Towards a Unified Analysis of Random Fourier Features

A. Preliminaries

In this section, we provide some notation and preliminary re-
sults that will be used throughout the appendix. Henceforth,
we denote the Euclidean norm of a vector a € R™ with ||a||2
and the operator norm of a matrix A € R™1*"2 with || Al|5.
Furthermore, we denote with || A|| r the Frobenious norm of
a matrix or operator A. Let H be a Hilbert space with (-, -)3
as its inner product and || - |3 as its norm. We use Tr(-) to
denote the trace of an operator or a matrix. Given a measure
dp, we use Ls(dp) to denote the space of square-integrable
functions with respect to dp.

Lemma 1. (Bernstein inequality, Tropp, 2015, Corollary
7.3.3) Let R be a fixed di X do matrix over the set of com-
plex/real numbers. Suppose that {Rq,--- ,R,} is an in-
dependent and identically distributed sample of di X ds
matrices such that

ER;] =R [Rill2 < L,

and

where L > 0 is a constant independent of the sample. Fur-
thermore, let M1, My be semidefinite upper bounds for the
matrix-valued variances

Var; [R;] < E[R;R]] < M,
Varp[R;] < E[RTR;] < M.

Let m = max (|| My |2, ||Mz]|2) and d = T(M1)+Tr(Mz2) /.
Then, for € > \/m/n + 2L/3n, we can bound

DR
i=1

around its mean using the concentration inequality

Rn =

S|

_ —ne?/2
P — >e) <4 — .
(R~ Rl > 0) < dexp<m+2L€/3>

To characterize the stability of a learning algorithm, we need
to take into account the complexity of the space of functions.
Below, we introduce a particular measure of the complexity
over function spaces known as Rademacher averages.

Definition 1. Ler P, be a probability distribution on a set
X and suppose that {x1 - - - , x,, } are independent samples
selected according to P,. Let H be a class of functions
mapping X to R. Then, the random variable known as the
empirical Rademacher average is defined as

R 2 <
Rn(H) = Eo’ sup | — Zazf(xl) ‘ L1, " ,Tn
fen M4
where o1, -+ , 0y, are independent uniform {£1}-valued

random variables. The corresponding Rademacher av-
erage is then defined as the expectation of the empirical
Rademacher average, i.e.,

Rn(H) =E [Rn(m]

Lemma 2. (Bartlett & Mendelson, 2002) Let H be a repro-
ducing kernel Hilbert space of functions mapping from X
to R that corresponds to a positive definite kernel k. Let H
be the unit ball of H, centered at the origin. Then, we have
that R,,(Ho) < (1/n)Ex+/Tr(K), where K is the Gram
matrix for kernel k over an independent and identically
distributed sample X = {x1,--- ,z,}.

The next lemma states that the expected risk convergence
rate of a particular estimator in 4 not only depends on the
number of data points, but also on the complexity of H.

Lemma 3. (Bartlett & Mendelson, 2002, Theorem 8) Let
{24,y }1_, be an independent and identically distributed
sample from a probability measure P defined on X x Y
and let H be the space of functions mapping from X to
A. Denote a loss function with L : Y x A — [0,1] and
define the expected risk function for all f € H tobe E(f) =
Ep(L(y, f(z))), together with the corresponding empirical
risk function E(f) = (1/n) 320", L(yi, f(x:)). Then, fora
sample size n, forall f € H and § € (0, 1), with probability
1 — 6, we have that

E(f) <E(f) + Ru(LoH) + 81%@/5)
where Lo H = {(x,y) = L(y, f(z)) — L(y,0) | f € H}.

Similar to Rudi & Rosasco (2017) and Caponnetto &
De Vito (2007), we have assumed the existence of f; € H
such that fp; = inf ey E(f). The assumption implies that
there exists some ball of radius R > 0 containing fy in its
interior. Our theoretical results do not require prior knowl-
edge of this constant and hold uniformly over all finite radii.
To simplify our derivations and constant terms in our bounds,
we have (without loss of generality) assumed that R = 1.

B. Upper bound on the approximation
function norm

Proposition 1. Assume that the reproducing kernel Hilbert
space H with kernel k admits a decomposition as in Eq. (2)
andlet H = {f | f = > a;z(vi,"),Va,; € R}. Then,
forall f € H it holds that || f||% < s||«||3, where H is the
reproducing kernel Hilbert space with kernel k (see Eq. 3).

Proof. Let us define a space of functions as
Hi={f]| f(z) = az(v,z),a € R}.

We now show that # is a reproducing kernel Hilbert space
with kernel defined as ki(z,y) = (1/s)z(v,z)z(v,y),
where s is a constant.

Define amap M : R — H; such that Mo = az(v,-),Va €
R. The map M is a bijection, i.e. for any f € H; there
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exists a unique oy € R such that M f=u ¢. Now, we
define an inner product on #; as

(£, ), = (VM f,\/sM ™ g)r = sayay.

It is easy to show that this is a well defined inner product
and, thus, H; is a Hilbert space.

For any instance y, k1(-,y) = (1/s)z(v,)z(v,y) € Hi,
since (1/s)z(v, z) € R by definition. Take any f € H; and
observe that

<fa kl('a y)>7—£1 = <\/§M_1f, \/EM_lkl('v y))lR
= s{ay,1/sz(v,y))r
=ayrz(v,y) = f(y).

Hence, we have demonstrated the reproducing property for
Ho and |||, = sa?.

Now, suppose we have a sample of features {v;}?_;. For
each v;, we define the reproducing kernel Hilbert space

Hi= {f | f({E) = OZZ(UZ',.’E),OL € R}

with the kernel k;(x, y) = (1/s)z(v;, x)z(v4, y).

Denoting with

H=ei Hi={f:[=> fificH}

=1

and using the fact that the direct sum of reproducing ker-
nel Hilbert spaces is another reproducing kernel Hilbert
space (Berlinet & Thomas-Agnan, 2011), we have that
k(z,y) = 320 ki@, y) = (1/5) 325 2(vi, 2)2(vi, y) is

the kernel of 7 and that the norm of f € H is defined as

S
min E : My, =
Fi€Hi | f=0_, fi HszHL

i=1
s

min sa? = min s||c)|3.
ai€R | fi=aiz(vi,) i €R | fi=aiz(vi,)
Hence, we have that || f|| 5 < s|a||3. O

C. Proofs of Theorems 1 and 3

Before we prove Theorems 1 and 3, we give a general result
that provides an upper bound on the approximation error
between any function f € H and its estimator based on
random Fourier features.

C.1. Auxiliary Results

As discussed in Section 2, we would like to approximate
a function f € H at observation points with preferably as

small function norm as possible. The estimation of f,, can
be formulated as the following optimization problem:

. 1
ﬁﬁ;ﬂ%—zﬂ@+Aﬁm@

The following theorem provides the desired upper bound on
the approximation error of the estimator based on random
Fourier features.

Theorem 5. Let \y > --- > A, be the eigenvalues of
the kernel matrix K and assume that the regularization
parameter satisfies 0 < n\ < A\1. Letl :V — Rbea
measurable function such that [(v) > Ix(v) (Vv € V) and

dy = / I(v)dv < oo.
v

Suppose {v;};_, are sampled independently according to
probability density function q(v) = 1(v)/a;. If

16d3,
s > bdjlog 66K,

then for all § € (0,1) and ||f||ln < 1, with probability

greater than 1 — §, we have that it holds

1
sup inf  —||f, = ZBl3 <2M. (12)
<t vallBlasva n 1T

The following two lemmas are required for our proof of
Theorem 5, presented subsequently.

Lemma 4. Suppose that the assumptions from Theorem 5
hold and let € > \/™/s +2L/3s with constants m and L (see
the proof for explicit definition). If the number of features

1 2
s> all~(€—2 + i) log

16d3%
6 b
then for all § € (0, 1), with probability greater than 1 — 9,

—eI < (K +nM)"2 (K — K)(K + nAI) "% < L.

Proof. Following the derivations in Avron et al. (2017),
we utilize the matrix Bernstein concentration inequality to
prove the result. More specifically, we observe that

(K +nA) 7K (K + nAl) "2 =

1< 1 _1
=D (K 4+ nAD) ™ H2,,0, (1), (07 (K + nAL)
i=1

1< _
gg?n:Rﬁ

with

1

R, =K+ nAI)_%zq’vi (X)zq,v, (x)T (K +nAI)"z.
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Now, observe that

R =E[R;] = (K 4+ nA\) 2K(K + nA\I)~ 2.

The operator norm of R; is equal to
(K + nAT) ™2 24,0, (%) 2.0, (%) (K + nAT) 72 .

ASs Z, 4, (X)Zq.,(x)7 is a rank one matrix, we have that the
operator norm of this matrix is equal to its trace, i.e.,

IRill2 =
Tr((K+nAI)*%zq’vi(x)zq7vl( ) (K—i—n)\I)’%)—

2L (K 4 nAT) i, (x)20, ()7 (K + nAT)~F) =

Q(Ui)

p(vi) t(zy, (x)T n “lg,.(x)) =

q(vi)T( v, (%) (K + nAL) ™z, (x))

b (i) =:L; an = su ;

) = L; d L: Z_p L;.

On the other hand,

RR] =

(K + nAL) 24,0, (%)2q.0, ()" (K + nAT) 24,0, (%)
2,0, ()T (K +nAI) 72 =

P (5 4 A1), (o), (97 (K + A =
i(vl) p(vi) n *%z X)Zy. (x)T n 2 —
d[p(vi) (K+ n/\I)_%zvi (%) 20, (x)T (K + n/\I)_%.

q(vs)
From the latter inequality, we obtain that

1

E[R,;R] < di(K 4+ nAI) "2 K(K + nAl) "% = M,.

We also have the following two inequalities

A1
m=|[Mz =d SV did
2 Tr(M;) Ar+nX oy _
d="——=2 ” dy = 2d7  dy.

We are now ready to apply the matrix Bernstein concentra-
tion inequality. More specifically, for e > \/m/s + 2L/3s
and for all 6 € (0, 1), with probability 1 — §, we have that

—s€2/2
m+ 2Le/3
—s5€2/92
= 8d7d) _ s/
1O D (dl—dl + d;2¢/3

< 16dg exp (

P(|Rs —R|2 >¢€) < 4dexp (

—s€2 <5
a1 +2¢/3)) =

In the third line, we have used the assumption that nA < A\;
and, consequently, d; € [1/2,1). O

Remark: We note here that the two considered sampling
strategies lead to two dlfferent results. In particular, if we let
I(v) = I5(v) then g(v) = Ix(v)/dj., i.e., we are sampling
proportional to the ridge leverage scores. Thus, the leverage
weighted random Fourier features sampler requires

12 16d3,
5>d%<(€7+§)0g 5K-

Alternatively, we can opt for the plain random Fourier fea-
ture sampling strategy by taking [(v) = z3p(v)/), with
Ix(v) < 22p(v)/\. Then, the plain random Fourier features
sampling scheme requires

13)

1 2 16d3
)

52
> 20 = K.
s )\( + 6)log 5 (14)

Thus, the leverage weighted random Fourier features sam-
pling scheme can dramatically change the required number
of features, required to achieve a predefined matrix approxi-
mation error in the operator norm.

Lemma 5. Let f € H, where H is the RKHS associ-
ated with a kernel k. Let x1,--- ,x, € X be a set of

instances with x; # x; for all i # j. Denote with
£, = [f(z1), -, f(z,)]T and let K be the Gram-matrix
of the kernel k given by the provided set of instances. Then,

fIKf, < 1.

Proof. For a vector a € R™ we have that

alf fla= <fITa>2 = (iaif(fi)f
=1
(Lo [ atstoapir)
~ ([ stwm e adrw)’

< /v s0Pdr() [ (2,7 a) dr(v)

v

:/aTzv(x)zv(x)TadT(v)

=a” [ 2,(0m ("
Ka

The third equality is due to the fact that, for all f € H, we
have that f(z) = [}, g(v )p(v)dv (Vz € X) and

1f 1l = min
{g | F@)=y g(v)z(m)p(v)dv}

dr(v) a

HgHLz(dr)~

The first inequality, on the other hand, follows from the
Cauchy-Schwarz inequality. The bound implies that f, ! <
K and, consequently, we derive fZ K~1f, < 1. O
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C.1.1. PROOF OF THEOREM 5
Proof. Our goal is to minimize the following objective:
1
e = ZyBII3 + sA1]3- (15)

To find the minimizer, we can directly take the derivative
with respect to 8 and, thus, obtain

11 T —1T
ﬁ:;(;Zqu—l—n)\I) /8 &

1 r 1 -
= 224 (S22 + 0D,

Lor = _
:ngT(KJrn/\I) .,

where the second equality follows from the Woodbury in-
version lemma.

Substituting S into Eq. (15), we transform the first part as
1 1 1 ~ _
e = ZoBI = IE — 22T (R + A
1 -
= —|If, — K(K +nAI) £, |3
n

1 ~
= —|[nA(K 4+ nAI) " 1f, ||2
n
= AT (K + nAI)~2f,.
On the other hand, the second part can be transformed as
1 - _ ~ _
s\ = s)\s—zfg(K + ) ' Z,ZT (K + nAL) ',
= M (K 4 nA\I) T'K(K + nAI)'f,
= MT(K + nAI) 7 (K 4 nAL)(K + nAD) ",
—n A2 L (K + nAI) 72,
= MTI(K + nA\I) 7, — A2 60 (K + nAI) 7%,

Now, summing up the first and the second part, we deduce

L6, — ZuBI3 + sNIBI =

MT (K 4 nAI) 7', =

MI(K +nM I+ K- K)7'f, =

MT (K 4+ )72 (I+ (K +nAl) "2 (K — K)
(K 4 nAI)72) (K 4 nAI) 2,

From Lemma 4, it follows that when

1 2 16d3,

then (K + nAI)~2 (K — K)(K + nAI)~2 = —cl.

We can now upper bound the error as (with e = 1/2):
MI(K + X)), <
MT(K +nAI) 72 (1 — ¢) (K + nAl) " 2f, =
(1— &) "MK +n) 7, <
(1—e)"MIKf, <2\

where in the last inequality we have used Lemma 5. More-
over, we have that

sl1813 =
£7(K + nAI) "', — ML (K 4 nAI) 7%, <
fI(K 4+ nAD) 7, < (1— ) HIK ™, <2.

Hence, the squared norm of our approximated function is
bounded by ||f]|% < s||B]|3 < 2. As such, problem (15)

can now be written as ming(1/n)||f, — f3]|3 subject to
1% < sllBl3 < 2, which is equivalent to

1
Sup lIlf 7||f 7Zﬂ||§a
<1 ValBla<va R

and we have shown that this can be upper bounded by 2.
O

Before we move to Theorem 1, following Rudi & Rosasco
(2017), we prove Lemma 6 which is important in demon-
strating the risk convergence rate.

Lemma 6. Assuming that the conditions of Theorem 1 hold,
let f A and fé\ be the empirical estimators from problems
(6) and (7), respectively. In addition, suppose that {v;}$_,
are independent samples selected according to a probability
measure T4 with probability density function q(v) such that
p(v)/q(v) > 0 almost surely. Then, we have

Y- - =o
Proof. The solution of problem (7) can be derived as
- 1 1
3 =KE+n\)"'Y = gzqqu(gzqqu +nA)7Y.

Forall f € H,letf = [f(x1), -, f(xn)]T. Define H, :=
{f | f € H}. Then we can see that H,, is a subspace of
R™. Since Y € R”, we know there exists an orthogonal
projection operator P such that for any vector Z € R", PZ
is the projection of Z into H,. In particular, we have f A=
PY . In addition, let & € R™ and observe that PKa = Ka,
as Ka € H,. As such, we have that (I — P)Ka = 0 for
all « € R™, implying that (/ — P)K = 0. Hence, we have

Y- f ==

(Y — PY,K(K 4+ nAI)"'Y — PY) =

(I = P)Y,K(K 4 n\)"'Y) — (I — P)Y,PY) =
YT(I - PYK(K +n\)"'Y —YT(I — P)PY =

1
gYT(I — P)Z,ZL(Z,Z] +n\I)~'Y.

(16)

The last equality follows from (I — P)P = P — P? = 0.
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We know that the kernel function admits a decomposition
as in Eq. (2). Hence, we can express K as

K= / X)Zy (X

where z, (x) =

(x)Tdr(v),

[Z(val)v e 7Z(U7xn)]T'

Note that we have (I — P)K = 0, which further implies that
(I — P)K(I — P) = 0. As aresult, we have the following:

0="Tr{(I - PYK(I - P)
Tr{] P 2, (X)2Zy (x )TdT(v)(IP)]
= Tr{ V(If P)zu(x)zq,(x)T(If P)dr(v)]

/V Te(I — P)zy(x)20(x)T (I — P)|dr(v)
=/HU—meWﬂﬂ>

/ v)
= — P)zy ()22 47 (0
= [ W= Py ol . a7

where z,,(x) = /p(v)/q(v)z,(x). Hence, we have
(I — P)zq.,(x)||3 = 0 almost surely (a.s.) with respect to
measure dr,, which further shows that (I — P)z,,(x) =0
a.s. For any o € R?, we have:

a"YT(I = P)Zy =Y aiY'(I = P)zgu,(x) = 0.

i=1
We now let « = Y7 (I — P)Z, and obtain
IY*(I = P)Zq|3 = 0.
Returning back to Eq. (16), we have that
<Y_f>\af[;\_fa>:
1 _
gYT(I — P)Z,ZL(Z,2] +n\I)7'Y.
Now, observe that
YT (I - P)Z,Z) (Z,Z] + nAI)7'Y| <
YT (I = P)Zqg|311Z4 (ZyZg +nAI)"'Y|5 = 0.

Hence, we conclude that (Y — f*, /3 - )y =o. O

C.2. Proof of Theorem 1

Proof. The proof relies on the decomposition of the ex-
pected risk of £(f g‘) as follows

E(f3) =E(f2) —E(f2 (18)
+E(f3) - E(fY) (19)
+E(fY) = E(F) (20)
+E(Y) = E(fn) 1)
+E(fn)-

For (18), the bound is based on the Rademacher complexity
of the reproducing kernel Hilbert space #, where # corre-
sponds to the approximated kernel k. We can upper bound
the Rademacher complexity of this hypothesis space with
Lemma 2. As L(y, f(z)) is the squared error loss function
with y and f(x) bounded, we have that L is a Lipschitz
continuous function with some constant L > 0. Hence,

(18) < Ry (LoH) + 810g(2/5)

<\fL IEX\/Tr
gﬁLm/EXTdKH %
SﬁLl\/ng—i- /810g7(12/§)

< \szO N 8log(2/9) . O(L),

NZ n Vi
where in the last inequality we applied Lemma 3 to H,
which is a reproducing kernel Hilbert space with radius v/2.
For (20), a similar reasoning can be applied to the unit ball
in the reproducing kernel Hilbert space H.

8log(2/4)
n

(22)

For (19), we observe that

. a1 Lo
aﬁwfuﬂ=ﬁw—ﬁ%—ﬂw—ﬂﬁ
_ l _ L 2
_nl‘l?f” 1Y — fsll3 HY FllE:
_ 5 inf (Hy FE+1F — f113

ww—ﬁfth—%w—ﬁ@

<< int |1 — £l

ngf sl
+o (Y~ PP = 1)
Sﬁ|f?ﬁ| 17> = fall5 + <Y TR
= nf [|* — fsll3
< sup Hlﬁf\l ﬁ||f Isll3
< 2A,

where in the last step we employ Theorem 5. Combining
the three results, we derive

E(fn) <22+ 0(*) +E(Y) -

(23)

E(f3) -

O

f3)
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C.3. Proofs of Corollaries 1 and 2

Proof. For Corollary 1, we set [(v) = I, (v) and deduce

d[:/ Iy(v)dv = di.
%

For Corollary 2, we set [(v) = p(v)% and derive

C.4. Proof of Theorem 3

Proof. The proof is similar to Theorem 1. In particular, we
decompose the expected learning risk as

E(gp) = E(g3) — E(g3) (24)
+€(93) — E(gn) (25)
+E(gn) — Elgn) (26)
+E(gn)-

Now, (24) and (26) can be upper bounded similar to The-
orem 1, through the Rademacher complexity bound from
Lemma 3. For (25), we have

E(gp) — Egn) =

% Z L(yi, g3(x:)) - % Z L(yi, gu(xi)) =

n

1
Enmfu L(y”gﬁ %) _*ZL?JHQH zi))
g
Z; H xZ
Hgm\nZ'gB ool
< inf gp(xi) — g (w)]?
gl nz| pli o

< sup inf \/*Ilg gsll3
llgll Nlgsll

< V2.

C.5. Proofs of Corollaries 3 and 4

The proofs are similar to the proofs of Corollaries 1 and 2.

D. Proof of Theorem 2

In this proof, we rely on the notion of local Rademacher
complexity and adjust our notation so that it is easier to

cross-reference relevant auxiliary claims from Bartlett et al.
(2005). Suppose P is a probability measure on X x )
and let {x;,y;}!", be an independent sample from P.
For any reproducing kernel Hilbert space H and a loss
function [, we define the transformed function class as
Iy = {l(f(x),y) | f € H}. We also abbreviate the nota-
tion and denote with Iy = I(f(z),y), Pf = [ f(z)dP(z)
and P,f = 1/n>_"", f(z;). For the reproducing kernel
Hilbert space H, we denote the solution of the kernel ridge
regression problem by f .

For our proof of Theorem 2, we need the following two
results from Bartlett et al. (2005).

Theorem 6. (Bartlett et al., 2005, Theorem 4.1) Let H
be a class of functions with ranges in [—1, 1] and assume
that there is some constant By such that for all f € H,
Pf? < ByPf. Let ﬁn be a sub-root function and let 7* be
the fixed point of (o, i.e., U (7*) = #*. Fix any § > 0, and
assume that for any r > 7%,

I;n(”ﬂ) > 61Rn{f € star(H,0) | P, f% < r}+ @

where e1 and eq are constants, and

star(H, fo) ={fo+a(f —fo) | fEH N a€]0,1]}.

Then, for all f € H and D > 1, with probability greater
than 1 — 3e=°,

6D 635

Pf< mogPuf + 57"+

where eg is a constant.

Lemma 7. (Bartlett et al., 2005, Lemma 6.6) Let k be a
positive definite kernel function with reproducing kernel
Hilbert space ‘H and let 5\1 > > 5\n be the eigenvalues
of the normalized Gram-matrix (1/n)K. Then, forallr > 0

R {feM|P.f?<r}< (% imin{r, 5\1})1/2
=1

Theorem 6 is crucial for proving sharp convergence rates
because it relies on the local Rademacher complexity tech-
nique. In order to apply the theorem, we need to find a
proper sub-root function zﬁn and for that a special property
characteristic to the squared error loss is required.

Lemma 8. (Bartlett et al., 2005, Section 5.2) Let | be the
squared error loss function and H a convex and uniformly
bounded hypothesis space. Assume that for every probability
distribution P in a class of data-generating distributions,
there is an f* € H such that Ply» = inf¢cyy Ply. Then,
there exists a constant B > 1 such that for all f € H and
for every probability distribution P

P(f— f)? < BP(ly — ) (27)
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Let [ be the squared error loss function and observe that for
all f € H it holds that

Pnl?‘ (Paly)? (2% is convex)
(Paly)? = (Pulf)®
= (Pnlf + Pnlf)(Pnlf — Pnlf)

> 2P,l; Po(ly — 1)

2
>

> 2Pl Pulf — )2

5 (28)

The third inequality holds because f achieves the mini-
mal empirical risk. The last inequality is a consequence of
Lemma 8 applied to the empirical probability distribution
P,,. Hence, to obtain a lower bound on Pnlfc expressed

solely in terms of P,(f — f)2, we need to find a lower
bound of P, 2 First, observe that it holds

1
Puly = — Y = K(K +nA)~'Y|%.
n
Then, using this expression we derive
1 —1y2
Pnlf =—||Y — KK +n\)" Y]
n
=AY T (K 4 nA\I)~2Y

n\2
YTy
(A1 +nA)?
2 1 n
-3 v
n 4
=1

Y

Y
Q

(29)

where ¢ = (9v/2x,)? is a constant.

The last equality follows because A; is independent of n

and ), as well as bounded. Hence, Eq.(28) becomes

2¢(n\)?
B

Pnl? > Pn(f_f)2 = cl(n)\)QPn(f—f)2.

As a result of this, we have the following inequality for the
two function classes

(I €l | Pal2 <} C{ly €y | Pu(f — f)> < —

c1(nX)2 b

Recall that for a function class #, we denote its empirical
Rademacher complexity by R, (#). Then, we have the
following inequality
Rof{ly €l | Po(f = 1) <
Rodly—1; | Po(f— f)2 <
{f f | (f=fr< c1m2\2
- - - r
LR {f—f|P(f—fP?<—= A fe€ <
U= 1B =< g A feH) <
R r
LR Af—g|P.(f—9g)2<——= A f, <
{f—glPu(f—9) S e frgeH} <
1 r
Tom) =
4cq P

CoT
n2\2 b

”
c1nZi\2? b=

/\lelH}S

LR, {f € H | P,f?

IN

LR, {f € H | P,f?

IN

(30)

where the last inequality is due to Bartlett et al. (2005, Corol-
lary 6.7). Now, combining Lemma 7 and Eq. (30) gives us a
hint on how to find the sub-root function 1,,.

Theorem 7. Assume {x;,y;}7_, is an independent sample
from a probability measure P defined on X x Y, with ) €
[—1,1]. Let k be a positive definite kernel with the reproduc-
ing kernel Hilbert space H and let 5\1 >, 2> 5\” be the
eigenvalues of the normalized kernel Gram-matrix. Denote
the squared error loss function by I(f(z),y) = (f(z) —y)?
and fix § > 0. If

n 1/2
~ 2 . o 635
Y (r) = 2Ley (n ; min{r, )\z}> + —

then for all Iy € Iy and D > 1, with probability 1 — 3e~9,

6D 63(5
Pyl + —7* + ==
rt B + n

Pl; <
=1

Moreover, the fixed point 7* defined with 7* = 1[1n(73)* can
be upper bounded by

h (7} 1 <
<, (e a2
K2

where es and ey are constants, and \ is the regularization
parameter used in kernel ridge regression.

Proof. As f(x),y € [—1,1], we have that [; € [0,1] and
Plfc < Pl;. Hence, we can apply Theorem 6 to function
class I3, and obtain that for all Iy € Iy

6D 0
Poly + —7* + %

Pl; <
f= B

D—-1
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as long as there is a sub-root function dAjn(r) such that

Yn(r) > e1 R {f € star(H,0) | Paf2 <7} + 6727‘5.

€1y
‘We have previously demonstrated that
2 62(5
erR,{f € star(H,0) | P,f? <r}+ —
R )
<2e,LR f €H | Puf? < —2 +6i
n2\2 n

(32)

1/2 5
cvaftgoe{g))

(by Lemma 7).

Hence, if choose 1, (1) to be equal to the right hand side
of Eq.(32), then v, (r') is a sub-root function that satisfies
Eq.(31). Now, the upper bound on the fixed point +* follows
from Corollary 6.7 in Bartlett et al. (2005). O]

We now deliver the proof of Theorem 2.

Proof. We decompose E( fé\) with D > 1 as follows

£ = £ — b

b — 52 E ()

+ﬁ5(ﬁ) —&(fY)

+E(fA) = E(fn)

+E(fn)

Hence,
EUN) ~Ew) < [E0D) ~ 58D G

F D (€D~ E(FY) 64
o) 6] 69
+E(SY) = E(fn)- (36)

We have already demonstrated that

D
Eq. (34) < 2—— .
q- (34) < D1

For Egs. (33) and (35) we apply Theorem 7. However,

note that f3 and f* belong to different reproducing kernel
Hilbert spaces. As a result, we have

Eq. (33) < 7%, + O(1/n)
Eq. (35) < %, + O(1/n)

Now, combining these inequalities together we deduce

E(D) ~ Ef) < Fy + P+ 25
FE(P) ~ E(f)
<273, + QDD A+ O(1/n)

FEP) ~ E(f)

The last inequality holds because the eigenvalues of the
Gram-matrix for the reproduing kernel Hilbert space H
decay faster than the eigenvalues of H. As a result of this,
we have that f% <73

A+ O(1/n)

Now, Theorem 7 implies that

f;;gminoghgn(z v Z)\) 37)

There are two cases worth discussing here. On the one hand,
if the eigenvalues of K decay exponentially, we have

1
i, go( Oin)

by substituting h = [logn]. Now, according to Caponnetto
& De Vito (2007)

E(P) ~ E(fn) € 0<1°§”>7

and, thus, if we set A oc log n/n then the expected risk rate
can be upper bounded by

() — Efn) € 0<1"g”>.

n

On the other hand, if K has finitely many non-zero eigen-
values (t), we then have that

73 eO<711>7

by substituting » > t. Moreover, in this case, £(f*) —
E(fx) € O(1/n) and setting A  1/n, we deduce that

E(F3) — E(fu) < O(i)

E. Proof of Theorem 4

Proof. Suppose the examples {z;, y; }?; are independent
and identically distributed and that the kernel k can be de-
composed as in Eq. (2). Let {v;}?_, be an independent
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sample selected according to p(v). Then, using these s
features we can approximate the kernel as

Fo,) = =3 (0,0)2(09)
i=1

[ ozpibe, o)
1%

where P is the empirical measure on {v; }5_;. Denote the
reproducing kernel Hilbert space associated with kernel £ by
H and suppose that kernel ridge regression was performed
with the approximate kernel k. From Theorem 1 and Corol-
lary 2, it follows that if

722 16dx

> —log ——

§ 2 log—=,
then for all 6 € (0,1), with probability 1 — ¢, the risk
convergence rate of the kernel ridge regression estimator
based on random Fourier features can be upper bounded by

NG

Let f; be the function in the reproducing kernel Hilbert
space ‘H achieving the minimal risk, i.e., &( fa) =
inf 5 E(f). We now treat k as the actual kernel that can
be decomposed via the expectation with respect to the em-
pirical measure in Eq. (38) and re-sample features from the
set {v; }5_;, but this time the sampling is performed using
the optimal ridge leverage scores. As k is the actual kernel,
it follows from Eq. (5) that the leverage function in this case
can be defined by

Ix(v) = p(v)zy (x)T (K + nAI) "Lz, (x).

E(f))<2a+0 <1> + E(fn). (39)

Now, observe that
Ia(vi) = p(vs)[ZT (K + nAI) " Zylys

where [A];; denotes the ith diagonal element of matrix A.
As K = (1/s)ZsZT, then the Woodbury inversion lemma
implies that

1
Ix(vi) = p(vi)[zfzs(ngzs +n\) i

If we let [\(v;) = p;, then the optimal distribution for
{vi }{_; is multinomial with individual probabilities ¢(v;) =
i/ (Z;Zl p;). Hence, we can re-sample [ features accord-
ing to ¢(v) and perform linear ridge regression using the
sampled leverage weighted features. Denoting this estima-
tor with fﬂ* and the corresponding number of degrees of
freedom with di\{ = Trf{(f{ +nA)~!, we deduce (using
Theorem 1 and Corollary 1)

(M) <2 +O<;ﬁ> +E&(fg), (0

with the number of features | o< d;l(.

As fﬁ is the function achieving the minimal risk over 7:1
we can conclude that £(f;;) < £(f2). Now, combining Eq.
(39) and (40), we obtain the final bound on &( fl)‘* ). O
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F. Code of Algorithm 1

def feat_gen(x,n_feat,lns):
#function to generate the features for gaussian kernel
:param x: the data
:param n_feat: number of features we need
:param Ins: the inverse landscale of the gaussian kernel
:return: a sequence of features ready for KRR

n,d = np.shape(x)

w = np.random. multivariate_normal (np.zeros(d),Ins*np.eye(d),n_feat)
return w

def feat_matrix (x,w):
#funtion to generate the feature matrix Z
:param x: the data
:param w: the features
:return: the feature matrix of size len(n)xlen(s)
s, dim = w.shape
# perform the product of x and w transpose
prot_mat = np.matmul(x,w.T)

featl
feat2

np.cos(prot_mat)
np.sin(prot_mat)

feat_final = np.sqrt(1.0/s)*np.concatenate ((featl ,feat2),axis = 1)
return feat_final

def opm_feat(x,w,lmba):
#function to select the optimum features
:param x: the independent variable
:param w: the first layer features generated according to spectral density
:return: optimum features with importance weight
n_num, dim = x.shape
s, dim = w.shape

prot_mat = np.matmul(x,w.T)

featl np.sqrt(1.0/s)*np.cos(prot_mat)
feat2 = np.sqrt(1.0/s)*np.sin(prot_mat)

Z_s = featl +feat2
ZTZ = np.matmul(Z_s.T,Z_s)

ZTZ_inv = np.linalg.inv(ZTZ +n_numxlmbaxnp.eye(s))
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M = np.matmul (ZTZ,ZTZ_inv)
#M = np.matmul (M0,ZTZ)

1 = np.trace (M)

#print 1

#n_feat_draw = min(s,max(50,1))

#print n_feat_draw

#n_feat_draw = int(round(n_feat_draw))
n_feat_draw = s

#print n_feat_draw

pi_s = np.diagM)

#print pi_s

qi_s = pi_s/l

is_wgt = np.sqrt(l/qi_s)
#print is_wgt

wgt_order = np.argsort(is_wgt)

w_order = wgt_order [(s—n_feat_draw ):]
#print len(w_order)

#w_order = np.random.choice(s, n_feat_draw, replace=False, p=qi_s)
#print w_order
w_opm = np.zeros ((n_feat_draw ,dim))

wgh_opm = np.zeros(n_feat_draw)
for ii in np.arange(n_feat_draw):
order = w_order[ii]

w_opm|[ii ,:] = w[order ,:]
wgh_opm[ii] = is_wgt[order]

return w_opm,wgh_opm



