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Abstract

Random Fourier features is a widely used, sim-
ple, and effective technique for scaling up ker-
nel methods. The existing theoretical analysis of
the approach, however, remains focused on spe-
cific learning tasks and typically gives pessimistic
bounds which are at odds with the empirical re-
sults. We tackle these problems and provide the
first unified risk analysis of learning with random
Fourier features using the squared error and Lip-
schitz continuous loss functions. In our bounds,
the trade-off between the computational cost and
the expected risk convergence rate is problem spe-
cific and expressed in terms of the regularization
parameter and the number of effective degrees
of freedom. We study both the standard random
Fourier features method for which we improve
the existing bounds on the number of features re-
quired to guarantee the corresponding minimax
risk convergence rate of kernel ridge regression,
as well as a data-dependent modification which
samples features proportional to ridge leverage
scores and further reduces the required number
of features. As ridge leverage scores are expen-
sive to compute, we devise a simple approxima-
tion scheme which provably reduces the computa-
tional cost without loss of statistical efficiency.

1. Introduction
Kernel methods are one of the pillars of machine learning
(Schölkopf & Smola, 2001; Schölkopf et al., 2004), as they
give us a flexible framework to model complex functional
relationships in a principled way and also come with well-
established statistical properties and theoretical guarantees
(Caponnetto & De Vito, 2007; Steinwart & Christmann,
2008). The key ingredient, known as kernel trick, allows
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implicit computation of an inner product between rich fea-
ture representations of data through the kernel evaluation
k(x, x′) = 〈ϕ(x), ϕ(x′)〉H, while the actual feature map-
ping ϕ : X → H between a data domain X and some high
and often infinite dimensional Hilbert spaceH is never com-
puted. However, such convenience comes at a price: due
to operating on all pairs of observations, kernel methods
inherently require computation and storage which is at least
quadratic in the number of observations, and hence often
prohibitive for large datasets. In particular, the kernel matrix
has to be computed, stored, and often inverted. As a result, a
flurry of research into scalable kernel methods and the anal-
ysis of their performance emerged (Rahimi & Recht, 2007;
Mahoney & Drineas, 2009; Bach, 2013; Alaoui & Mahoney,
2015; Rudi et al., 2015; Rudi & Rosasco, 2017; Rudi et al.,
2017; Zhang et al., 2015). Among the most popular frame-
works for fast approximations to kernel methods are random
Fourier features (RFF) due to Rahimi & Recht (2007). The
idea of random Fourier features is to construct an explicit
feature map which is of a dimension much lower than the
number of observations, but with the resulting inner product
which approximates the desired kernel function k(x, y). In
particular, random Fourier features rely on Bochner’s theo-
rem (Bochner, 1932; Rudin, 2017) which tells us that any
bounded, continuous and shift-invariant kernel is a Fourier
transform of a bounded positive measure, called spectral
measure. The feature map is then constructed using samples
drawn from the spectral measure. Essentially, any kernel
method can then be adjusted to operate on these explicit
feature maps (i.e., primal representations), greatly reduc-
ing the computational and storage costs, while in practice
mimicking performance of the original kernel method.

Despite their empirical success, the theoretical understand-
ing of statistical properties of random Fourier features is
incomplete, and the question of how many features are
needed, in order to obtain a method with performance prov-
ably comparable to the original one, remains without a
definitive answer. Currently, there are two main lines of
research addressing this question. The first line considers
the approximation error of the kernel matrix itself (e.g.,
see Rahimi & Recht, 2007; Sriperumbudur & Szabó, 2015;
Sutherland & Schneider, 2015, and references therein) and
bases performance guarantees on the accuracy of this ap-
proximation. However, all of these works require Ω(n)



Towards a Unified Analysis of Random Fourier Features

features (n being the number of observations), which trans-
lates to no computational savings at all and is at odds with
empirical findings. Realizing that the approximation of ker-
nel matrices is just a means to an end, the second line of
research aims at directly studying the risk and generalization
properties of random Fourier features in various supervised
learning scenarios. Arguably, first such result is already in
Rahimi & Recht (2009), where supervised learning with
Lipschitz continuous loss functions is studied. However, the
bounds therein still require a pessimistic Ω(n) number of
features and due to the Lipschitz continuity requirement, the
analysis does not apply to kernel ridge regression (KRR),
one of the most commonly used kernel methods. In Bach
(2017b), the generalization properties are studied from a
function approximation perspective, showing for the first
time that fewer features could preserve the statistical prop-
erties of the original method, but in the case where a certain
data-dependent sampling distribution is used instead of the
spectral measure. These results also do not apply to kernel
ridge regression and the mentioned sampling distribution
is typically itself intractable. Avron et al. (2017) study the
empirical risk of kernel ridge regression and show that it
is possible to use o(n) features and have the empirical risk
of the linear ridge regression estimator based on random
Fourier features close to the empirical risk of the original
kernel estimator, also relying on a modification to the sam-
pling distribution. However, this result is for the empirical
risk only, does not provide any expected risk convergence
rates, and a tractable method to sample from a modified
distribution is proposed for the Gaussian kernel only. A
highly refined analysis of kernel ridge regression is given by
Rudi & Rosasco (2017), where it is shown that Ω(

√
n log n)

features suffices for an optimal O(1/
√
n) learning error in

a minimax sense (Caponnetto & De Vito, 2007). Moreover,
the number of features can be reduced even further if a data-
dependent sampling distribution is employed. While these
are groundbreaking results, guaranteeing computational sav-
ings without any loss of statistical efficiency, they require
some technical assumptions that are difficult to verify. More-
over, to what extent the bounds can be improved by utilizing
data-dependent distributions still remains unclear. Finally, it
does not seem straightforward to generalize the approach of
Rudi & Rosasco (2017) to kernel support vector machines
(SVM) and/or kernel logistic regression (KLR). Recently,
Sun et al. (2018) have provided novel bounds for random
Fourier features in the SVM setting, assuming the Massart’s
low noise condition and that the target hypothesis lies in
the corresponding reproducing kernel Hilbert space. The
bounds, however, require the sample complexity and the
number of features to be exponential in the dimension of
the instance space and this can be problematic for high di-
mensional instance spaces. The theoretical results are also
restricted to the hinge loss (without means to generalize to
other loss functions) and require optimized features.

In this paper, we address the gaps mentioned above by
making the following contributions:

• We devise a simple framework for the unified analysis
of generalization properties of random Fourier features,
which applies to kernel ridge regression, as well as to
kernel support vector machines and logistic regression.

• For the plain random Fourier features sampling scheme,
we provide, to the best of our knowledge, the sharpest
results on the number of features required. In particu-
lar, we show that already with Ω(

√
n log dλK) features,

we incur no loss of learning accuracy in kernel ridge
regression, where dλK corresponds to the notion of the
number of effective degrees of freedom (Bach, 2013)
with dλK � n and λ := λ(n) is the regularization
parameter. In addition, Ω(1/λ) features is sufficient
to ensure O(

√
λ) expected risk rate in kernel support

vector machines and kernel logistic regression.

• In the case of a modified data-dependent sampling dis-
tribution, the so called empirical ridge leverage score
distribution, we demonstrate that Ω(dλK) features suf-
fice for the learning risk to converge at O(λ) rate in
kernel ridge regression (O(

√
λ) in kernel support vec-

tor machines and kernel logistic regression).

• Finally, as the empirical ridge leverage scores distri-
bution is typically costly to compute, we give a fast
algorithm to generate samples from the approximated
empirical leverage distribution. Utilizing these samples
one can significantly reduce the computation time dur-
ing the in sample prediction and testing stages, O(n)
and O(log n log log n), respectively. We also include a
proof that gives a trade-off between the computational
cost and the expected risk of the algorithm, showing
that the statistical efficiency can be preserved while
provably reducing the required computational cost.

2. Random Fourier Features
Random Fourier features is a widely used, simple, and effec-
tive technique for scaling up kernel methods. The underly-
ing principle of the approach is a consequence of Bochner’s
theorem (Bochner, 1932), which states that any bounded,
continuous and shift-invariant kernel is a Fourier transform
of a bounded positive measure. This measure can be trans-
formed/normalized into a probability measure which is typi-
cally called the spectral measure of the kernel. Assuming
the spectral measure dτ has a density function p(·), the
corresponding shift-invariant kernel can be written as

k(x, y) =

∫
V
e−2πiv

T (x−y)dτ(v) =∫
V

(
e−2πiv

T x
)(
e−2πiv

T y
)∗
p(v)dv,

(1)
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where z∗ denotes the complex conjugate of z ∈ C. Typi-
cally, the kernel is real valued and we can ignore the imagi-
nary part in this equation (e.g., see Rahimi & Recht, 2007).
The principle can be further generalized by considering the
class of kernel functions which can be decomposed as

k(x, y) =

∫
V
z(v, x)z(v, y)p(v)dv, (2)

where z : V ×X → R is a continuous and bounded function
with respect to v and x. The main idea behind the ran-
dom Fourier features approach is to approximate the kernel
function by its Monte-Carlo estimate

k̃(x, y) =
1

s

s∑
i=1

z(vi, x)z(vi, y), (3)

with reproducing kernel Hilbert space H̃ (not necessarily
contained in the reproducing kernel Hilbert space H cor-
responding to the kernel function k) and {vi}si=1 sampled
independently from the spectral measure. In Bach (2017a,
Appendix A), it has been established that a function f ∈ H
can be expressed as 1:

f(x) =

∫
V
g(v)z(v, x)p(v)dv (∀x ∈ X ) (4)

where g ∈ L2(dτ) is a real-valued function such that
‖g‖2L2(dτ)

< ∞ and ‖f‖H is equal to the minimum of
‖g‖L2(dτ), over all possible decompositions of f . Thus, one
can take an independent sample {vi}si=1 ∼ p(v) (we refer
to this sampling scheme as plain RFF) and approximate a
function f ∈ H at a point xj ∈ X by

f̃(xj) =

s∑
i=1

αiz(vi, xj) := zxj (v)Tα with α ∈ Rs.

In standard estimation problems, it is typically the case
that for a given set of instances {xi}ni=1 one approximates
fx = [f(x1), · · · , f(xn)]T by

f̃x = [zx1(v)Tα, · · · , zxn(v)Tα]T := Zα,

where Z ∈ Rn×s with zxj (v)T as its jth row.

As the latter approximation is simply a Monte Carlo esti-
mate, one could also pick an importance weighted probabil-
ity density function q(·) and sample features {vi}si=1 from q
(we refer to this sampling scheme as weighted RFF). Then,
the function value f(xj) can be approximated by

f̃q(xj) =

s∑
i=1

βizq(vi, xj) := zq,xj (v)Tβ,

1It is not necessarily true that for any g ∈ L2(dτ), there exists
a corresponding f ∈ H.

with zq(vi, xj) =
√
p(vi)/q(vi)z(vi, xj) and zq,xj (v) =

[zq(v1, xj), · · · , zq(vs, xj)]T . Hence, a Monte-Carlo esti-
mate of fx can be written in a matrix form as f̃q,x = Zqβ,
where Zq ∈ Rn×s with zq,xj (v)T as its jth row.

Let K̃ and K̃q be the Gram-matrices with entries K̃ij =

k̃(xi, xj) and K̃q,ij = k̃q(xi, xj) such that

K̃ = 1/s ZZT ∧ K̃q = 1/s ZqZ
T
q .

If we now denote the jth column of Z by zvj (x) and the
jth column of Zq by zq,vj (x), then the following equalities
can be derived easily from Eq. (3):

Ev∼p(K̃) = K = Ev∼q(K̃q)

Ev∼p
[
zv(x)zv(x)T

]
= K = Ev∼q

[
zq,v(x)zq,v(x)T

]
.

An importance weighted density function based on the
notion of ridge leverage scores is introduced in Alaoui
& Mahoney (2015) for landmark selection in the Nys-
tröm method (Nyström, 1930; Smola & Schölkopf, 2000;
Williams & Seeger, 2001). For landmarks selected using
that sampling strategy, Alaoui & Mahoney (2015) establish
a sharp convergence rate of the low-rank estimator based on
the Nyström method. This result motivates the pursuit of a
similar notion for random Fourier features. Indeed, Bach
(2017b) propose a leverage score function based on an in-
tegral operator defined using the kernel function and the
marginal distribution of a data-generating process. Building
on this work, Avron et al. (2017) propose the ridge leverage
function with respect to a fixed input dataset, i.e.,

lλ(v) = p(v)zv(x)T (K + nλI)−1zv(x). (5)

From our assumption on the decomposition of a kernel
function, it follows that there exists a constant z0 such that
|z(v, x)| ≤ z0 (for all v and x) and zv(x)T zv(x) ≤ nz20 .
We can now deduce the following inequality using a result
from Avron et al. (2017, Proposition 4):

lλ(v) ≤ p(v)
z20
λ

with∫
V
lλ(v)dv = Tr

[
K(K + nλI)−1

]
:= dλK.

The quantity dλK is known for implicitly determining the
number of independent parameters in a learning problem
and, thus, it is called the effective dimension of the prob-
lem (Caponnetto & De Vito, 2007) or the number of effective
degrees of freedom (Bach, 2013; Hastie, 2017).

We can now observe that q∗(v) = lλ(v)/dλK is a probabil-
ity density function. In Avron et al. (2017), it has been
established that sampling according to q∗(v) requires fewer
Fourier features compared to the standard spectral measure
sampling. We refer to q∗(v) as the empirical ridge leverage
score distribution and, in the remainder of the manuscript,
refer to this sampling strategy as leverage weighted RFF.
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3. Theoretical Analysis
In this section, we provide a unified analysis of the general-
ization properties of learning with random Fourier features.
We start with a bound for learning with the mean squared
error loss function and then extend our results to problems
with Lipschitz continuous loss functions. Before presenting
the results, we briefly review the standard problem setting
for supervised learning with kernel methods.

Let X be an instance space, Y a label space, and ρ(x, y) =
ρX (x)ρ(y | x) a probability measure on X ×Y defining the
relationship between an instance x ∈ X and a label y ∈ Y .
A training sample is a set of examples {(xi, yi)}ni=1 sampled
independently from the distribution ρ, known only through
the sample. The distribution ρX is called the marginal dis-
tribution of a data-generating process. The goal of a super-
vised learning task defined with a kernel function k (and
the associated reproducing kernel Hilbert space H) is to
find a hypothesis2 f : X → Y such that f ∈ H and f(x)
is a good estimate of the label y ∈ Y corresponding to a
previously unseen instance x ∈ X . While in regression
tasks Y ⊂ R, in classification tasks it is typically the case
that Y = {−1, 1}. As a result of the representer theorem an
empirical risk minimization problem in this setting can be
expressed as (Scholkopf & Smola, 2001)

f̂λ := arg min
f∈H

1

n

n∑
i=1

L(yi, (Kα)i) + λαTKα, (6)

where f =
∑n
i=1 αik(xi, ·) with α ∈ Rn, L : Y×Y → R+

is a loss function, K is the kernel matrix, and λ is the
regularization parameter. The hypothesis f̂λ is an empirical
estimator and its ability to describe ρ is measured by the
expected risk (Caponnetto & De Vito, 2007)

E(f̂λ) =

∫
X×Y

L(y, f̂λ(x))dρ(x, y).

Henceforth, we assume3 that there exists fH ∈ H such that
for all f ∈ H, E(fH) ≤ E(f).

3.1. Learning with the Squared Error Loss

In this section, we consider learning with the squared error
loss, i.e., L(y, f(x)) = (y − f(x))2. For this particular
loss function, the optimization problem from Eq. (6) is

2Throughout the paper, we assume (without loss of generality)
that our hypothesis space is the unit ball in a reproducing kernel
Hilbert spaceH, i.e., ‖f‖H ≤ 1. This is a pretty standard assump-
tion, characteristic to the analysis of random Fourier features (e.g.,
see Rudi & Rosasco, 2017)

3The existence of fH depends on the complexity ofH which
is related to the conditional distribution ρ(y|x) and the marginal
distribution ρX . For more details please refer to Caponnetto &
De Vito (2007) and Rudi & Rosasco (2017).

known as kernel ridge regression. The problem can be re-
duced to solving a linear system (K + nλI)α = Y , with
Y = [y1, · · · , yn]T . Typically, an approximation of the ker-
nel function based on random Fourier features is employed
in order to effectively reduce the computational cost and
scale kernel ridge regression to problems with millions of
examples. More specifically, for a vector of observed labels
Y the goal is to find a hypothesis f̃x = Zqβ that minimizes
‖Y − f̃x‖22 while having good generalization properties. In
order to achieve this, one needs to control the complexity of
hypotheses defined by random Fourier features and avoid
over-fitting. It turns out that ‖f̃‖2H̃ can be upper bounded
by s‖β‖22, where s is the number of sampled features (Ap-
pendix B). Hence, the learning problem with random Fourier
features and the squared error loss can be cast as

βλ := arg min
β∈Rs

1

n
‖Y − Zqβ‖22 + λs‖β‖22. (7)

This is a linear ridge regression problem in the space of
Fourier features and the optimal hypothesis is given by
fλβ = Zqβλ, where βλ = (ZTq Zq + nλI)−1ZTq Y . Since
Zq ∈ Rn×s, the computational and space complexities are
O(s3 + ns2) and O(ns). Thus, significant savings can be
achieved using estimators with s� n. To assess the effec-
tiveness of such estimators, it is important to understand the
relationship between the expected risk and the choice of s.

3.1.1. WORST CASE ANALYSIS

In this section, we assume that the unit ball of the repro-
ducing kernel Hilbert space contains the hypothesis fH and
provide a bound on the required number of random Fourier
features with respect to the worst case minimax rate of the
corresponding kernel ridge regression problem. The follow-
ing theorem (a proof can be found in Appendix C) gives a
general result while taking into account both the number of
features s and a sampling strategy for selecting them.
Theorem 1. Assume a kernel function k has a decomposi-
tion as in Eq. (2) and let |y| ≤ y0 be bounded with y0 > 0.
Denote with λ1 ≥ · · · ≥ λn the eigenvalues of the kernel
matrix K and assume the regularization parameter satisfies
0 ≤ nλ ≤ λ1. Let l̃ : V → R be a measurable function
such that l̃(v) ≥ lλ(v) (∀v ∈ V) and dl̃ =

∫
V l̃(v)dv <∞.

Suppose {vi}si=1 are sampled independently from the prob-
ability density function q(v) = l̃(v)/dl̃. If the unit ball ofH
contains the optimal hypothesis fH and

s ≥ 5dl̃ log (16dλK)/δ,

then for all δ ∈ (0, 1), with probability 1 − δ, the excess
risk of fλβ can be upper bounded as

E(fλβ )− E(fH) ≤ 2λ+O(1/
√
n) + E(f̂λ)− E(fH). (8)

Theorem 1 expresses the trade-off between the computa-
tional and statistical efficiency through the regularization
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parameter λ, the effective dimension of the problem dλK,
and the normalization constant of the sampling distribution
dl̃. The regularization parameter can be considered as some
function of the number of training examples (Caponnetto &
De Vito, 2007; Rudi & Rosasco, 2017) and we use its decay
rate as the sample size increases to quantify the complexity
of the target regression function fρ(x) =

∫
ydρ(y | x). In

particular, Caponnetto & De Vito (2007) have shown that
the minimax risk convergence rate for kernel ridge regres-
sion is O(1/

√
n). Setting λ ∝ 1/

√
n, we observe that the

estimator fλβ attains the worst case minimax rate of kernel
ridge regression. As a consequence of Theorem 1, we have
the following bounds on the number of required features for
the two strategies: leverage weighted and plain RFF.

Corollary 1. If the probability density function from The-
orem 1 is the empirical ridge leverage score distribution
q∗(v), then the upper bound on the risk from Eq. (8) holds
for all s ≥ 5dλK log (16dλK)/δ.

Theorem 1 and Corollary 1 have several implications on
the choice of λ and s. First, we could pick λ ∈ O(n−1/2)
that implies the worst case minimax rate for kernel ridge
regression (Caponnetto & De Vito, 2007; Rudi & Rosasco,
2017; Bartlett et al., 2005) and observe that in this case
s is proportional to dλK log dλK. As dλK is determined by
the learning problem (i.e., the marginal distribution ρX ),
we can consider several different cases. In the best case
(e.g., the Gaussian kernel with a sub-Gaussian marginal
distribution ρX ), the eigenvalues of K exhibit a geometric/-
exponential decay, i.e., λi ∝ R0r

i (R0 is some constant).
From Bach (2017b), we know that dλK ≤ log(R0/λ), imply-
ing s ≥ log2 n. Hence, significant savings can be obtained
with O(n log4 n + log6 n) computational and O(n log2 n)
storage complexities of linear ridge regression over random
Fourier features, as opposed to O(n3) and O(n2) costs (re-
spectively) in the kernel ridge regression setting.

In the case of a slower decay (e.g., H is a Sobolev space
of order t ≥ 1) with λi ∝ R0i

−2t, we have dλK ≤
(R0/λ)1/(2t) and s ≥ n1/(4t) log n. Hence, even in this case
a substantial saving in computational cost can be achieved.

Furthermore, in the worst case with λi very close to R0i
−1,

our bound implies that s ≥
√
n log n features is sufficient,

recovering the result from Rudi & Rosasco (2017).

Corollary 2. If the probability density function from The-
orem 1 is the spectral measure p(v) from Eq. (2), then
the upper bound on the risk from Eq. (8) holds for all
s ≥ 5z

2
0/λ log

16dλK
δ .

Corollary 2 addresses plain random Fourier features and
states that if s is chosen to be greater than

√
n log dλK

and λ ∝ 1/
√
n then the minimax risk convergence rate is

guaranteed. When the eigenvalues have an exponential de-
cay, we obtain the same convergence rate with only s ≥

√
n log log n features, which is an improvement compared

to a result by Rudi & Rosasco (2017) where s ≥
√
n log n.

For the other two cases, we derive s ≥
√
n log n and recover

the results from Rudi & Rosasco (2017).

3.1.2. REFINED ANALYSIS

In this section, we provide a more refined analysis with
expected risk convergence rates faster than O(1/

√
n), de-

pending on the spectrum decay of the kernel function and/or
the complexity of the target regression function.

Theorem 2. Suppose that the conditions from Theorem 1
apply and let

s ≥ 5dl̃ log (16dλK)/δ.

Then, for all D > 1 and δ ∈ (0, 1), with probability 1− δ,
the excess risk of fλβ can be upper bounded as

E(fλβ )− E(fH) ≤ 2r̂∗H + 2λD/(D−1) +O(1/n)

+E(f̂λ)− E(fH). (9)

Furthermore, denoting the eigenvalues of the normalized
kernel matrix (1/n)K with {λ̂i}ni=1, we have that

r̂∗H ≤ min0≤h≤n

(h
n
∗ e4
n2λ2

+

√
1

n

∑
i>h

λ̂i

)
, (10)

where e4 > 0 is a constant and λ̂1 ≥ · · · ≥ λ̂n.

Theorem 2 covers a wide range of cases and can provide
sharper risk convergence rates. In particular, note that r̂∗H
is of order O(1/

√
n), which happens when the spectrum

decays approximately as 1/n and h = 0. In this case,
the excess risk converges with the rate O(1/

√
n), which

corresponds to the considered worst case minimax rate.

On the other hand, if the eigenvalues decay exponentially,
then setting h = dlog ne implies that r̂∗H ≤ O(log n/n).
Furthermore, setting λ ∝ logn/n, we can show that the
excess risk converges at a much faster rate of O(log n/n).

In the best case, when the kernel function has only finitely
many positive eigenvalues, we have that r̂∗H ≤ O(1/n)
by letting h be any fixed value larger than the number of
positive eigenvalues. In this case, we obtain the fastest rate
of O(1/n) for the regularization parameter λ ∝ 1/n.

3.2. Learning with a Lipschitz Continuous Loss

We next consider kernel methods with Lipschitz continu-
ous loss, examples of which include kernel support vector
machines and kernel logistic regression. Similar to the
squared error loss case, we approximate yi with gβ(xi) =
zq,xi(v)Tβ and formulate the following learning problem

gλβ = arg min
β∈Rs

1

n

n∑
i=1

L(yi, zq,xi(v)Tβ) + λs‖β‖22.
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The following theorem describes the trade-off between the
selected number of features s and the expected risk of the
estimator, providing an insight into the choice of s for Lips-
chitz continuous loss functions.

Theorem 3. Suppose that all the assumptions from Theorem
1 apply to the setting with a Lipschitz continuous loss. If

s ≥ 5dl̃ log (16dλK)/δ,

then for all δ ∈ (0, 1), with probability 1− δ, the expected
risk of gλβ can be upper bounded as

E(gλβ) ≤E(gH) +
√

2λ+O(1/
√
n). (11)

This theorem, similar to Theorem 1, describes the relation-
ship between s and E(gλβ) in the Lipschitz continuous loss
case. However, a key difference here is that the expected
risk can only be upper bounded by

√
λ, requiring λ ∝ 1/n

in order to preserve the convergence properties of the risk.
Corollaries 3 and 4 provide bounds for the cases of leverage
weighted and plain RFF, respectively.

Corollary 3. If the probability density function from The-
orem 3 is the empirical ridge leverage score distribution
q∗(v), then the upper bound on the risk from Eq. (11) holds
for all s ≥ 5dλK log (16dλK)/δ.

In the three considered cases for the effective dimension
of the problem dλK, Corollary 3 states that the statistical
efficiency is preserved if the leverage weighted RFF strategy
is used with s ≥ log2 n, s ≥ n1/(2t) log n, and s ≥ n log n,
respectively. Again, significant computational savings can
be achieved if the eigenvalues of the kernel matrix K have
either a geometric/exponential or a polynomial decay.

Corollary 4. If the probability density function from The-
orem 3 is the spectral measure p(v) from Eq. (2), then
the upper bound on the risk from Eq. (11) holds for all
s ≥ 5z

2
0/λ log (16dλK)/δ.

Corollary 4 states that n log n features are required to attain
O(n−1/2) convergence rate of the expected risk with plain
RFF, recovering results from Rahimi & Recht (2009). Simi-
lar to the analysis in the squared error loss case, Theorem 3
together with Corollaries 3 and 4 allows theoretically moti-
vated trade-offs between the statistical and computational
efficiency of the estimator gλβ .

3.3. A Fast Approximation of Leverage Weighted RFF

As discussed in Sections 3.1 and 3.2, sampling according to
the empirical ridge leverage score distribution (i.e., leverage
weighted RFF) could speed up kernel methods. However,
computing ridge leverage scores is as costly as inverting the
Gram matrix. To address this computational shortcoming,
we propose a simple algorithm to approximate the empirical
ridge leverage score distribution and the leverage weights.

Algorithm 1 APPROXIMATE LEVERAGE WEIGHTED RFF

Input: sample of examples {(xi, yi)}ni=1, shift-invariant kernel
function k, and regularization parameter λ

Output: set of features {(v1, p1), · · · , (vl, pl)} with l and each
pi computed as in lines 3–4

1: sample s features {v1, . . . , vs} from p(v)
2: create a feature matrix Zs such that the ith row of Zs is

[z(v1, xi), · · · , z(vs, xi)]T

3: associate with each feature vi a real number pi such that pi is
equal to the ith diagonal element of the matrix

ZT
s Zs((1/s)Z

T
s Zs + nλI)−1

4: l←
∑s

i=1 pi and M ← {(vi, pi/l)}si=1

5: sample l features from M using the multinomial distribution
given by the vector (p1/l, · · · , ps/l)

In particular, we propose to first sample a pool of s features
from the spectral measure p(·) and form the feature matrix
Zs ∈ Rn×s (Algorithm 1, lines 1-2). Then, the algorithm
associates an approximate empirical ridge leverage score to
each feature (Algorithm 1, lines 3-4) and samples a set of
l� s features from the pool proportional to the computed
scores (Algorithm 1, line 5). The output of the algorithm
can be compactly represented via the feature matrix Zl ∈
Rn×l such that the ith row of Zl is given by zxi(v) =
[
√
l/p1z(v1, xi), · · · ,

√
l/plz(vl, xi)]

T .

The computational cost of Algorithm 1 is dominated by
the operations in step 3. As Zs ∈ Rn×s, the multi-
plication of matrices ZTs Zs costs O(ns2) and inverting
ZTs Zs + nλI costs only O(s3). Hence, for s � n, the
overall runtime is only O(ns2 + s3). Moreover, ZTs Zs =∑n
i=1 zxi(v)zxi(v)T and it is possible to store only the

rank-one matrix zxi(v)zxi(v)T into the memory. Thus, the
algorithm only requires to store an s × s matrix and can
avoid storing Zs, which would incur a cost of O(n× s).

The following theorem gives the convergence rate for the
expected risk of Algorithm 1 in the kernel ridge regression
setting (a proof can be found in Appendix E).

Theorem 4. Suppose the conditions from Theorem 1 ap-
ply to the regression problem defined with a shift-invariant
kernel k, a sample of examples {(xi, yi)}ni=1, and a reg-
ularization parameter λ. Let s be the number of random
Fourier features in the pool of features from Algorithm 1,
sampled using the spectral measure p(·) from Eq. (2) and
the regularization parameter λ. Denote with f̃λ

∗

l the ridge
regression estimator obtained using a regularization pa-
rameter λ∗ and a set of random Fourier features {vi}li=1

returned by Algorithm 1. If

s ≥ 7z20/λ log (16dλK)/δ and l ≥ 5dλ
∗

K log (16dλ
∗

K )/δ,

then for all δ ∈ (0, 1), with probability 1− δ, the expected
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risk of f̃λ
∗

l can be upper bounded as

E(f̃λ
∗

l ) ≤E(fH) + 2λ+ 2λ∗ +O(1/
√
n).

Moreover, this upper bound holds for l ∈ Ω( s
nλ ).

Theorem 4 bounds the expected risk of the ridge regres-
sion estimator over random features generated by Algo-
rithm 1. We can now observe that using the minimax choice
of the regularization parameter for kernel ridge regression
λ, λ∗ ∝ n−1/2, the number of features that Algorithm 1
needs to sample from the spectral measure of the kernel
k is s ∈ Ω(

√
n log n). Then, the ridge regression estima-

tor f̃λ
∗

l converges with the minimax rate to the hypothesis
fH ∈ H for l ∈ Ω(log n · log log n). This is a significant
improvement compared to the spectral measure sampling
(plain RFF), which requires Ω(n3/2) features for in-sample
training and Ω(

√
n log n) for out-of-sample test predictions.

The latter result can also be generalized to kernel support
vector machines and logistic regression. The convergence
rate of the expected risk, however, is at a slightly slower
O(
√
λ +
√
λ∗) rate due to the difference in the employed

loss function (see Section 3.2).

We conclude by pointing out that the proposed algorithm
provides an interesting new trade-off between the computa-
tional cost and prediction accuracy. In particular, one can
pay an upfront cost (same as plain RFF) to compute the
leverage scores, re-sample significantly fewer features and
employ them in the training, cross-validation, and prediction
stages. This can reduce the computational cost for predic-
tions at test points fromO(

√
n log n) toO(log n · log log n).

Moreover, in the case where the amount of features with
approximated leverage scores utilized is the same as in
plain RFF, the prediction accuracy would be significantly
improved as demonstrated in our experiment section below.

4. Numerical Experiments
In this section, we report the results of our numerical exper-
iments (on both simulated and real-world datasets) aimed at
validating our theoretical results and demonstrating the util-
ity of Algorithm 1. We first verify our results through a sim-
ulation experiment. Specifically, we consider a spline kernel
of order r where k2r(x, y) = 1 +

∑∞
i=1

1
m2r cos 2πm(x−

y) (also considered by Bach, 2017b; Rudi & Rosasco,
2017). If the marginal distribution of X is uniform on [0, 1],
we can show that k2r(x, y) =

∫ 1

0
z(v, x)z(v, y)q∗(v)dv,

where z(v, x) = kr(v, x) and q∗(v) is also uniform on
[0, 1]. We let y be a Gaussian random variable with mean
f(x) = kt(x, x0) (for some x0 ∈ [0, 1]) and variance σ2.
We sample features according to q∗(v) to estimate f and
compute the excess risk. By Theorem 1 and Corollary 1, if
the number of features is proportional to dλK and λ ∝ n−1/2,
we should expect the excess risk converging at O(n−1/2),

or at O(n−1/3) if λ ∝ n−1/3. Figure 1 demonstrates this
with different values of r and t.

Next, we make a comparison between the performances
of leverage weighted (computed according to Algorithm 1)
and plain RFF on real-world datasets. We use four datasets
from Chang & Lin (2011) and Dheeru & Karra Taniskidou
(2017) for this purpose, including two for regression and
two for classification: CPU, KINEMATICS, COD-RNA and
COVTYPE. Except KINEMATICS, the other three datasets
were used in Yang et al. (2012) to investigate the difference
between the Nyström method and plain RFF. We use the
ridge regression and SVM package from Pedregosa et al.
(2011) as a solver to perform our experiments. We evalu-
ate the regression tasks using the root mean squared error
and the classification ones using the average percentage of
misclassified examples. The Gaussian/RBF kernel is used
for all the datasets with hyper-parameter tuning via 5-fold
inner cross validation. We have repeated all the experiments
10 times and reported the average test error for each dataset.
Figure 2 compares the performances of leverage weighted
and plain RFF. In regression tasks, we observe that the upper
bound of the confidence interval for the root mean squared
error corresponding to leverage weighted RFF is below the
lower bound of the confidence interval for the error corre-
sponding to plain RFF. Similarly, the lower bound of the
confidence interval for the classification accuracy of lever-
age weighted RFF is (most of the time) higher than the
upper bound on the confidence interval for plain RFF. This
indicates that leverage weighted RFFs perform statistically
significantly better than plain RFFs in terms of the learning
accuracy and/or prediction error.

5. Discussion
We have investigated the generalization properties of learn-
ing with random Fourier features in the context of different
kernel methods: kernel ridge regression, support vector ma-
chines, and kernel logistic regression. In particular, we have
given generic bounds on the number of features required
for consistency of learning with two sampling strategies:
leverage weighted and plain random Fourier features. The
derived convergence rates account for the complexity of the
target hypothesis and the structure of the reproducing kernel
Hilbert space with respect to the marginal distribution of a
data-generating process. In addition to this, we have also
proposed an algorithm for fast approximation of empirical
ridge leverage scores and demonstrated its superiority in
both theoretical and empirical analyses.

For kernel ridge regression, Avron et al. (2017) and Rudi
& Rosasco (2017) have extensively analyzed the perfor-
mance of learning with random Fourier features. In partic-
ular, Avron et al. (2017) have shown that o(n) features are
enough to guarantee a good estimator in terms of its empir-
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Figure 1: The log-log plot of the theoretical and simulated risk convergence rates, averaged over 100 repetitions.

Figure 2: Comparison of leverage weighted and plain RFFs, with weights computed according to Algorithm 1.

ical risk. The authors of that work have also proposed a
modified data-dependent sampling distribution and demon-
strated that a further reduction on the number of random
Fourier features is possible for leverage weighted sampling.
However, their results do not provide a convergence rate for
the expected risk of the estimator which could still poten-
tially imply that computational savings come at the expense
of statistical efficiency. Furthermore, the modified sampling
distribution can only be used in the 1D Gaussian kernel case.
While Avron et al. (2017) focus on bounding the empirical
risk of an estimator, Rudi & Rosasco (2017) give a com-
prehensive study of the generalization properties of random
Fourier features for kernel ridge regression by bounding
the expected risk of an estimator. The latter work for the
first time shows that Ω(

√
n log n) features are sufficient to

guarantee the (kernel ridge regression) minimax rate and ob-
serves that further improvements to this result are possible
by relying on a data-dependent sampling strategy. How-
ever, such a distribution is defined in a complicated way
and it is not clear how one could devise a practical algo-
rithm by sampling from it. While in our analysis of learning
with random Fourier features we also bound the expected
risk of an estimator, the analysis is not restricted to kernel
ridge regression and covers other kernel methods such as
support vector machines and kernel logistic regression. In
addition to this, our derivations are much simpler compared
to Rudi & Rosasco (2017) and provide sharper bounds in
some cases. More specifically, we have demonstrated that
Ω(
√
n log log n) features are sufficient to attain the mini-

max rate in the case where eigenvalues of the Gram matrix
have a geometric/exponential decay. In other cases, we have
recovered the results from Rudi & Rosasco (2017). Another
important difference with respect to this work is that we
consider a data-dependent sampling distribution based on
empirical ridge leverage scores, showing that it can further

reduce the number of features and in this way provide a
more effective estimator.

In addition to the squared error loss, we also investigate the
properties of learning with random Fourier features using
the Lipschitz continuous loss functions. Both Rahimi &
Recht (2009) and Bach (2017b) have studied this problem
setting and obtained that Ω(n) features are needed to ensure
O(1/

√
n) expected risk convergence rate. Moreover, Bach

(2017b) has defined an optimal sampling distribution by
referring to the leverage score function based on the inte-
gral operator and shown that the number of features can
be significantly reduced when the eigenvalues of a Gram
matrix exhibit a fast decay. The Ω(n) requirement on the
number of features is too restrictive and precludes any com-
putational savings. Also, the optimal sampling distribution
is typically intractable. We provide a much simpler form of
the empirical leverage score distribution and demonstrate
that the number of features can be significantly smaller than
n, without incurring any loss of statistical efficiency.

Having given risk convergence rates for learning with ran-
dom Fourier features, we provide a fast and practical algo-
rithm for sampling them in a data-dependent way, such that
they approximate the ridge leverage score distribution. In
the kernel ridge regression setting, our theoretical analysis
demonstrates that compared to spectral measure sampling
significant computational savings can be achieved while
preserving the statistical properties of the estimator. We fur-
ther test our findings on several different real-world datasets
and verify this empirically. An interesting extension of our
empirical analysis would be a thorough and comprehensive
comparison of the proposed leverage weighted sampling
scheme to other recently proposed data-dependent strategies
for selecting good features (e.g., Rudi et al., 2018; Zhang
et al., 2018), as well as a comparison to the Nyström method.
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