps do not converge to very peaked
distributions. This is partially due to the fact that we used
the node state vectors both to carry information through the
propagation process, as well as in the attention mechanism
as is. This makes it hard for the model to have very peaked
attention as the scale of these node state vectors won’t be
very big. A better solution is to compute separate key, query
and value vectors for each node as done in the tensor2tensor
self-attention formulation (Vaswani et al., 2017), which may
further improve the performance of the matching model.

Figure 7 shows another possibility where the attention maps
do not converge to very peaked distributions because of
in-graph symmetries. Such symmetries are very typical
in graphs. In this case even though the attention maps
are not peaked, the cross graph communication vectors µ
are still zero, and the two graphs will still have identical
representation vectors.
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  0x1950

push      RBP, RSP
push      R15, RSP
push      R14, RSP
push      R13, RSP
push      R12, RSP
push      RBX, RSP
push      RAX, RSP
mov       EBP, EDX
mov       R14D, ESI
mov       R15D, EDI
mov       EDI, 560
call      1028

  0x196d

mov       RBX, RAX
test      RBX, RBX
jz        19ac

  0x1975

lea       R12D, R15 + f
mov       EAX, R12D
sar       EAX, 1f
shr       EAX, 1c
lea       R13D, R15 + RAX * 1 + f
sar       R13D, 4
lea       RAX, 21bcc9
mov       [RBX], RAX
test      BPL, 8
jnz       19b3

  0x199b

mov       [RBX + 520], 1
mov       EAX, 1
jmp       19c6

  0x19ac

xor       EBX, EBX
jmp       1a44

  0x19b3

mov       EAX, EBP
and       EAX, 3
mov       [RBX + 520], EAX
mov       EAX, EBP
shr       EAX, 4
and       EAX, 3

  0x19c6

and       R12D, f0
add       R13D, 2
mov       [RBX + 524], EAX
test      EBP, 80000
jnz       1a1b

  0x19dc

mov       ECX, EBP
shr       ECX, 1f
mov       EAX, EBP
shr       EAX, 1c
and       EAX, 2
lea       EDX, RAX + RCX * 1
test      EBP, 40000000
lea       ECX, RAX + RCX * 1 + 4
cmovne    EDX, ECX
mov       [RBX + 514], EDX
test      EBP, 10000000
jz        1a26

 0x1a07

test      EBP, 40000000
cmove     ECX, EAX
or        ECX, 1
mov       [RBX + 514], ECX
jmp       1a26

  0x1a1b

call      fc0

  0x1a20

mov       [RBX + 514], EAX

  0x1a26

mov       RDI, RBX
mov       ESI, R15D
mov       EDX, R14D
mov       ECX, R12D
mov       R8D, R13D
call      1a56

  0x1a3a

mov       [RBX + 510], ffffffff

  0x1a44

mov       RAX, RBX
add       RSP, 8
pop       RBX, RSP
pop       R12, RSP
pop       R13, RSP
pop       R14, RSP
pop       R15, RSP
pop       RBP, RSP
ret near  [RSP]

 0x1ceba

sub       RSP, 38
mov       [RSP + c], EDI
mov       [RSP + 8], ESI
mov       [RSP + 4], EDX
mov       RAX, [28]
mov       [RSP + 28], RAX
xor       EAX, EAX
mov       EDI, 560
call      fb8

 0x1cee4

mov       [RSP + 20], RAX
mov       EAX, [RSP + c]
add       EAX, f
and       EAX, f0
mov       [RSP + 18], EAX
mov       EAX, [RSP + c]
add       EAX, f
lea       EDX, RAX + f
test      EAX, EAX
cmovs     EAX, EDX
sar       EAX, 4
add       EAX, 2
mov       [RSP + 1c], EAX
cmp       [RSP + 20], 0
jnz       1cf22

  0x1cf18

mov       EAX, 0
jmp       1d088

  0x1cf22

mov       RAX, [RSP + 20]
lea       RDX, 220cd9
mov       [RAX], RDX
mov       EAX, [RSP + 4]
and       EAX, 8
test      EAX, EAX
jz        1cf69

  0x1cf3c

mov       EAX, [RSP + 4]
and       EAX, 3
mov       EDX, EAX
mov       RAX, [RSP + 20]
mov       [RAX + 520], EDX
mov       EAX, [RSP + 4]
sar       EAX, 4
and       EAX, 3
mov       EDX, EAX
mov       RAX, [RSP + 20]
mov       [RAX + 524], EDX
jmp       1cf87

 0x1cf69

mov       RAX, [RSP + 20]
mov       [RAX + 520], 1
mov       RAX, [RSP + 20]
mov       [RAX + 524], 1

  0x1cf87

mov       EAX, [RSP + 4]
and       EAX, 80000
test      EAX, EAX
jz        1cfab

  0x1cf94

call      f50

  0x1cf99

mov       EDX, EAX
mov       RAX, [RSP + 20]
mov       [RAX + 514], EDX
jmp       1d054

 0x1cfab

mov       RAX, [RSP + 20]
mov       [RAX + 514], 0
cmp       [RSP + 4], 0
jns       1cfdc

  0x1cfc1

mov       RAX, [RSP + 20]
mov       EAX, [RAX + 514]
or        EAX, 1
mov       EDX, EAX
mov       RAX, [RSP + 20]
mov       [RAX + 514], EDX

  0x1cfdc

mov       EAX, [RSP + 4]
and       EAX, 20000000
test      EAX, EAX
jz        1d004

 0x1cfe9

mov       RAX, [RSP + 20]
mov       EAX, [RAX + 514]
or        EAX, 2
mov       EDX, EAX
mov       RAX, [RSP + 20]
mov       [RAX + 514], EDX

  0x1d004

mov       EAX, [RSP + 4]
and       EAX, 40000000
test      EAX, EAX
jz        1d02c

 0x1d011

mov       RAX, [RSP + 20]
mov       EAX, [RAX + 514]
or        EAX, 4
mov       EDX, EAX
mov       RAX, [RSP + 20]
mov       [RAX + 514], EDX

  0x1d02c

mov       EAX, [RSP + 4]
and       EAX, 10000000
test      EAX, EAX
jz        1d054

 0x1d039

mov       RAX, [RSP + 20]
mov       EAX, [RAX + 514]
or        EAX, 1
mov       EDX, EAX
mov       RAX, [RSP + 20]
mov       [RAX + 514], EDX

 0x1d054

mov       EDI, [RSP + 1c]
mov       ECX, [RSP + 18]
mov       EDX, [RSP + 8]
mov       ESI, [RSP + c]
mov       RAX, [RSP + 20]
mov       R8D, EDI
mov       RDI, RAX
call      1cc23

  0x1d074

mov       RAX, [RSP + 20]
mov       [RAX + 510], ffffffff
mov       RAX, [RSP + 20]

  0x1d088

mov       RCX, [RSP + 28]
xor       RCX, [28]
jz        1d09d

 0x1d098

call      f60

  0x1d09d

add       RSP, 38
ret near  [RSP]

  0x1752b

push      R15, RSP
push      R14, RSP
push      R13, RSP
push      R12, RSP
push      RBP, RSP
push      RBX, RSP
sub       RSP, 18
mov       R12D, EDI
mov       R13D, ESI
mov       EBP, EDX
mov       RAX, [28]
mov       [RSP + 8], RAX
xor       EAX, EAX
mov       EDI, 560
call      f38

  0x1755b

mov       RBX, RAX
lea       EAX, R12 + f
mov       R14D, EAX
and       R14D, f0
mov       ECX, 10
cdq       EDX, EAX
idiv      EDX, EAX, ECX
lea       R15D, RAX + 2
mov       EAX, 0
test      RBX, RBX
jz        175db

  0x17580

lea       RAX, 21aa19
mov       [RBX], RAX
test      BPL, 8
jz        175f0

  0x17590

mov       EAX, EBP
and       EAX, 3
mov       [RBX + 520], EAX
mov       EAX, EBP
sar       EAX, 4
and       EAX, 3
mov       [RBX + 524], EAX

  0x175a9

bt        EBP, 13
jnb       17606

  0x175af

call      ee0

  0x175b4

mov       [RBX + 514], EAX

  0x175ba

mov       R8D, R15D
mov       ECX, R14D
mov       EDX, R13D
mov       ESI, R12D
mov       RDI, RBX
call      61e4

  0x175ce

mov       [RBX + 510], ffffffff
mov       RAX, RBX

  0x175db

mov       RSI, [RSP + 8]
xor       RSI, [28]
jz        1763a

  0x175eb

call      ee8

  0x175f0

mov       [RBX + 520], 1
mov       [RBX + 524], 1
jmp       175a9

  0x17606

mov       EAX, EBP
shr       EAX, 1f
mov       [RBX + 514], EAX
bt        EBP, 1d
jnb       1761e

 0x17617

or        [RBX + 514], 2

  0x1761e

bt        EBP, 1e
jnb       1762b

  0x17624

or        [RBX + 514], 4

  0x1762b

bt        EBP, 1c
jnb       175ba

  0x17631

or        [RBX + 514], 1
jmp       175ba

  0x1763a

add       RSP, 18
pop       RBX, RSP
pop       RBP, RSP
pop       R12, RSP
pop       R13, RSP
pop       R14, RSP
pop       R15, RSP
ret near  [RSP]

  0xf90

push      R15, RSP
push      R14, RSP
mov       R14D, ESI
push      R13, RSP
push      R12, RSP
mov       R13D, EDI
push      RBP, RSP
push      RBX, RSP
mov       EDI, 560
mov       EBP, EDX
sub       RSP, 18
mov       RAX, [28]
mov       [RSP + 8], RAX
xor       EAX, EAX
call      f70

  0xfc0

mov       RBX, RAX
lea       EAX, R13 + f
mov       ECX, 10
mov       R15D, EAX
cdq       EDX, EAX
and       R15D, f0
idiv      EDX, EAX, ECX
test      RBX, RBX
jz        108a

  0xfdf

lea       R12D, RAX + 2
lea       RAX, 2179f9
test      BPL, 8
mov       [RBX], RAX
jz        100e

 0xff3

mov       EAX, EBP
and       EAX, 3
mov       [RBX + 520], EAX
mov       EAX, EBP
sar       EAX, 4
and       EAX, 3
mov       [RBX + 524], EAX
jmp       1022

  0x100e

mov       [RBX + 520], 1
mov       [RBX + 524], 1

  0x1022

bt        EBP, 13
jnb       1035

 0x1028

call      f10

  0x102d

mov       [RBX + 514], EAX
jmp       1067

 0x1035

mov       EAX, EBP
shr       EAX, 1f
bt        EBP, 1d
mov       [RBX + 514], EAX
jnb       104d

 0x1046

or        [RBX + 514], 2

  0x104d

bt        EBP, 1e
jnb       105a

  0x1053

or        [RBX + 514], 4

 0x105a

bt        EBP, 1c
jnb       1067

  0x1060

or        [RBX + 514], 1

 0x1067

mov       R8D, R12D
mov       ECX, R15D
mov       EDX, R14D
mov       ESI, R13D
mov       RDI, RBX
call      4ab0

  0x107b

mov       [RBX + 510], ffffffff
mov       RAX, RBX
jmp       108c

  0x108a

xor       EAX, EAX

  0x108c

mov       RSI, [RSP + 8]
xor       RSI, [28]
jz        10a1

 0x109c

call      f20

  0x10a1

add       RSP, 18
pop       RBX, RSP
pop       RBP, RSP
pop       R12, RSP
pop       R13, RSP
pop       R14, RSP
pop       R15, RSP
ret near  [RSP]

Figure 5. Example control flow graphs for the same binary function, compiled with different compilers (clang for the leftmost one, gcc
for the others) and optimization levels. Note that each node in the graphs also contains a set of assembly instructions which we also take
into account when computing similarity using learned features.



Graph Matching Networks

Figure 6. Control flow graph size distribution in the training set. In
this plot the graphs are sorted by size on the x axis, each point in
the figure corresponds to the size of one graph.
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0 propagation steps 1 propagation step

2 propagation steps 3 propagation step

4 propagation steps 5 propagation step

6 propagation steps 7 propagation step

8 propagation steps 9 propagation steps

Figure 7. The change of cross-graph attention over propagation layers. Here the two graphs are two isomorphic chains and there are some
in-graph symmetries. Note that in the end the nodes are matched to two corresponding nodes with equal weight, except the one at the
center of the chain which can only match to a single other node.
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0 propagation steps 1 propagation step

2 propagation steps 3 propagation step

4 propagation steps 5 propagation step

6 propagation steps 7 propagation step

8 propagation steps 9 propagation steps

Figure 8. The change of cross-graph attention over propagation layers. Here the two graphs are isomorphic, with graph edit distance 0.
Note that in the end a lot of the matchings concentrated on the correct match.
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0 propagation steps 1 propagation step

2 propagation steps 3 propagation step

4 propagation steps 5 propagation step

6 propagation steps 7 propagation step

8 propagation steps 9 propagation steps

Figure 9. The change of cross-graph attention over propagation layers. The edit distance between these two graphs is 1.


