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1. Additional Experimental Details for
permuted MNIST

For all MNIST experiment, we use fully connected layer
with three hidden layer, each with 300 hidden units, and one
shared output layer for our method. For all other methods
except pathnet and progressive net we used 3000 units in
the first layer and 300 for the rest. For pathnet, each module
in the first layer has 300 units, and the result layers has 30
units. We use 16 modules per layer, and 5 layers for pathnet,
and restrict each mutation to only use 3 modules besides
the output layer. For progressive net, the first layer has 300
units for each task, and the rest layers each has 30 units.
Therefore, all competitive methods are having more or the
same number of parameters as our methods.

For wvariational continual learning (VCL Nguyen
et al, 2018), we wused the official implemen-
tation at https://github.com/nvcuong/

variational-continual-learning. For fair
comparison with other methods, we set the coreset size to
zero for VCL.

For (Shin et al, 2017) we used implementa-
tion from https://github.com/kuc2477/
pytorch-deep-generative-replay. We tried
various hyper-parameter settings, however, we are unable to
get reasonable results on permutated MNIST. Performance
was reasonable when the number of tasks is within five
(average performance at around 96%). When number of
tasks go beyond five, performance drops on previous tasks
is quite significant. Reaching 60%

For DEN we use the official implementation at https://
github.com/jaehong-yoon93/DEN, and we used
Serra et al. (2018) implementation of HAT, EWC, and
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IMM at https://github.com/joansj/hat. We
used our own implemention for for Progressive Network
and PathNet. All methods are trained using the same permu-
tations and same subset of training data.

2. Additional Experimental Details for Split
CIFAR-100

For all CIFAR-100 experiment, we use an Alexnet like struc-
ture. It contains three convolution and max pooling layers
followed by two fully connected layers. The convolution
layers are of size (4,4), (3,3) and (2,2) with 64, 128 and
256 filters, respectively. All convolution layers are followed
by max pooling layer of size (2,2) and rectified linear ac-
tivations. The two fully connected layers each have 2048
hidden units.

3. Additional Experiments on Visual
Decathlon Dataset

In the multi-task continual learning experiments, the 10
tasks was trained in a random sequence except the first task
was fixed to be ImageNet. This is just for fair comparison
with other works such as Rebuffi et al. (2017) and Mallya &
Lazebnik (2018), they are all using a light weight module to
adapt ImageNet pretrained model to other of the 9 tasks. In
real case, the tasks can come in any order, thus our frame-
work would be much more flexible. As the tasks are trained
in sequence, a super model is maintained that all the newly
created weights and task-specific layers are stored. In this
ResNet-26 model, all the Batch Normalization (BN) layers
are treated as task-specific, which means each task has its
own sets of BNs. Here, we fixed the weight during retrain-
ing when “reuse” is selected in the search phase. This means
that the results of previous tasks would not be affected, i.e.
no forgetting. We leave the evaluation of forgetting in the
context of VDD dataset as future work.

In Table 1, we compare the results using our approach with
other baselines. ~Individual” means that each task is trained
individually and weights are initialized randomly. Clas-
sifier” means that only the last layer classifier could be
tuned while the former 25 layers are transfer from ImageNet
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ImNet C100 SVHN UCF OGIlt GTSR DPed Flwr Airc. DTD Tot.

8 =001 acc 69.84 7850 9533 7250 86.41 9997 99.76 66.01 5137 50.05 | 76.97
#params 6.07 0.15 2.74 2.28 6.17 3.59 1.02 0.19 4.15 0.13 | 26.49

B=01 acc 69.84 7959 9528 72.03 86.60 99.72 9952 7127 53.01 49.89 | 77.68
#params 6.07 0.34 1.19 1.32 3.19 0.02 0.27 0.16 1.86 0.04 | 1446

B=10 acc 69.84 78.00 9340 63.83 8430 99.78 99.01 65.77 39.27 48.77 | 74.20
# params 6.07 0.04 0.03 0.12 0.66 0.02 0.01 0.02 0.35 0.02 7.34

Table 1. Comparison of (top-1) validation classification accuracy (%) and total model size (in Million) on Visual Domain Decathlon

dataset with parameter loss factor 8 of 0.01, 0.1, 1.0.

pretrained model and kept fixed during training. In this
case, each task only adds a task-specific classifier and BN,
thus the overall model size is small. ”Adapter” add a 1x1
conv layer besides each 3x3 conv layer, and the outputs
will be added before proceed to the next layer. Due to the
lightweight 1x1 conv layer, each task will add approximately
1/9 of the whole model size. As shown in table 1, the results
achieved by our framework is better than other baselines and
the total model size is similar to ”Adapter” case. We can see
that our approach gives best results in five out of nine tasks.
Especially in task with small data size, e.g. VGG-Flowers
and Aircraft, our method outperforms other baselines by a
large margin.

Due to each choice has different parameter cost, we add
a parameter loss function to L,; to penalize the choices
that cost additional parameters. And the value of the loss
function is proportional to the product of the additional
parameter size and its corresponding weight value . In
table 2, we test it with three different scaling factor 5 of
the parameter loss. We found that the scaling factor 3 can
control the additional parameter size for each task. And we
find that 8 = 0.1 gives the best average accuracy and can
control the total model size approximate 2.3x compared
with the original model size.
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Figure 1. Statistics for performance and number of added parame-
ters for each task of VDD dataset with 4 random task ordering. The
first task is kept with ImageNet due to its large size and long train-
ing time. We observed that both accuracy and parameter growth
are robust to different task ordering.
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