
Towards a Unified Analysis of Random Fourier Features

A. Preliminaries
In this section, we provide some notation and preliminary re-
sults that will be used throughout the appendix. Henceforth,
we denote the Euclidean norm of a vector a ∈ Rn with ‖a‖2
and the operator norm of a matrix A ∈ Rn1×n2 with ‖A‖2.
Furthermore, we denote with ‖A‖F the Frobenious norm of
a matrix or operatorA. LetH be a Hilbert space with 〈·, ·〉H
as its inner product and ‖ · ‖H as its norm. We use Tr(·) to
denote the trace of an operator or a matrix. Given a measure
dρ, we use L2(dρ) to denote the space of square-integrable
functions with respect to dρ.
Lemma 1. (Bernstein inequality, Tropp, 2015, Corollary
7.3.3) Let R be a fixed d1 × d2 matrix over the set of com-
plex/real numbers. Suppose that {R1, · · · ,Rn} is an in-
dependent and identically distributed sample of d1 × d2
matrices such that

E[Ri] = R and ‖Ri‖2 ≤ L,

where L > 0 is a constant independent of the sample. Fur-
thermore, let M1,M2 be semidefinite upper bounds for the
matrix-valued variances

Var1[Ri] � E[RiR
T
i ] �M1

Var2[Ri] � E[RT
i Ri] �M2.

Let m = max(‖M1‖2, ‖M2‖2) and d = Tr(M1)+Tr(M2)/m.
Then, for ε ≥

√
m/n+ 2L/3n, we can bound

R̄n =
1

n

n∑
i=1

Ri

around its mean using the concentration inequality

P (‖R̄n −R‖2 ≥ ε) ≤ 4d exp

(
−nε2/2

m+ 2Lε/3

)
.

To characterize the stability of a learning algorithm, we need
to take into account the complexity of the space of functions.
Below, we introduce a particular measure of the complexity
over function spaces known as Rademacher averages.
Definition 1. Let Px be a probability distribution on a set
X and suppose that {x1 · · · , xn} are independent samples
selected according to Px. Let H be a class of functions
mapping X to R. Then, the random variable known as the
empirical Rademacher average is defined as

R̂n(H) = Eσ

[
sup
f∈H

∣∣∣∣∣ 2n
n∑
i=1

σif(xi)

∣∣∣∣∣ | x1, · · · , xn
]

where σ1, · · · , σn are independent uniform {±1}-valued
random variables. The corresponding Rademacher av-
erage is then defined as the expectation of the empirical
Rademacher average, i.e.,

Rn(H) = E
[
R̂n(H)

]
.

Lemma 2. (Bartlett & Mendelson, 2002) LetH be a repro-
ducing kernel Hilbert space of functions mapping from X
to R that corresponds to a positive definite kernel k. LetH0

be the unit ball ofH, centered at the origin. Then, we have
that Rn(H0) ≤ (1/n)EX

√
Tr(K), where K is the Gram

matrix for kernel k over an independent and identically
distributed sample X = {x1, · · · , xn}.

The next lemma states that the expected risk convergence
rate of a particular estimator inH not only depends on the
number of data points, but also on the complexity ofH.

Lemma 3. (Bartlett & Mendelson, 2002, Theorem 8) Let
{xi, yi}ni=1 be an independent and identically distributed
sample from a probability measure P defined on X × Y
and let H be the space of functions mapping from X to
A. Denote a loss function with L : Y × A → [0, 1] and
define the expected risk function for all f ∈ H to be E(f) =
EP (L(y, f(x))), together with the corresponding empirical
risk function Ê(f) = (1/n)

∑n
i=1 L(yi, f(xi)). Then, for a

sample size n, for all f ∈ H and δ ∈ (0, 1), with probability
1− δ, we have that

E(f) ≤ Ê(f) +Rn(L̃ ◦ H) +

√
8 log(2/δ)

n

where L̃ ◦ H = {(x, y)→ L(y, f(x))− L(y, 0) | f ∈ H}.

Similar to Rudi & Rosasco (2017) and Caponnetto &
De Vito (2007), we have assumed the existence of fH ∈ H
such that fH = inff∈H E(f). The assumption implies that
there exists some ball of radius R > 0 containing fH in its
interior. Our theoretical results do not require prior knowl-
edge of this constant and hold uniformly over all finite radii.
To simplify our derivations and constant terms in our bounds,
we have (without loss of generality) assumed that R = 1.

B. Upper bound on the approximation
function norm

Proposition 1. Assume that the reproducing kernel Hilbert
spaceH with kernel k admits a decomposition as in Eq. (2)
and let H̃ := {f̃ | f̃ =

∑s
i=1 αiz(vi, ·),∀αi ∈ R}. Then,

for all f̃ ∈ H̃ it holds that ‖f̃‖2H̃ ≤ s‖α‖
2
2, where H̃ is the

reproducing kernel Hilbert space with kernel k̃ (see Eq. 3).

Proof. Let us define a space of functions as

H1 := {f | f(x) = αz(v, x), α ∈ R}.

We now show thatH1 is a reproducing kernel Hilbert space
with kernel defined as k1(x, y) = (1/s)z(v, x)z(v, y),
where s is a constant.

Define a mapM : R→ H1 such thatMα = αz(v, ·),∀α ∈
R. The map M is a bijection, i.e. for any f ∈ H1 there
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exists a unique αf ∈ R such that M−1f = αf . Now, we
define an inner product onH1 as

〈f, g〉H1 = 〈
√
sM−1f,

√
sM−1g〉R = sαfαg.

It is easy to show that this is a well defined inner product
and, thus,H1 is a Hilbert space.

For any instance y, k1(·, y) = (1/s)z(v, ·)z(v, y) ∈ H1,
since (1/s)z(v, x) ∈ R by definition. Take any f ∈ H1 and
observe that

〈f, k1(·, y)〉H1 = 〈
√
sM−1f,

√
sM−1k1(·, y)〉R

= s〈αf , 1/sz(v, y)〉R
= αfz(v, y) = f(y).

Hence, we have demonstrated the reproducing property for
H1 and ‖f‖H1

= sα2
f .

Now, suppose we have a sample of features {vi}si=1. For
each vi, we define the reproducing kernel Hilbert space

Hi := {f | f(x) = αz(vi, x), α ∈ R}

with the kernel ki(x, y) = (1/s)z(vi, x)z(vi, y).

Denoting with

H̃ = ⊕si=1Hi = {f̃ : f̃ =

s∑
i=1

fi, fi ∈ Hi}

and using the fact that the direct sum of reproducing ker-
nel Hilbert spaces is another reproducing kernel Hilbert
space (Berlinet & Thomas-Agnan, 2011), we have that
k̃(x, y) =

∑s
i=1 ki(x, y) = (1/s)

∑s
i=1 z(vi, x)z(vi, y) is

the kernel of H̃ and that the norm of f̃ ∈ H̃ is defined as

min
fi∈Hi | f=

∑s
i=1 fi

s∑
i=1

‖fi‖Hi =

min
αi∈R | fi=αiz(vi,·)

s∑
i=1

sα2
i = min

αi∈R | fi=αiz(vi,·)
s‖α‖22.

Hence, we have that ‖f̃‖H̃ ≤ s‖α‖22.

C. Proofs of Theorems 1 and 3
Before we prove Theorems 1 and 3, we give a general result
that provides an upper bound on the approximation error
between any function f ∈ H and its estimator based on
random Fourier features.

C.1. Auxiliary Results

As discussed in Section 2, we would like to approximate
a function f ∈ H at observation points with preferably as

small function norm as possible. The estimation of fx can
be formulated as the following optimization problem:

min
β∈Rs

1

n
‖fx − Zqβ‖22 + λs‖β‖22.

The following theorem provides the desired upper bound on
the approximation error of the estimator based on random
Fourier features.

Theorem 5. Let λ1 ≥ · · · ≥ λn be the eigenvalues of
the kernel matrix K and assume that the regularization
parameter satisfies 0 ≤ nλ ≤ λ1. Let l̃ : V → R be a
measurable function such that l̃(v) ≥ lλ(v) (∀v ∈ V) and

dl̃ =

∫
V
l̃(v)dv <∞.

Suppose {vi}si=1 are sampled independently according to
probability density function q(v) = l̃(v)/dl̃. If

s ≥ 5dl̃ log
16dλK
δ

,

then for all δ ∈ (0, 1) and ‖f‖H ≤ 1, with probability
greater than 1− δ, we have that it holds

sup
‖f‖H≤1

inf√
s‖β‖2≤

√
2

1

n
‖fx − Zqβ‖22 ≤ 2λ. (12)

The following two lemmas are required for our proof of
Theorem 5, presented subsequently.

Lemma 4. Suppose that the assumptions from Theorem 5
hold and let ε ≥

√
m/s+ 2L/3s with constants m and L (see

the proof for explicit definition). If the number of features

s ≥ dl̃(
1

ε2
+

2

3ε
) log

16dλK
δ

,

then for all δ ∈ (0, 1), with probability greater than 1− δ,

−εI � (K + nλI)−
1
2 (K̃−K)(K + nλI)−

1
2 � εI.

Proof. Following the derivations in Avron et al. (2017),
we utilize the matrix Bernstein concentration inequality to
prove the result. More specifically, we observe that

(K + nλI)−
1
2 K̃(K + nλI)−

1
2 =

1

s

s∑
i=1

(K + nλI)−
1
2 zq,vi(x)zq,vi(x)T (K + nλI)−

1
2 =

1

s

s∑
i=1

Ri =: R̄s,

with

Ri = (K + nλI)−
1
2 zq,vi(x)zq,vi(x)T (K + nλI)−

1
2 .
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Now, observe that

R = E[Ri] = (K + nλI)−
1
2K(K + nλI)−

1
2 .

The operator norm of Ri is equal to

‖(K + nλI)−
1
2 zq,vi(x)zq,vi(x)T (K + nλI)−

1
2 ‖2.

As zq,vi(x)zq,vi(x)T is a rank one matrix, we have that the
operator norm of this matrix is equal to its trace, i.e.,

‖Ri‖2 =

Tr((K + nλI)−
1
2 zq,vi(x)zq,vi(x)T (K + nλI)−

1
2 ) =

p(vi)

q(vi)
Tr((K + nλI)−

1
2 zvi(x)zvi(x)T (K + nλI)−

1
2 ) =

p(vi)

q(vi)
Tr(zvi(x)T (K + nλI)−1zvi(x)) =

lλ(vi)

q(vi)
=: Li and L := sup

i
Li.

On the other hand,

RiR
T
i =

(K + nλI)−
1
2 zq,vi(x)zq,vi(x)T (K + nλI)−1zq,vi(x)

· zq,vi(x)T (K + nλI)−
1
2 =

p(vi)lλ(vi)

q2(vi)
(K + nλI)−

1
2 zvi(x)zvi(x)T (K + nλI)−

1
2 �

l̃(vi)

q(vi)

p(vi)

q(vi)
(K + nλI)−

1
2 zvi(x)zvi(x)T (K + nλI)−

1
2 =

dl̃
p(vi)

q(vi)
(K + nλI)−

1
2 zvi(x)zvi(x)T (K + nλI)−

1
2 .

From the latter inequality, we obtain that

E[RiR
T
i ] � dl̃(K + nλI)−

1
2K(K + nλI)−

1
2 =: M1.

We also have the following two inequalities

m = ‖M1‖2 = dl̃
λ1

λ1 + nλ
=: dl̃d1

d =
2 Tr(M1)

m
= 2

λ1 + nλ

λ1
dλK = 2d−11 dλK.

We are now ready to apply the matrix Bernstein concentra-
tion inequality. More specifically, for ε ≥

√
m/s+ 2L/3s

and for all δ ∈ (0, 1), with probability 1− δ, we have that

P(‖R̄s −R‖2 ≥ ε) ≤ 4d exp

(
−sε2/2

m+ 2Lε/3

)
= 8d−11 dλK exp

(
−sε2/2

dl̃d1 + dl̃2ε/3

)
≤ 16dλK exp

(
−sε2

dl̃(1 + 2ε/3)

)
≤ δ.

In the third line, we have used the assumption that nλ ≤ λ1
and, consequently, d1 ∈ [1/2, 1).

Remark: We note here that the two considered sampling
strategies lead to two different results. In particular, if we let
l̃(v) = lλ(v) then q(v) = lλ(v)/dλK, i.e., we are sampling
proportional to the ridge leverage scores. Thus, the leverage
weighted random Fourier features sampler requires

s ≥ dλK(
1

ε2
+

2

3ε
) log

16dλK
δ

. (13)

Alternatively, we can opt for the plain random Fourier fea-
ture sampling strategy by taking l̃(v) = z20p(v)/λ, with
lλ(v) ≤ z20p(v)/λ. Then, the plain random Fourier features
sampling scheme requires

s ≥ z20
λ

(
1

ε2
+

2

3ε
) log

16dλK
δ

. (14)

Thus, the leverage weighted random Fourier features sam-
pling scheme can dramatically change the required number
of features, required to achieve a predefined matrix approxi-
mation error in the operator norm.

Lemma 5. Let f ∈ H, where H is the RKHS associ-
ated with a kernel k. Let x1, · · · , xn ∈ X be a set of
instances with xi 6= xj for all i 6= j. Denote with
fx = [f(x1), · · · , f(xn)]T and let K be the Gram-matrix
of the kernel k given by the provided set of instances. Then,

fTx K
−1fx ≤ 1.

Proof. For a vector a ∈ Rn we have that

aT fxf
T
x a =

(
fTx a

)2
=
( n∑
i=1

aif(xi)
)2

=
( n∑
i=1

ai

∫
V
g(v)z(v, xi)dτ(v)

)2
=
(∫
V
g(v)zv(x)Ta dτ(v)

)2
≤
∫
V
g(v)2dτ(v)

∫
V

(zv(x)Ta)2 dτ(v)

=

∫
V
aT zv(x)zv(x)Ta dτ(v)

= aT
∫
V
zv(x)zv(x)T dτ(v) a

= aTKa.

The third equality is due to the fact that, for all f ∈ H, we
have that f(x) =

∫
V g(v)z(v, x)p(v)dv (∀x ∈ X ) and

‖f‖H = min{
g | f(x)=

∫
V g(v)z(v,x)p(v)dv

} ‖g‖L2(dτ).

The first inequality, on the other hand, follows from the
Cauchy-Schwarz inequality. The bound implies that fxfTx �
K and, consequently, we derive fTx K

−1fx ≤ 1.
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C.1.1. PROOF OF THEOREM 5

Proof. Our goal is to minimize the following objective:
1

n
‖fx − Zqβ‖22 + sλ‖β‖22. (15)

To find the minimizer, we can directly take the derivative
with respect to β and, thus, obtain

β =
1

s
(
1

s
ZTq Zq + nλI)−1ZTq fx

=
1

s
ZTq (

1

s
ZqZ

T
q + nλI)−1fx

=
1

s
ZTq (K̃ + nλI)−1fx,

where the second equality follows from the Woodbury in-
version lemma.

Substituting β into Eq. (15), we transform the first part as
1

n
‖fx − Zqβ‖22 =

1

n
‖fx −

1

s
ZqZ

T
q (K̃ + nλI)−1fx‖22

=
1

n
‖fx − K̃(K̃ + nλI)−1fx‖22

=
1

n
‖nλ(K̃ + nλI)−1fx‖22

= nλ2fTx (K̃ + nλI)−2fx.

On the other hand, the second part can be transformed as

sλ‖β‖22 = sλ
1

s2
fTx (K̃ + nλI)−1ZqZ

T
q (K̃ + nλI)−1fx

= λfTx (K̃ + nλI)−1K̃(K̃ + nλI)−1fx

= λfTx (K̃ + nλI)−1(K̃ + nλI)(K̃ + nλI)−1fx

−nλ2fTx (K̃ + nλI)−2fx

= λfTx (K̃ + nλI)−1fx − nλ2fTx (K̃ + nλI)−2fx.

Now, summing up the first and the second part, we deduce
1

n
‖fx − Zqβ‖22 + sλ‖β‖22 =

λfTx (K̃ + nλI)−1fx =

λfTx (K + nλI + K̃−K)−1fx =

λfTx (K + nλI)−
1
2 (I + (K + nλI)−

1
2 (K̃−K)

· (K + nλI)−
1
2 )−1(K + nλI)−

1
2 fx.

From Lemma 4, it follows that when

s ≥ dl̃(
1

ε2
+

2

3ε
) log

16dλK
δ

then (K + nλI)−
1
2 (K̃−K)(K + nλI)−

1
2 � −εI.

We can now upper bound the error as (with ε = 1/2):

λfTx (K̃ + nλI)−1fx ≤

λfTx (K + nλI)−
1
2 (1− ε)−1(K + nλI)−

1
2 fx =

(1− ε)−1λfTx (K + nλI)−1fx ≤
(1− ε)−1λfTx K−1fx ≤ 2λ,

where in the last inequality we have used Lemma 5. More-
over, we have that

s‖β‖22 =

fTx (K̃ + nλI)−1fx − nλfTx (K̃ + nλI)−2fx ≤
fTx (K̃ + nλI)−1fx ≤ (1− ε)−1fTx K−1fx ≤ 2.

Hence, the squared norm of our approximated function is
bounded by ‖f̃‖2H̃ ≤ s‖β‖22 ≤ 2. As such, problem (15)
can now be written as minβ(1/n)‖fx − f̃β‖22 subject to
‖f̃‖2H̃ ≤ s‖β‖

2
2 ≤ 2, which is equivalent to

sup
‖f‖H≤1

inf√
s‖β‖2≤

√
2

1

n
‖fx − Zβ‖22,

and we have shown that this can be upper bounded by 2λ.

Before we move to Theorem 1, following Rudi & Rosasco
(2017), we prove Lemma 6 which is important in demon-
strating the risk convergence rate.

Lemma 6. Assuming that the conditions of Theorem 1 hold,
let f̂λ and fλβ be the empirical estimators from problems
(6) and (7), respectively. In addition, suppose that {vi}si=1

are independent samples selected according to a probability
measure τq with probability density function q(v) such that
p(v)/q(v) > 0 almost surely. Then, we have

〈Y − f̂λ, fλβ − f̂λ〉 = 0.

Proof. The solution of problem (7) can be derived as

fλβ = K̃(K̃ + nλI)−1Y =
1

s
ZqZ

T
q (

1

s
ZqZ

T
q + nλI)−1Y.

For all f ∈ H, let f = [f(x1), · · · , f(xn)]T . DefineHx :=
{f | f ∈ H}. Then we can see that Hx is a subspace of
Rn. Since Y ∈ Rn, we know there exists an orthogonal
projection operator P such that for any vector Z ∈ Rn, PZ
is the projection of Z intoHx. In particular, we have f̂λ =
PY . In addition, let α ∈ Rn and observe that PKα = Kα,
as Kα ∈ Hx. As such, we have that (I − P )Kα = 0 for
all α ∈ Rn, implying that (I − P )K = 0. Hence, we have

〈Y − f̂λ, fλβ − f̂λ〉 =

〈Y − PY, K̃(K̃ + nλI)−1Y − PY 〉 =

〈(I − P )Y, K̃(K̃ + nλI)−1Y 〉 − 〈(I − P )Y, PY 〉 =

Y T (I − P )K̃(K̃ + nλI)−1Y − Y T (I − P )PY =

1

s
Y T (I − P )ZqZ

T
q (ZqZ

T
q + nλI)−1Y.

(16)

The last equality follows from (I − P )P = P − P 2 = 0.
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We know that the kernel function admits a decomposition
as in Eq. (2). Hence, we can express K as

K =

∫
V
zv(x)zv(x)T dτ(v),

where zv(x) = [z(v, x1), · · · , z(v, xn)]T .

Note that we have (I−P )K = 0, which further implies that
(I − P )K(I − P ) = 0. As a result, we have the following:

0 = Tr[(I − P )K(I − P )]

= Tr
[
(I − P )

∫
V
zv(x)zv(x)T dτ(v)(I − P )

]
= Tr

[ ∫
V

(I − P )zv(x)zv(x)T (I − P )dτ(v)

]
=

∫
V

Tr[(I − P )zv(x)zv(x)T (I − P )]dτ(v)

=

∫
V
‖(I − P )zv(x)‖22dτ(v)

=

∫
V
‖(I − P )zq,v(x)‖22

p(v)

q(v)
dτq(v), (17)

where zq,v(x) =
√
p(v)/q(v)zv(x). Hence, we have

‖(I − P )zq,v(x)‖22 = 0 almost surely (a.s.) with respect to
measure dτq , which further shows that (I − P )zq,v(x) = 0
a.s. For any α ∈ Rs, we have:

αTY T (I − P )Zq =
∑
i=1

αiY
T (I − P )zq,vi(x) = 0.

We now let α = Y T (I − P )Zq and obtain

‖Y T (I − P )Zq‖22 = 0.

Returning back to Eq. (16), we have that

〈Y − f̂λ, fλβ − f̂λ〉 =

1

s
Y T (I − P )ZqZ

T
q (ZqZ

T
q + nλI)−1Y.

Now, observe that

|Y T (I − P )ZqZ
T
q (ZqZ

T
q + nλI)−1Y | ≤

‖Y T (I − P )Zq‖22‖ZTq (ZqZ
T
q + nλI)−1Y ‖22 = 0.

Hence, we conclude that 〈Y − f̂λ, fλβ − f̂λ〉 = 0.

C.2. Proof of Theorem 1

Proof. The proof relies on the decomposition of the ex-
pected risk of E(fλβ ) as follows

E(fλβ ) = E(fλβ )− Ê(fλβ ) (18)

+Ê(fλβ )− Ê(f̂λ) (19)

+Ê(f̂λ)− E(f̂λ) (20)

+E(f̂λ)− E(fH) (21)
+E(fH).

For (18), the bound is based on the Rademacher complexity
of the reproducing kernel Hilbert space H̃, where H̃ corre-
sponds to the approximated kernel k̃. We can upper bound
the Rademacher complexity of this hypothesis space with
Lemma 2. As L(y, f(x)) is the squared error loss function
with y and f(x) bounded, we have that L is a Lipschitz
continuous function with some constant L > 0. Hence,

(18) ≤ Rn(L̃ ◦ H̃) +

√
8 log(2/δ)

n

≤
√

2L
1

n
EX
√

Tr(K̃) +

√
8 log(2/δ)

n

≤
√

2L
1

n

√
EXTr(K̃) +

√
8 log(2/δ)

n

≤
√

2L
1

n

√
nz20 +

√
8 log(2/δ)

n

≤
√

2Lz0√
n

+

√
8 log(2/δ)

n
∈ O(

1√
n

), (22)

where in the last inequality we applied Lemma 3 to H̃,
which is a reproducing kernel Hilbert space with radius

√
2.

For (20), a similar reasoning can be applied to the unit ball
in the reproducing kernel Hilbert spaceH.

For (19), we observe that

Ê(fλβ )− Ê(f̂λ) =
1

n
‖Y − fλβ ‖22 −

1

n
‖Y − f̂λ‖22

=
1

n
inf
‖fβ‖
‖Y − fβ‖22 −

1

n
‖Y − f̂λ‖22

=
1

n
inf
‖fβ‖

(
‖Y − f̂λ‖22 + ‖f̂λ − fβ‖22

+2〈Y − f̂λ, f̂λ − fβ〉
)
− 1

n
‖Y − f̂λ‖22

≤ 1

n
inf
‖fβ‖
‖f̂λ − fβ‖22

+
2

n
inf
‖fβ‖
〈Y − f̂λ, f̂λ − fβ〉

≤ 1

n
inf
‖fβ‖
‖f̂λ − fβ‖22 +

2

n
〈Y − f̂λ, f̂λ − fλβ 〉

=
1

n
inf
‖fβ‖
‖f̂λ − fβ‖22

≤ sup
‖f‖

inf
‖fβ‖

1

n
‖f − fβ‖22

≤ 2λ,

where in the last step we employ Theorem 5. Combining
the three results, we derive

E(fλβ )− E(fH) ≤ 2λ+O(
1√
n

) + E(f̂λ)− E(fH).

(23)
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C.3. Proofs of Corollaries 1 and 2

Proof. For Corollary 1, we set l̃(v) = lλ(v) and deduce

dl̃ =

∫
V
lλ(v)dv = dλK.

For Corollary 2, we set l̃(v) = p(v)
z20
λ and derive

dl̃ =

∫
V
p(v)

z20
λ
dv =

z20
λ
.

C.4. Proof of Theorem 3

Proof. The proof is similar to Theorem 1. In particular, we
decompose the expected learning risk as

E(gλβ) = E(gλβ)− Ê(gλβ) (24)

+Ê(gλβ)− Ê(gH) (25)

+Ê(gH)− E(gH) (26)
+E(gH).

Now, (24) and (26) can be upper bounded similar to The-
orem 1, through the Rademacher complexity bound from
Lemma 3. For (25), we have

Ê(gλβ)− E(gH) =

1

n

n∑
i=1

L(yi, g
λ
β(xi))−

1

n

n∑
i=1

L(yi, gH(xi)) =

1

n
inf
‖gβ‖

n∑
i=1

L(yi, gβ(xi))−
1

n

n∑
i=1

L(yi, gH(xi))

≤ inf
‖gβ‖

1

n

n∑
i=1

|gβ(xi)− gH(xi)|

≤ inf
‖gβ‖

√√√√ 1

n

n∑
i=1

|gβ(xi)− gH(xi)|2

≤ sup
‖g‖

inf
‖gβ‖

√
1

n
‖g − gβ‖22

≤
√

2λ.

C.5. Proofs of Corollaries 3 and 4

The proofs are similar to the proofs of Corollaries 1 and 2.

D. Proof of Theorem 2
In this proof, we rely on the notion of local Rademacher
complexity and adjust our notation so that it is easier to

cross-reference relevant auxiliary claims from Bartlett et al.
(2005). Suppose P is a probability measure on X × Y
and let {xi, yi}ni=1 be an independent sample from P .
For any reproducing kernel Hilbert space H and a loss
function l, we define the transformed function class as
lH := {l(f(x), y) | f ∈ H}. We also abbreviate the nota-
tion and denote with lf = l(f(x), y), Pf =

∫
f(x)dP (x)

and Pnf = 1/n
∑n
i=1 f(xi). For the reproducing kernel

Hilbert spaceH, we denote the solution of the kernel ridge
regression problem by f̂ .

For our proof of Theorem 2, we need the following two
results from Bartlett et al. (2005).

Theorem 6. (Bartlett et al., 2005, Theorem 4.1) Let H
be a class of functions with ranges in [−1, 1] and assume
that there is some constant B0 such that for all f ∈ H,
Pf2 ≤ B0Pf . Let ψ̂n be a sub-root function and let r̂∗ be
the fixed point of ψ̂n, i.e., ψ̂n(r̂∗) = r̂∗. Fix any δ > 0, and
assume that for any r ≥ r̂∗,

ψ̂n(r) ≥ e1R̂n{f ∈ star(H, 0) | Pnf2 ≤ r}+
e2δ

n

where e1 and e2 are constants, and

star(H, f0) = {f0 + α(f − f0) | f ∈ H ∧ α ∈ [0, 1]}.

Then, for all f ∈ H and D > 1, with probability greater
than 1− 3e−δ ,

Pf ≤ D

D − 1
Pnf +

6D

B
r̂∗ +

e3δ

n

where e3 is a constant.

Lemma 7. (Bartlett et al., 2005, Lemma 6.6) Let k be a
positive definite kernel function with reproducing kernel
Hilbert spaceH and let λ̂1 ≥ · · · ≥ λ̂n be the eigenvalues
of the normalized Gram-matrix (1/n)K. Then, for all r > 0

R̂n{f ∈ H | Pnf2 ≤ r} ≤
( 2

n

n∑
i=1

min{r, λ̂i}
)1/2

Theorem 6 is crucial for proving sharp convergence rates
because it relies on the local Rademacher complexity tech-
nique. In order to apply the theorem, we need to find a
proper sub-root function ψ̂n and for that a special property
characteristic to the squared error loss is required.

Lemma 8. (Bartlett et al., 2005, Section 5.2) Let l be the
squared error loss function andH a convex and uniformly
bounded hypothesis space. Assume that for every probability
distribution P in a class of data-generating distributions,
there is an f∗ ∈ H such that Plf∗ = inff∈H Plf . Then,
there exists a constant B ≥ 1 such that for all f ∈ H and
for every probability distribution P

P (f − f∗)2 ≤ BP (lf − lf∗) (27)
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Let l be the squared error loss function and observe that for
all f ∈ H it holds that

Pnl
2
f ≥ (Pnlf )2 (x2 is convex)

≥ (Pnlf )2 − (Pnlf̂ )2

= (Pnlf + Pnlf̂ )(Pnlf − Pnlf̂ )

≥ 2Pnlf̂ Pn(lf − lf̂ )

≥ 2

B
Pnlf̂ Pn(f − f̂)2. (28)

The third inequality holds because f̂ achieves the mini-
mal empirical risk. The last inequality is a consequence of
Lemma 8 applied to the empirical probability distribution
Pn. Hence, to obtain a lower bound on Pnl2f expressed
solely in terms of Pn(f − f̂)2, we need to find a lower
bound of Pnlf̂ . First, observe that it holds

Pnlf̂ =
1

n
‖Y −K(K + nλI)−1Y ‖2.

Then, using this expression we derive

Pnlf̂ =
1

n
‖Y −K(K + nλI)−1Y ‖2

= nλ2Y T (K + nλI)−2Y

≥ nλ2

(λ1 + nλ)2
Y TY

=

(
nλ

λ1 + nλ

)2
1

n

n∑
i=1

y2i

≥

(
nλ

λ1 + nλ

)2

σ2
y (with

1

n

n∑
i=1

y2i ≥ σ2
y)

= σ2
y

(
1

1 + λ1

nλ

)2

≥ σ2
y

(
1

λ1

nλ + λ1

nλ

)2

=
σ2
y

4

(
nλ

λ1

)2

= c(nλ)2, (29)

where c = (σy/2λ1)2 is a constant.

The last equality follows because λ1 is independent of n
and λ, as well as bounded. Hence, Eq.(28) becomes

Pnl
2
f ≥

2c(nλ)2

B
Pn(f − f̂)2 =: c1(nλ)2Pn(f − f̂)2.

As a result of this, we have the following inequality for the
two function classes

{lf ∈ lH | Pnl2f ≤ r} ⊆ {lf ∈ lH | Pn(f − f̂)2 ≤ r

c1(nλ)2
}.

Recall that for a function classH, we denote its empirical
Rademacher complexity by R̂n(H). Then, we have the
following inequality

R̂n{lf ∈ lH | Pnl2f ≤ r} ≤

R̂n{lf ∈ lH | Pn(f − f̂)2 ≤ r

c1n2λ2
} =

R̂n{lf − lf̂ | Pn(f − f̂)2 ≤ r

c1n2λ2
∧ lf ∈ lH} ≤

LR̂n{f − f̂ | Pn(f − f̂)2 ≤ r

c1n2λ2
∧ f ∈ H} ≤

LR̂n{f − g | Pn(f − g)2 ≤ r

c1n2λ2
∧ f, g ∈ H} ≤

2LR̂n{f ∈ H | Pnf2 ≤
1

4c1

r

n2λ2
} =

2LR̂n{f ∈ H | Pnf2 ≤
c2r

n2λ2
},

(30)

where the last inequality is due to Bartlett et al. (2005, Corol-
lary 6.7). Now, combining Lemma 7 and Eq. (30) gives us a
hint on how to find the sub-root function ψ̂n.

Theorem 7. Assume {xi, yi}ni=1 is an independent sample
from a probability measure P defined on X × Y , with Y ∈
[−1, 1]. Let k be a positive definite kernel with the reproduc-
ing kernel Hilbert spaceH and let λ̂1 ≥ · · · ,≥ λ̂n be the
eigenvalues of the normalized kernel Gram-matrix. Denote
the squared error loss function by l(f(x), y) = (f(x)− y)2

and fix δ > 0. If

ψ̂n(r) = 2Le1

(
2

n

n∑
i=1

min{r, λ̂i}

)1/2

+
e3δ

n
,

then for all lf ∈ lH and D > 1, with probability 1− 3e−δ ,

Plf ≤
D

D − 1
Pnlf +

6D

B
r̂∗ +

e3δ

n
.

Moreover, the fixed point r̂∗ defined with r̂∗ = ψ̂n(r̂)∗ can
be upper bounded by

r̂∗ ≤ min
0≤h≤n

(h
n
∗ e4
n2λ2

+

√
1

n

∑
i>h

λ̂i

)
,

where e3 and e4 are constants, and λ is the regularization
parameter used in kernel ridge regression.

Proof. As f(x), y ∈ [−1, 1], we have that lf ∈ [0, 1] and
Pl2f ≤ Plf . Hence, we can apply Theorem 6 to function
class lH and obtain that for all lf ∈ lH

Plf ≤
D

D − 1
Pnlf +

6D

B
r̂∗ +

e3δ

n
,
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as long as there is a sub-root function ψ̂n(r) such that

ψ̂n(r) ≥ e1R̂n{f ∈ star(H, 0) | Pnf2 ≤ r}+
e2δ

n
.

(31)

We have previously demonstrated that

e1R̂n{f ∈ star(H, 0) | Pnf2 ≤ r}+
e2δ

n

≤ 2e1LR̂n

{
f ∈ H | Pnf2 ≤

c2r

n2λ2

}
+
e2δ

n

≤ 2e1L

(
2

n

n∑
i=1

min

{
c2r

n2λ2
, λ̂i

})1/2

+
e2δ

n

(by Lemma 7).

(32)

Hence, if choose ψ̂n(r) to be equal to the right hand side
of Eq.(32), then ψ̂n(r) is a sub-root function that satisfies
Eq.(31). Now, the upper bound on the fixed point r̂∗ follows
from Corollary 6.7 in Bartlett et al. (2005).

We now deliver the proof of Theorem 2.

Proof. We decompose E(fλβ ) with D > 1 as follows

E(fλβ ) = E(fλβ )− D

D − 1
Ê(fλβ )

+
D

D − 1
Ê(fλβ )− D

D − 1
Ê(f̂λ)

+
D

D − 1
Ê(f̂λ)− E(f̂λ)

+E(f̂λ)− E(fH)

+E(fH).

Hence,

E(fλβ )− E(fH) ≤

∣∣∣∣∣E(fλβ )− D

D − 1
Ê(fλβ )

∣∣∣∣∣ (33)

+
D

D − 1
(Ê(fλβ )− Ê(f̂λ)) (34)

+

∣∣∣∣∣ D

D − 1
Ê(f̂λ)− E(f̂λ)

∣∣∣∣∣ (35)

+E(f̂λ)− E(fH). (36)

We have already demonstrated that

Eq. (34) ≤ 2
D

D − 1
λ.

For Eqs. (33) and (35) we apply Theorem 7. However,
note that fλβ and f̂λ belong to different reproducing kernel
Hilbert spaces. As a result, we have

Eq. (33) ≤ r̂∗H̃ +O(1/n)

Eq. (35) ≤ r̂∗H +O(1/n)

Now, combining these inequalities together we deduce

E(fλβ )− E(fH) ≤ r̂∗H̃ + r̂∗H + 2
D

D − 1
λ+O(1/n)

+E(f̂λ)− E(fH)

≤ 2r̂∗H + 2
D

D − 1
λ+O(1/n)

+E(f̂λ)− E(fH).

The last inequality holds because the eigenvalues of the
Gram-matrix for the reproduing kernel Hilbert space H̃
decay faster than the eigenvalues ofH. As a result of this,
we have that r̂∗H̃ ≤ r̂

∗
H.

Now, Theorem 7 implies that

r̂∗H ≤ min0≤h≤n

(h
n
∗ e4
n2λ2

+

√
1

n

∑
i>h

λ̂i

)
. (37)

There are two cases worth discussing here. On the one hand,
if the eigenvalues of K decay exponentially, we have

r̂∗H ≤ O

(
log n

n

)
by substituting h = dlog ne. Now, according to Caponnetto
& De Vito (2007)

E(f̂λ)− E(fH) ∈ O

(
log n

n

)
,

and, thus, if we set λ ∝ logn/n then the expected risk rate
can be upper bounded by

E(fλβ )− E(fH) ∈ O

(
log n

n

)
.

On the other hand, if K has finitely many non-zero eigen-
values (t), we then have that

r̂∗H ∈ O

(
1

n

)
,

by substituting h ≥ t. Moreover, in this case, E(f̂λ) −
E(fH) ∈ O(1/n) and setting λ ∝ 1/n, we deduce that

E(fλβ )− E(fH) ≤ O

(
1

n

)
.

E. Proof of Theorem 4
Proof. Suppose the examples {xi, yi}ni=1 are independent
and identically distributed and that the kernel k can be de-
composed as in Eq. (2). Let {vi}si=1 be an independent
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sample selected according to p(v). Then, using these s
features we can approximate the kernel as

k̃(x, y) =
1

s

s∑
i=1

z(vi, x)z(vi, y)

=

∫
V

z(v, x)z(v, y)dP̂ (v), (38)

where P̂ is the empirical measure on {vi}si=1. Denote the
reproducing kernel Hilbert space associated with kernel k̃ by
H̃ and suppose that kernel ridge regression was performed
with the approximate kernel k̃. From Theorem 1 and Corol-
lary 2, it follows that if

s ≥ 7z20
λ

log
16dλK
δ

,

then for all δ ∈ (0, 1), with probability 1 − δ, the risk
convergence rate of the kernel ridge regression estimator
based on random Fourier features can be upper bounded by

E(fλα) ≤ 2λ+O

(
1√
n

)
+ E(fH). (39)

Let fH̃ be the function in the reproducing kernel Hilbert
space H̃ achieving the minimal risk, i.e., E(fH̃) =

inff∈H̃ E(f). We now treat k̃ as the actual kernel that can
be decomposed via the expectation with respect to the em-
pirical measure in Eq. (38) and re-sample features from the
set {vi}si=1, but this time the sampling is performed using
the optimal ridge leverage scores. As k̃ is the actual kernel,
it follows from Eq. (5) that the leverage function in this case
can be defined by

lλ(v) = p(v)zv(x)T (K̃ + nλI)−1zv(x).

Now, observe that

lλ(vi) = p(vi)[Z
T
s (K̃ + nλI)−1Zs]ii

where [A]ii denotes the ith diagonal element of matrix A.
As K̃ = (1/s)ZsZ

T
s , then the Woodbury inversion lemma

implies that

lλ(vi) = p(vi)[Z
T
s Zs(

1

s
ZTs Zs + nλI)−1]ii.

If we let lλ(vi) = pi, then the optimal distribution for
{vi}si=1 is multinomial with individual probabilities q(vi) =
pi/(

∑s
j=1 pj). Hence, we can re-sample l features accord-

ing to q(v) and perform linear ridge regression using the
sampled leverage weighted features. Denoting this estima-
tor with f̃λ

∗

l and the corresponding number of degrees of
freedom with dλ

K̃
= TrK̃(K̃ + nλ)−1, we deduce (using

Theorem 1 and Corollary 1)

E(f̃λ
∗

l ) ≤ 2λ∗ +O

(
1√
n

)
+ E(fH̃), (40)

with the number of features l ∝ dλ
K̃

.

As fH̃ is the function achieving the minimal risk over H̃,
we can conclude that E(fH̃) ≤ E(fλα). Now, combining Eq.
(39) and (40), we obtain the final bound on E(f̃λ

∗

l ).
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F. Code of Algorithm 1

d e f f e a t _ g e n ( x , n _ f e a t , l n s ) :
" " "
# f u n c t i o n t o g e n e r a t e t h e f e a t u r e s f o r g a u s s i a n k e r n e l
: param x : t h e d a t a
: param n _ f e a t : number o f f e a t u r e s we need
: param l n s : t h e i n v e r s e l a n d s c a l e o f t h e g a u s s i a n k e r n e l
: r e t u r n : a s e q u e n c e o f f e a t u r e s r e a d y f o r KRR
" " "
n , d = np . shape ( x )

w = np . random . m u l t i v a r i a t e _ n o r m a l ( np . z e r o s ( d ) , l n s ∗np . eye ( d ) , n _ f e a t )
r e t u r n w

d e f f e a t _ m a t r i x ( x ,w ) :
" " "
# f u n t i o n t o g e n e r a t e t h e f e a t u r e m a t r i x Z
: param x : t h e d a t a
: param w: t h e f e a t u r e s
: r e t u r n : t h e f e a t u r e m a t r i x o f s i z e l e n ( n )∗ l e n ( s )
" " "
s , dim = w. shape
# pe r fo rm t h e p r o d u c t o f x and w t r a n s p o s e
p r o t _ m a t = np . matmul ( x ,w. T )

f e a t 1 = np . cos ( p r o t _ m a t )
f e a t 2 = np . s i n ( p r o t _ m a t )

f e a t _ f i n a l = np . s q r t ( 1 . 0 / s )∗ np . c o n c a t e n a t e ( ( f e a t 1 , f e a t 2 ) , a x i s = 1)

r e t u r n f e a t _ f i n a l

d e f opm_fea t ( x , w, lmba ) :
" " "
# f u n c t i o n t o s e l e c t t h e optimum f e a t u r e s
: param x : t h e i n d e p e n d e n t v a r i a b l e
: param w: t h e f i r s t l a y e r f e a t u r e s g e n e r a t e d a c c o r d i n g t o s p e c t r a l d e n s i t y
: r e t u r n : optimum f e a t u r e s wi th i m p o r t a n c e we ig h t
" " "
n_num , dim = x . shape
s , dim = w. shape

p r o t _ m a t = np . matmul ( x ,w. T )

f e a t 1 = np . s q r t ( 1 . 0 / s )∗ np . cos ( p r o t _ m a t )
f e a t 2 = np . s q r t ( 1 . 0 / s )∗ np . s i n ( p r o t _ m a t )

Z_s = f e a t 1 + f e a t 2

ZTZ = np . matmul ( Z_s . T , Z_s )

ZTZ_inv = np . l i n a l g . i n v (ZTZ +n_num∗ lmba∗np . eye ( s ) )
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M = np . matmul ( ZTZ , ZTZ_inv )
#M = np . matmul (M0, ZTZ )

l = np . t r a c e (M)
# p r i n t l
# n _ f e a t _ d r a w = min ( s , max ( 5 0 , l ) )
# p r i n t n _ f e a t _ d r a w
# n _ f e a t _ d r a w = i n t ( round ( n _ f e a t _ d r a w ) )
n _ f e a t _ d r a w = s
# p r i n t n _ f e a t _ d r a w

p i _ s = np . d i a g (M)
# p r i n t p i _ s
q i _ s = p i _ s / l
i s _ w g t = np . s q r t ( 1 / q i _ s )
# p r i n t i s _ w g t

w g t _ o r d e r = np . a r g s o r t ( i s _ w g t )

w_order = w g t _ o r d e r [ ( s−n _ f e a t _ d r a w ) : ]
# p r i n t l e n ( w_order )

# w_order = np . random . c h o i c e ( s , n_ fea t_d raw , r e p l a c e = F a l s e , p= q i _ s )
# p r i n t w_order
w_opm = np . z e r o s ( ( n_ fea t_d raw , dim ) )

wgh_opm = np . z e r o s ( n _ f e a t _ d r a w )

f o r i i i n np . a r a n g e ( n _ f e a t _ d r a w ) :
o r d e r = w_order [ i i ]
w_opm [ i i , : ] = w[ o r d e r , : ]
wgh_opm [ i i ] = i s _ w g t [ o r d e r ]

r e t u r n w_opm , wgh_opm


