Graph Matching Networks

A. Extra Details on Model Architectures

In the propagation layers of the graph embedding and match-
ing models, we used an MLP with one hidden layer as the
fmessage module, with a ReLU nonlinearity on the hidden

layer. For node state vectors (the hgt) vectors) of dimension
D, the size of the hidden layer and the output is set to 2D.
We found it to be beneficial to initialize the weights of this
fmessage module to be small, which helps stablizing train-
ing. We used the standard Glorot initialization with an extra
scaling factor of 0.1. When not using this small scaling
factor, at the begining of training the message vectors when
summed up can have huge scales, which is bad for learning.

One extra thing to note about the propagation layers is that
we can make all the propagation layers share the same set of
parameters, which can be useful if this is a suitable inductive
bias to have.

We tried different f,,,q. modules in both experiments, and
found GRUs to generally work better than one-hidden layer
MLPs, and all the results reported uses GRUs as f,o4e, With
the sum over edge messages > ;M ,; treated as the input
to the GRU for the embedding model, and the concatenation
of >3, my,; and }_, pj _,; as the input to the GRU for
the matching model.

In the aggregator module, we used a single linear layer for
the node transformation MLP and the gating MLP g, in
Eq.3. The output of this linear layer has a dimensionality the
same as the required dimensionality for the graph vectors.
o(x) = 1ri== is the logistic sigmoid function, and © is
the element-wise product. After the weighted sum, another
MLP with one hidden layers is used to further transform
the graph vector. The hidden layer has the same size as the

output, with a ReLU nonlinearity.

For the matching model, the attention weights are computed
as

exp(sn(h{”, h{"))
) 1. (O
>, exp(sp(h{”, h{)))

We have tried the Euclidean similarity s;(h;,h;) =
—||h; — h;||? for sp,, as well as the dot-product similar-
ity sp(h;,h;) = h/ h;, and they perform similarly without
significant difference.

(16)

A5 =

B. Extra Experiment Details

We fixed the node state vector dimensionality to 32, and
graph vector dimensionality to 128 throughout both the
graph edit distance learning and binary function similar-
ity search tasks. We tuned this initially on the function
similarity search task, which clearly performs better than
smaller models. Increasing the model size however leads to
overfitting for that task. We directly used the same setting

for the edit distance learning task without further tuning.
Using larger models there should further improve model
performance.

B.1. Learning Graph Edit Distances

In this task the nodes and edges have no extra features
associated with them, we therefore initialized the x; and x;;
vectors as vectors of 1s, and the encoder MLP in Eq.1 is
simply a linear layer for the nodes and an identity mapping
for the edges.

We searched through the following hyperparameters: (1)
triplet vs pair training; (2) number of propagation layers;
(3) share parameters on different propagation layers or not.
Learning rate is fixed at 0.001 for all runs and we used the
Adam optimizer (Kingma & Ba, 2014). Overall we found:
(1) triplet and pair training performs similarly, with pair
training slightly better, (2) using more propagation layers
consistently helps, and increasing the number of propaga-
tion layers 7" beyond 5 may help even more, (3) sharing
parameters is useful for performance more often than not.

Intuitively, the baseline WL kernel starts by labeling each
node by its degree, and then iteratively updates a node’s
representation as the histogram of neighbor node patterns,
which is effectively also a graph propagation process. The
kernel value is then computed as a dot product of graph rep-
resentation vectors, which is the histogram of different node
representations. When using the kernel with 7" iterations
of computation, a pair of graphs of size |V| can have as
large as a 2|V |T" dimensional representation vector for each
graph, and these sets of effective ‘feature’ types are differ-
ent for different pairs of graphs as the node patterns can be
very different. This is an advantage for WL kernel over our
models as we used a fixed sized graph vector regardless of
the graph size. We evaluate WL kernel for 7" up to 5 and
report results for the best 7" on the evaluation set.

In addition to the experiments presented in the main paper,
we have also tested the generalization capabilities of the
proposed models, and we present the extra results in the
following.

Train on small graphs, generalize to large graphs. In
this experiment, we trained the GSL models on graphs with
n sampled uniformly from 20 to 50, and p sampled from
range [0.2, 0.5] to cover more variability in graph sizes and
edge density for better generalization, and we again fix k, =
1, k, = 2. For evaluation, we tested the best embedding
models and matching models on graphs with n = 100, 200
and p = 0.2, 0.5, with results shown in Table 3. We can see
that for this task the GSL models trained on small graphs
can generalize to larger graphs than they are trained on.
The performance falls off a bit on much larger graphs with
much more nodes and edges. This is also partially caused



Graph Matching Networks

Eval Graphs WL kernel GNN GMN
n=100,p=0.2 | 98.5/994 | 96.6/96.8 96.8/97.7
n=100,p=0.5 | 86.7/97.0 | 79.8/81.4 83.1/83.6
n=200,p=0.2 | 99.9/100.0 | 88.7/88.5 89.4/90.0
n=200,p=0.5 | 935/99.2 | 72.0/72.3 68.3/70.1

Table 3. Generalization performance on large graphs for the GSL
models trained on small graphs with 20 < n < 50and 0.2 < p <
0.5.

by the fact that we are using a fixed sized graph vector
throughout the experiments , but the WL kernel on the
other hand has much more effective ‘features’ to use for
computing similarity. On the other hand, as shown before,
when trained on graphs from distributions we care about,
the GSL models can adapt and perform much better.

Train on some k,, k,, combinations, test on other combi-
nations. We have also tested the model trained on graphs
with n € [20,50], p € [0.2,0.5], k, = 1, k,, = 2, on graphs
with different k,, and k,, combinations. In particular, when
evaluated on k, = 1, k,, = 4, the models perform much
better than on k, = 1,k, = 2, reaching 1.0 AUC and
100% triplet accuracy easily, as this is considerably sim-
pler than the k, = 1,k,, = 2 setting. When evaluated on
graphs with k, = 2, k, = 3, the performance is workse
than k, = 1, k,, = 2 as this is a harder setting.

In addition, we have also tried training on the more diffi-
cult setting k, = 2,k, = 3, and evaluate the models on
graphs with k, = 1,k, = 2 and n € [20,50],p € [0.2,0.5].
The performance of the models on these graphs are ac-
tually be better than the models trained on this setting
of k, = 1,k, = 2, which is surprising and clearly
demonstrates the value of good training data. However,
in terms of generalizing to larger graphs models trained on
kp = 2, ky, = 3 does not have any significant advantages.

B.2. Binary Function Similarity Search

In this task the edges have no extra features so we initialize
them to constant vectors of 1s, and the encoder MLP for
the edges is again just an identity mapping. When using the
CFG graph structure only, the nodes are also initialized to
constant vectors of 1s, and the encoder MLP is a linear layer.
In the case when using assembly instructions, we have a list
of assembly code associated with each node. We extracted
the operator type (e.g. add, mov, etc.) from each instruc-
tion, and then embeds each operator into a vector, the initial
node representation is a sum of all operator embeddings.

We searched through the following hyperparameters: (1)
triplet or pair training, (2) learning rate in {103,107}, (3)
number of propagation layers; (4) share propagation layer
parameters or not; (5) GRU vs one-layer MLP for the f,04¢
module.

Overall we found that (1) triplet training performs slightly
better than pair training in this case; (2) both learning rates
can work but the smaller learning rate is more stable; (3)
increasing number of propagation layers generally helps; (4)
using different propagation layer parameters perform better
than using shared parameters; (5) GRUs are more stable
than MLPs and performs overall better.

In addition to the results reported in the main paper, we have
also tried the same models on another dataset obtained by
compiling the compression software unrar with different
compilers and optimization levels. Our graph similarity
learning methods also perform very well on the unrar data,
but this dataset is a lot smaller, with around 400 functions
only, and overfitting is therefore a big problem for any learn-
ing based model, so the results on this dataset are not very
reliable to draw any conclusions.

A few more control-flow graph examples are shown in Fig-
ure 5. The distribution of graph sizes in the training set is
shown in Figure 6.

C. Extra Attention Visualizations

A few more attention visualizations are included in Figure 7,
Figure 8 and Figure 9. Here the graph matching model
we used has shared parameters for all the propagation and
matching layers and was trained with 5 propagation layers.
Therefore we can use a number 7' different from the num-
ber of propagation layers the model is being trained on to
test the model’s performance. In both visualizations, we
unrolled the propagation for up to 9 steps and the model still
computes sensible attention maps even with 7" > 5.

Note that the attention maps do not converge to very peaked
distributions. This is partially due to the fact that we used
the node state vectors both to carry information through the
propagation process, as well as in the attention mechanism
as is. This makes it hard for the model to have very peaked
attention as the scale of these node state vectors won’t be
very big. A better solution is to compute separate key, query
and value vectors for each node as done in the tensor2tensor
self-attention formulation (Vaswani et al., 2017), which may
further improve the performance of the matching model.

Figure 7 shows another possibility where the attention maps
do not converge to very peaked distributions because of
in-graph symmetries. Such symmetries are very typical
in graphs. In this case even though the attention maps
are not peaked, the cross graph communication vectors p
are still zero, and the two graphs will still have identical
representation vectors.



Graph Matching Networks

H

TOTILNNT £

I

1 N!H!{ill![ll!

HHTI §

FHEET

P gJ

Figure 5. Example control flow graphs for the same binary function, compiled with different compilers (c1ang for the leftmost one, gcc
for the others) and optimization levels. Note that each node in the graphs also contains a set of assembly instructions which we also take
into account when computing similarity using learned features.



Graph Matching Networks

10°

Graph size
g

10! l"'-'-"-

10000 20000 30000 40000 50000 60000
Graphs sorted by size

Figure 6. Control flow graph size distribution in the training set. In
this plot the graphs are sorted by size on the x axis, each point in
the figure corresponds to the size of one graph.



Graph Matching Networks

WO AN

0 propagation steps 1 propagation step
2 propagation steps 3 propagation step
\ '\\ \ N

4 propagation steps 5 propagation step

6 propagation steps 7 propagation step

8 propagation steps 9 propagation steps

Figure 7. The change of cross-graph attention over propagation layers. Here the two graphs are two isomorphic chains and there are some
in-graph symmetries. Note that in the end the nodes are matched to two corresponding nodes with equal weight, except the one at the
center of the chain which can only match to a single other node.



Graph Matching Networks

PR
X

0 propagation steps 1 propagation step

Fob b

2 propagation steps 3 propagation step
O

e

by by
R ool

4 propagation steps
O

8 propagation steps 9 propagation steps

Figure 8. The change of cross-graph attention over propagation layers. Here the two graphs are isomorphic, with graph edit distance 0.
Note that in the end a lot of the matchings concentrated on the correct match.



Graph Matching Networks

ey

0 propagation steps 1 propagation step

'
RV BE b

2 propagation steps 3 propagation step
Q

e

B Bex
=

4 propagation steps
Q

¥

8 propagation steps 9 propagation steps

Figure 9. The change of cross-graph attention over propagation layers. The edit distance between these two graphs is 1.



