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Abstract
Addressing catastrophic forgetting is one of the
key challenges in continual learning where ma-
chine learning systems are trained with sequential
or streaming tasks. Despite recent remarkable
progress in state-of-the-art deep learning, deep
neural networks (DNNs) are still plagued with
the catastrophic forgetting problem. This paper
presents a conceptually simple yet general and
effective framework for handling catastrophic for-
getting in continual learning with DNNs. The
proposed method consists of two components:
a neural structure optimization component and
a parameter learning and/or fine-tuning compo-
nent. By separating the explicit neural structure
learning and the parameter estimation, not only
is the proposed method capable of evolving neu-
ral structures in an intuitively meaningful way,
but also shows strong capabilities of alleviating
catastrophic forgetting in experiments. Further-
more, the proposed method outperforms all other
baselines on the permuted MNIST dataset, the
split CIFAR100 dataset and the Visual Domain
Decathlon dataset in continual learning setting.

1. Introduction
Learning different tasks continuously is a common and prac-
tical scenario that happens all through the course of human
learning. The learning of new skills from new tasks usually
does not have negative impact on the previously learned
tasks. Furthermore, with learning multiple tasks that are
highly related, it often helps to advance all related skills.
However, this is commonly not the case in current machine
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learning with deep neural networks (DNNs). When pre-
sented a sequence of learning tasks, DNNs experiences
so called “catastrophic forgetting” problem (McCloskey &
Cohen, 1989; Ratcliff, 1990), where they usually largely
“forget” previously learned tasks after trained for a new task.
This is an interesting phenomenon that has attracted lots of
research efforts recently.

To overcome catastrophic forgetting, approaches such as
Elastic Weight Consolidation (EWC Kirkpatrick et al., 2017)
and synaptic intelligence (Zenke et al., 2017) introduce con-
straints to control parameter changes when learning new
tasks. However, forgetting is still non-negligible with these
approaches, especially when the number of tasks increases.
Forgetting is also addressed with memory-based methods,
where certain information regarding learned tasks are stored
to help retaining the performance of the learned tasks (see
Lopez-Paz et al., 2017; Sener & Savarese, 2018, for exam-
ple). Additionally, there are methods (Mallya & Lazebnik,
2018; Rebuffi et al., 2017a; 2018; Mancini et al., 2018) that
learn multiple domains and completely avoid forgetting by
adding a small amount of parameters while the previously
estimated parameters are kept fixed. However, these models
rely on a strong base network and knowledge transferability
is limited mainly between two consecutive tasks.

Most of the current approaches in continual learning with
DNNs couple network structure and parameter estimation
and usually apply the same model structure for all tasks.
In this paper, we propose to explore a more intuitive and
sensible approach, that is to learn task specific model struc-
tures explicitly while retaining model primitives sharing,
decoupling from model parameter estimation1. Different
tasks may require different structures, especially if they are
not relevant, so it may not make much sense to employ the
same structure in learning. For example, consider the tasks
of learning digit and face recognition DNNs, the lower level
layers (features) required for the two tasks are likely to be
drastically different, thus entailing different overall struc-
tures that have task specific low level layers. Forcing the

1The structure that referred here is more fine-grained, such as
number of layers, type of operations at each layer, etc. It does not
refer to generic structure names like convolutional neural networks
or recurrent neural networks.
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same structure for these tasks is likely to cause catastrophic
forgetting for one task (e.g., digit recognition) after the other
task (e.g., face recognition) is trained. On the other hand,
if different tasks learn to explore different structures and
grow their specific components accordingly, it still has the
potential to share common feature layers while maximizing
the performance for new tasks.

In this paper, we present a learn-to-grow framework that
explicitly separates the learning of model structures and the
estimation of model parameters. In particular, we employ
architecture search to find the optimal structure for each
of the sequential tasks. The search accounts for various
options, such as sharing previous layers’ parameters, in-
troducing new parameters, and so on. After the structure
is searched, the model parameters are then estimated. We
found that 1) explicitly continual structure learning makes
more effective use of parameters among tasks, which leads
to better performance and sensible structures for different
tasks; 2) separating the structure and parameter learning
significantly reduced catastrophic forgetting as compared
to other baseline methods with similar model complexities.

2. The Proposed Learn-to-Grow Framework
2.1. Problem Definition of Continual Learning

Consider a sequence of N tasks, denoted by T =
(T1, T2, ..., TN ). Each task Tt has a training dataset,
D(t)
train = {(x(t)i , y

(t)
i ); i = 1, · · · , nt}, where y(t)i is the

ground-truth annotation (e.g., a class label) and nt is the
number of training examples. Let Dtrain = ∪Nt=1D

(t)
train be

the entire training dataset for all tasks. Similarly, denote
by D(t)

test the test dataset for a task Tt. Denote by f(·; Θt)
the model (e.g., a DNN) in learning where Θt collects all
learned parameters up to the current task Tt (inclusive). The
model gets to observe tasks from 1 to N sequentially. After
the model is trained on a task Tt using its training dataset
D(t)
train, both D(t)

train and D(t)
test will not be available in train-

ing tasks from Tt+1 to TN . The main objective of contin-
ual learning is to maximize the performance of f(·; Θt) at
the task Tt while minimizing the forgetting for tasks from
T1 to Tt−1, all being evaluated in their test datasets D(t′)

test

(1 ≤ t′ ≤ t). Ideally, we would like to minimize the follow-
ing objective function in this continual learning setting,

L(ΘN ;Dtrain) =

N∑
t=1

Lt(Θt;D(t)
train) (1)

Lt(Θt;D(t)
train) =

1

nt

nt∑
i=1

`t(f(x
(t)
i ; Θt), y

(t)
i ) (2)

where `t is the loss function for task Tt (e.g., the cross-
entropy loss) and the model regularizer term is omitted for
notion simplicity. However, since we do not have access to
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Figure 1. Illustration of different continual learning approaches. a)
All but the task specific layer are shared, catastrophic forgetting is
countered by techniques that prevents parameters to move to lower
energy regions of previous tasks. b) Each task will add some fixed
task specific parameters, all layers’ original weights are not tuned,
and thus prevents forgetting. c) Our approach, where network
structure is learned by architecture search. In this example, the
search result decides to “reuse” the first two layer, do “adaptation”
for the 3rd layer and allocate “new” weight for the 4th layer.

all datasets at the same time, the above objective function
(Eqn. 1) can not be directly computed and then minimized.
The challenge is to maintain

∑t−1
t′=1 Lt′(Θt′ ;D(t′)

train) not
to change too much without explicitly measuring it due to
the streaming setting, while estimating Θt via minimizing
Eqn. 2 in isolation.

As illustrated in Fig. 1 (b), one straightforward solution is
to keep Θt−1 fixed when learning Θt = Θt−1 ∪ θt to avoid
catastrophic forgetting completely, where θt is the new pa-
rameters introduced for a new task Tt. How to introduce θt
for each task sequentially is usually hand-crafted and some
simple heuristics are often used, e.g., by adding some extra
channels for each layer in a DNN. By doing this, the model
will become more and more complicated for incoming tasks
and Θt−1 is “artificially” enforced to be reused for a new
task Tt without accounting for their potential dissimilarities.
So, the computational efficiency and accuracy performance
of new tasks are traded-off for avoid catastrophic forgetting.

As illustrated in Fig. 1 (a), another way of addressing catas-
trophic forgetting is to utilize a single set of parameters Θ
for all tasks, and control the changes of parameter values
from Θt−1 to Θt using some statistically inspired functions
such as the Fisher information criterion used in EWC (Kirk-
patrick et al., 2017). Following this direction, the accuracy
performance of new tasks are usually suffered from the
constrained parameter space and well-designed initial mod-
els are entailed for ensuring reasonably good performance
across tasks. Furthermore, the effectiveness of the parame-
ter change control functions is often unknown as the number
of tasks increases at scale.

2.2. Our Proposed Learn-to-Grow Framework

In our learn-to-grow framework (Fig. 1 (c)), we adopt the
growing strategy as stated above in learning Θt = Θt−1∪θt.
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But, we learn to “grow” θt on top the previously trained
model Θt−1 and to exploit Θt−1 in a flexible way without
enforcing to reuse all of them. Our proposed method is also
complementary to the elastic parameter strategy as used in
EWC. For the learned-to-reuse parameters in Θt−1, we can
either keep them fixed or allow them to change subject to
some elastic penalty functions. So, the proposed method can
harness the best of both, and is capable of avoid catastrophic
forgetting of old tasks completely without sacrificing the
computational efficiency and accuracy performance of new
tasks. We introduce st(Θt) to indicate the task-specific
model for task Tt. The loss function (Eqn. 2) is changed to,

Lt(st(Θt)) =
1

nt

nt∑
i=1

`t(f(x
(t)
i ; st(Θt)), y

(t)
i ) (3)

Now the structure is explicitly taken into consideration when
learning all the tasks. When optimizing the updated loss
function in Eqn. 3, one needs to determine the optimal
parameter based on the structure st. This loss can be viewed
in two ways. One can interpret it as selecting a task specific
network from a ‘super network’ that has parameter Θ using
st, or for each task we train a new model with parameter
st(Θt). There is a subtle difference between this two views.
The former one has an constraint on the total model size,
while the latter one does not. So, in the worst case scenario
of the latter, the model size will grow linearly as we increase
the number of tasks. This would lead to a trivial solution –
training completely different models for different tasks and
is no longer continual learning! To address this problem, we
propose the following penalized loss function,

Lt(st(Θt)) =
1

nt

nt∑
i=1

`t(f(x
(t)
i ; st(Θt)), y

(t)
i )+

βtRst (st) + λtRpt (Θt) (4)

where βt > 0, λt ≥ 0,Rst andRpt represent the regularizers
for the network structure and model parameters respectively.
For instance, one can use `2 regularization for Rpt when
optimizing model parameters, and Rst can be as simple
as the (log) number of parameters. In this way, the total
number of parameters are bounded from above, and the
degenerate cases are thus avoided.

3. Our Implementation
It is a challenging problem to optimize the loss described in
Eqn. 4, since it involves explicit optimization of the structure
of the model. In our implementation, we focus on continual
learning with DNNs. The proposed method consists of two
components: a neural structure optimization component and
a parameter learning and/or fine-tuning component. The
former learns the best neural structure for the current task
on top of the current DNN trained with previous tasks. It

learns whether to reuse or adapt building blocks or layers
in the current DNN, or to create new ones if needed under
the differentiable neural architecture search framework (Liu
et al., 2018). The latter estimates parameters for newly in-
troduced structures, and fine-tunes the old ones if preferred.
We present details in the following sections (see Fig. 2).

3.1. Structure Optimization

We employ neural architecture search (NAS) for structure
optimization. Before we move on to further details, we
adopt a further simplification that a global network topology
is given and could work for all tasks of interest, such as a
ResNet (He et al., 2016). We optimize the wiring pattern
between layers and their corresponding operations. It is
straightforward to extend this to more complicated cases,
e.g., by utilizing NAS at the first task.

Consider a network with L shareable layers and one task-
specific layer (i.e. last layer) for each task. A super network
S is maintained so that all the new task-specific layers and
new shareable layers will be stored into S.

The goal of search is to seek the optimal choice for each of
the L layers, given the current task data D(t)

train and all the
shareable layers’ weights stored in S . The candidate choices
for each layer are defined by: “reuse”, “adaptation”
and “new”. The reuse choice will make new task use the
same parameter as the previous task. The adaptation op-
tion adds a small parameter overhead that trains an additive
function to the original layer output. The new operator will
spawn new parameters of exactly the same size of the current
layer parameters. Here, we denote the size of the lth layer
in super network S as |Sl|. The total number of choices
in the lth layer Cl is 2|Sl| + 1, because we will have |Sl|
”reuse”, |Sl| ”adaptation” and l ”new”. Thus, the
total search space is

∏L
l Cl. One potential issue here is that,

in the worst case, the search space may grow exponentially
with respect to the number of tasks. One way of addressing
this is to limit the total number of possible choices, and
maintain a priority queue for learning the options. We do
not find this necessary in all of our experiments.

Similar to DARTS (Liu et al., 2018), to make the search
space continuous, we relax the categorical choices of the
lth layer as a Softmax over all possible Cl choices, i.e.
xl+1 =

∑Cl

c=1
exp(αl

c)∑Cl
c′=1

exp(αl
c′ )
glc(xl) Here, the vector αl of

dimension Cl is the architecture weights that are used for
mixing the choices for each sharable layer. And glc here is
the operator for the choice c at layer l which is expressed as:

glc(xl) =


Slc(xl) if c ≤ |Sl|,
Slc(xl) + γlc−|Sl|(xl) if |Sl| < c ≤ 2|Sl|,
ol(xl) if c = 2|Sl|+ 1

(5)



Learn to Grow for Overcoming Catastrophic Forgetting

S1

              (a)                (c) 

S1

S2 S2

S3

S4 S4S4

T

         (b) 

S1

S3

Tk

S4

S2

S1

               (d) 

S1

S2 S2

S4 S4S4

T

S3 S3

S2

S1S1 S1

S2S2 S2S2

S4 S4S4 S4S4 S4S4

Tk

α1

S3S3 S3

,

α2

,,, ,

,
α3

,, ,, ,,,, ,
α4

,

,,

,

, ,,

,

,

, ,,

Input

Reused weight

New weight

Adapter

Task specific 
layer (prev)

Task specific 
layer (current) 

      

      

      

Figure 2. Illustration of the proposed learn-to-grow framework. a) Current state of super model. In this example, the 1st and 3rd layers have
single copy of weight, while the 2nd and 4th has two and three respectively. b) During search, three options, “reuse”, “adaptation”
and “new” are utilized. α is the weight parameters for the architecture. c) Parameter optimization with selected architecture on the current
task k. d) Update super model to add the newly created S′

3. See text for details.

Here, γ is the adaption operation and o the new opera-
tion to be trained from scratch. After this relaxation, the
task of discrete search is posed as optimizing a set of con-
tinuous weights α =

{
αl
}

. After the search, the optimal
architecture is obtained by taking the index with the largest
weight αlc for each layer l, i.e. cl = arg maxαl.

Adopting the training strategy from DARTS, we split the
training dataset D(t)

train into two subsets: a validation subset
for NAS, and a training subset for parameter estimation. We
use validation loss Lval to update the architecture weights
α, while the parameters are estimated by the training loss
Ltrain. The architecture weights and parameters are up-
dated alternately during the search process. Because it is a
nested bi-level optimization problem, the original DARTS
provide a second-order approximation for more accurate
optimization. In this work, we find it is sufficient to use the
simple alternately updating approach, which was referred
as the first-order approximation in (Liu et al., 2018).

To make it clear how “reuse”, “adaptation” and
“new” operations work, we walk through a concrete ex-
ample in the following. Let us take a convolutional neural
network (CNN) with all the layers using 3× 3 kernel size
as an example. The choice of “reuse” is just using the
existing weights and keep them fixed during learning, thus
there is no additional parameter cost. For “adaptation”,
it uses a 1× 1 convolution layer added to the original 3× 3
convolution layer in parallel, similar to the adapter used
in (Rebuffi et al., 2017a). During training, the weight of
the original 3× 3 kernel is kept fixed, while the parameters
of the 1× 1 adapter is learned. In this case, the additional
parameter cost is only 1/9 of the original parameter size.
For the “new” operation, it introduces a replicated 3 × 3
layer that is initialized randomly and trained from scratch.
We make use of the loss function Lval to implement the

regularizer Rsi (si). The value of the regularizer is set pro-
portional to the product of the additional parameter size zlc
and its corresponding weight αlc (i.e. Rsi (si) =

∑
c,l α

l
cz
l
c).

The architecture weights α is optimized in terms of both
accuracy and parameter efficiency at the same time.

3.2. Parameter Optimization

After the search, we retrain the model on the current task.
There are two strategies to deal with “reuse”, we can ei-
ther fix it unchanged during retraining just as in search, or
fine-tune it with some regularization – simple `2 regulariza-
tion or more sophisticated methods such as the EWC (Kirk-
patrick et al., 2017). The former strategy could avoid forget-
ting completely, however it will lose the chance of getting
positive backward transfer, which means the learning of
new tasks may help previous tasks’ performance. When
the search process select “reuse” at layer l, it means that
the lth layer tends to learn very similar representation as
it learned from one of the previous tasks. This indicates
semantic similarity learned at this layer l between the two
tasks. Thus, we conjecture that fine-tuning the “reuse”
lth layer with some regularization could also benefit the
previous tasks (elaborated in experiments)After retraining
on the current task, we need to update/add the created and
tuned layers, task-specific adapters and classifiers in the
maintained super network.

4. Experiments
In this section, we first test two main hypotheses that moti-
vate our proposed learn-to-grow framework and then com-
pare with state-of-the-art continual learning approaches.
First, will sensible model architectures be sought via the
explicit structure learning for new tasks? Second, will the
optimized structure results in better continual learning, i.e.,
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(b)(a)

Figure 3. Results on permutated MNIST dataset. a) Comparing
our method (fix, tune reuse with and without regularization) with
SGD and EWC on the average accuracy over the seen tasks. b)
Ablation experiments of ”new” different layers in terms of average
accuracy over the seen tasks.

overcoming catastrophic forgetting? We test these two hy-
potheses on two datasets: the permuted MNIST and the
visual domain decathlon dataset (Rebuffi et al., 2017a). The
permuted MNIST dataset is a simple image classification
problem that derived from the MNIST handwritten digit
dataset (Yann LeCun, 1998), which is commonly used as
benchmark in the continual learning literature (Kirkpatrick
et al., 2017; Lopez-Paz et al., 2017; Zenke et al., 2017). For
each task, a unique fixed random permutation is used to
shuffle the pixels of each image, while the annotated label is
kept fixed. The visual decathlon dataset (VDD) consists
of 10 image classification tasks – ImageNet, CIFAR100, Air-
craft, DPed, Textures, GTSRB, Omniglot, SVHN, UCF101
and VGG-Flowers. The images of all the tasks are rescaled
with the lower-edge being 72 pixels. The tasks are across
multiple domains with highly imbalanced dataset, which
makes it a good candidate to investigate the continual learn-
ing problem and analyze potential inter-task transfer, either
forward or backward.

For experiments in permuted MNIST, we use a 4-layer fully-
connected networks with 3 feed-forward layers and the 4th
layer is the shared softmax classification layer across all
tasks. This corresponds to the so called ‘single head’ setup
(Farquhar & Gal, 2018). We choose to use this setting
because for the permuted MNIST dataset all the tasks share
the same semantics, and sharing the task classifier is a more
reasonable design choice. We test our method in learning
the 10 permuted MNIST tasks in sequence. For simplicity,
we only use two options, “reuse” and “new” during the
structure optimization.

For experiments in VDD, we use a 26-layer ResNet (He
et al., 2016) as the base network to learn the first task. This
network consists of 3 basic residual blocks with output
feature channels being 64, 128 and 256 respectively. At the
end of each residual block, the feature resolution is halved
by average pooling. We adopt all the three options during
the search. For “adaptation”, a 1× 1 convolution layer
is used as the adapter.

Reuse

Adaptation

New

ImageNet CIFAR100 ImageNet Omniglot

(a)                                                    (b)

Figure 4. Visualization of searched architecture with learning two
tasks sequentially. The search are based on the super model
obtained by training ImageNet as first task. (a) and (b) shows
searched architecture on CIFAR100 and Omniglot task respec-
tively.

4.1. Are Sensible Structures Sought in Learn-to-Grow?

For the permuted MNIST dataset, we may expect that a
sensible evolving architecture for the 10 tasks tends to share
higher level layers due to the same task semantics, but to
differ at lower layers accounting for the pixel shuffling.
Interestingly, our experiments show that the structure opti-
mization indeed selects the same wiring pattern that applies
“new to the first layer and “reuse to the remaining layers
in all the 10 tasks. This shows that the structure optimization
component is working properly.

Although the learned wiring patterns are intuitive, we per-
form further experiments to address what if we force to use
“new for the learned “reuse" layers? We enumerate and
compare the three settings that the i-th layer is “new” and
others are “reuse” (i = 1, 2, 3). In the results, we found
that the learned pattern is actually the best choice compared
with the other two settings (see Fig. 3 b).

In VDD, we test our method between two tasks. As shown
in Fig. 4 (a), when the two tasks are similar (ImageNet and
CIFAR-100, both consisting of natural images), most of the
layers are shared for these two tasks. When two drastically
different tasks are used, e.g., ImageNet and Omniglot, as
Fig. 4 (b) shows, most layers in the learned structure select
the “new” option.

The above experimental results show that the proposed struc-
ture optimization does result in sensible task specific struc-
tures with proper model primitive sharing. The learned task
structure tends to share when the semantic representation of
corresponding layers are similar, and spawn new parameters
when the required information is very different.

4.2. Are Forgetting Addressed in Learn-to-Grow?

Obviously, if the “reuse” layers are kept fixed in learning,
our method does not have any forgetting. We are interest in



Learn to Grow for Overcoming Catastrophic Forgetting

              ImNet                      GTSR
C100                       DPed
SVHN     Flwr
UCF     Airc
OGlt     DTD

              

              

              Baseline (Shared)

Ours (Tune) 

Figure 5. Comparisons of the catastrophic forgetting effects be-
tween our proposed approach and the baseline in VDD.

how significant the forgetting will be when we fine-tune the
“reuse" layers.

We first test this in the permuted MNIST. As a baseline,
we show that simply updating all the layers with stochastic
gradient descent (SGD) from task to task (i.e., the setting
in Fig. 1 (a)) results in catastrophic forgetting (see Fig. 3
(a)). After training the 10 tasks sequentially, the average
accuracy dropped from 97.9% to 63.0%. With the EWC
used in learning (Kirkpatrick et al., 2017), the forgetting
is alleviated and the average accuracy is 96.8%. For our
proposed learn-to-grow approach, we show that tuning the
“reuse” layers by using a simple l2 based regularization
on previous task parameters (i.e. ‖Θi −Θj‖22, where Θi is
the parameters for the current task and Θj is the parameters
from the j-th task that selected to reuse) is sufficiently safe
in terms of eliminating the forgetting. Both strategies, fixing
the “reuse" layers or fine-tuning them with simple l2 reg-
ularization can keep the overall accuracy as high as training
each task individually (see Fig. 3 (a)). Encouraged by the
above result, we further conduct experiments by tuning the
“reuse” layers with smaller learning rate without using any
regularization. In other words, we do not add any regulariza-
tion to the parameters to mitigate forgetting among different
tasks. The results are shown in Fig. 3 (a), which almost have
the same behavior compared to the l2 regularization. This
suggests that the learned structures actually make sense in
terms of the “reuse" decisions, and the reused parameters
are near-optimal for specific tasks.

We continue to test this in VDD. A predefined order of the
ten tasks is used: ImageNet, CIFAR-100, SVHN, UCF101,
Omniglot, GTSR, DPed, Flower, Aircraft and Textures (re-
sults for different ordering are provided in the supplemen-
tary material). As a baseline, we also train a model that
shares all layers in the backbone and updates them from
task to task. The baseline model and our learn-to-grow
model are trained with similar settings as in the permuted
MNIST experiments, and we choose not to use any regu-
larization for fine-tuning the “reuse" layers due to the

(b)(a)

Figure 6. Distance between the tuned parameters at each task and
the parameters of the very first task in VDD experiments. a) First
layer parameter distance, and b) Last layer parameter distance.
Baseline indicates the result from tuning all layers using SGD.

positive results we obtain in the permuted MNIST experi-
ment. As can be seen from Fig.5, our learn-to-grow method
significantly outperforms the baseline approach.

We also compare with other baselines in VDD and the re-
sults are shown in Table. 1. Our method obtains the best
overall results and the total model size is similar to the
“adapter” approach (Rebuffi et al., 2017a)2. Our approach
obtains the best results in five out of nine tasks. Especially
in tasks with small data size, e.g. VGG-Flowers and Air-
craft, our method outperforms other baselines by a large
margin.

To analyze why the simple fine-tuning strategies for the
“reuse” layers work, we calculate the l2 distance between
the parameters before and after fine-tuning for each task in
VDD. We want to check if the “reuse” layers are almost
at an optimal position for the current task to use (i.e., the l2
distance will be relatively small). Fig. 6 (a) and (b) show
the `2 distances between the parameters learned in the very
first task and those after tuned in the following tasks for
the first and last layers respectively. It is clear that the fine-
tuned parameters in our learn-to-grow method do not move
far away from the original location in the parameter space
as compared to the baseline method, which explains why
our method has less forgetting in fine-tuning the “reuse"
layer3. In addition, we notice that the distances in our meth-
ods are more or less at the same scale across all layers. This
may attribute to the fact that the learn-to-grow of parameters
and structures is explicitly optimized, and thus the selected
ones are more compatible with a new task. Therefore, less
tuning is required for the new task and hence smaller dis-
tances.

Experimental results in this section show that the explicitly
continual structure learning is important. With the proper
structures learned, all the relevant parameters from previ-

2The adapter proposed by Rebuffi et al. is targeted for the VDD
dataset, which is not a continual learning method.

3Similar trend of the distances between parameters across tasks
was found for all layers. In general, the higher a layer is in the
network the more the parameter moves for the baseline method,
whereas for our learn-to-grow method the distances are typically
very small.
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Model ImNet C100 SVHN UCF OGlt GTSR DPed Flwr Airc. DTD avg. #params
Individual 69.84 73.96 95.22 69.94 86.05 99.97 99.86 41.86 50.41 29.88 71.70 58.96M
Classifier 69.84 77.07 93.12 62.37 79.93 99.68 98.92 65.88 36.41 48.20 73.14 6.68M
Adapter 69.84 79.82 94.21 70.72 85.10 99.89 99.58 60.29 50.11 50.60 76.02 12.50M
Ours (fix) 69.84 79.59 95.28 72.03 86.60 99.72 99.52 71.27 53.01 49.89 77.68 14.46M

Table 1. Results of the (top-1) validation classification accuracy (%) on Visual Domain Decathlon dataset, top-2 performance are
highlighted. The total model size (“#params”) is the total parameter size (in Million) after training the 10 tasks. Individual indicates
separate models trained for different tasks. Classifier denotes that a task specific classifier (i.e. the last softmax layer) is tuned for each
task. Adapter refers to methods proposed by Rebuffi et al.(Rebuffi et al., 2017a).

ous tasks can be exploited. Additionally, since the way to
leverage these parameters are learned through the structure
optimization, much less tuning is required for better perfor-
mance on new tasks, and forgetting can thus be overcomed.

4.3. Comparisons with State-of-the-Art Methods

We compare our learn-to-grow method with other recent
continual learning approaches – Lee et al. (2017b, DEN),
Serrà et al. (2018, HAT), Kirkpatrick et al. (2017, EWC),
Lee et al. (2017b, IMM), Rusu et al. (2016, ProgressiveNet),
Fernando et al. (2017, PathNet), Nguyen et al. (2018, VCL).
We compare the performance of various methods in the
permuted MNIST dataset with 10 different permutations.
Since our model adds more parameters, for fair comparisons
we also train other methods with comparable or more pa-
rameters. In particular, since our model tends to add new
parameters at the first layer, for all methods we increase the
number of neurons in the first hidden layer by ten times, so
that theoretically they could learn exactly the same structure
as our model. We also tried to compare with Shin et al.
(2017), however, we are unable to get reasonable perfor-
mance, and hence the results are not included. The results
are shown in Fig. 7 (a) and Table 2. It is clear that our
method, either tuned with or without regularization, per-
forms competitive or better than other methods on this task.
This result suggests that although theoretically, structure can
be learned along with parameter, in practice, the SGD-based
optimization schema have a hard time achieving this. This in
turn indicates the importance of explicitly taking continual
structure learning into account when learning tasks contin-
uously. Although both DEN and our method dynamically
expand the network, our performance is much better, which
is attributed to the ability of learning new structures for dif-
ferent tasks. Additionally, our model performs competitive
as or better than the methods that completely avoids forget-
ting by fixing the learned weights, such as ProgressNet and
PathNet, without enforcing such restrictions.

We further compare with other methods in the split CIFAR-
100 dataset (Lopez-Paz et al., 2017), where we randomly
partition the classes of CIFAR-100 into 10 disjoint sets, and
regard learning each of the 10-class classification as one
task. Different from the permuted MNIST, the split CIFAR-
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Figure 7. Performance comparisons in a) permuted MNIST and b)
split CIFAR-100 dataset. Methods include Kirkpatrick et al. (2017,
EWC), Lee et al. (2017b, IMM), Fernando et al. (2017, PathNet
(PN)), Rusu et al. (2016, Progressive Net (PG)), Serrà et al. (2018,
HAT), Lee et al. (2017b, DEN), Nguyen et al. (2018, VCL), ours
(w/o reg) denotes the case where finetuning for current tasks is
done without using any regularization to prevent forgetting, and
ous represents the case where the `2 regularization is used.

100 presents a continual learning scenario where the input
distribution is similar (i.e., natural images) whereas the out-
put distribution is different (disjoint classes). We choose to
use Alexnet (Krizhevsky et al., 2012) as the network struc-
ture, and all methods are constrained to have comparable
model complexities. This network structure contains three
convolution and max pooling layers and two fully connected
layers before the last classification layer. Comparison re-
sults are shown in Fig 7 (b) and Table 3. Similar results
as the MNIST experiment are obtained in this experiment.
Interestingly, for all tasks, our method always seeks the
structures that use new parameters for the last convolution
layer and reuse the rest of the network parameters. It makes
sense since the lower layer features are shared accounting
for the similar input distribution, and the higher ones need
to be specific for different tasks due to different output dis-
tribution. The fully connected layers are all selected to be
“reused” instead of “new”, and this may be because of
the relatively large capacity that is sufficiently powerful to
learn the subsequent tasks.

5. Related Work
Continual learning (Thrun & Mitchell, 1995) remains a long
standing problem, as models have the tendency to forget
previously learned knowledge when trained on new informa-
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Method Acc (%) #params
SGD 72.51 3.35M
EWC 96.75 3.35M
IMM 95.00 3.35M
VCL 95.32 3.35M
HAT 97.98 3.46M
PN 96.18 3.96M
PG 97.81 3.05M

DEN 97.71 3.53M
Ours (fix) 98.46 2.56M

Ours (tune) 98.29 2.56M
Ours (tune+L2Reg) 98.48 2.56M

Table 2. Results of different continual learning approaches on 10
permutated MNIST datasets. The averaged accuracy after all 10
tasks are learned and total number of parameters are compared.

Method Acc (%) #params
SGD 21.02 6.55M
EWC 74.23 6.55M
IMM 63.13 6.55M
HAT 74.52 6.82M
PN 60.48 7.04M
PG 68.32 6.80M

Ours (fix) 75.31 6.86M
Ours (tune) 75.05 6.86M

Ours (tune+L2Reg) 76.21 6.86M

Table 3. Results of different continual learning approaches on split
CIFAR100 dataset. The averaged accuracy after all 10 tasks are
learned and total number of parameters are compared.

tion (Thrun & Mitchell, 1995; McCloskey & Cohen, 1989).
This is referred as the catastrophic forgetting problem in the
literature. Early attempts to alleviate catastrophic forgetting
include memory systems that store previous data and replay
the stored old examples with the new data (Robins, 1995),
and similar approaches are still used in the latest develop-
ment (Rebuffi et al., 2017b; Li et al., 2018; Lopez-Paz et al.,
2017). Shin et al. (2017) proposes to learn a generative
model to capture the data distribution of previous tasks, and
both generated samples and real samples from the current
task are used to train the new model so that the forgetting
can be alleviated.

On the one hand, a typical class of methods for mitigat-
ing catastrophic forgetting relies on regularization which
imposes constraints on the update of model parameters.
Kirkpatrick et al. (2017) proposes elastic weight consoli-
dation (EWC) whose objective is to minimize the change
of weights that are important to previous tasks through the
use of a quadratic constraint. Zenke et al. (2017) proposes
to alleviate catastrophic forgetting by allowing individual
synapse to estimate their importance for solving learned
tasks, then penalizing the change on the important weights.
Schwarz et al. (2018) presents a method that divides the
learning into two phases – progress and compress. During
the progress phase, the model makes use of the previous
model for learning the new task. In the compress phase, the

newly learned model is distilled into the old model using
EWC to alleviate forgetting. Serrà et al. (2018) proposes to
use attention mechanism to preserve performance for previ-
ous tasks. Other methods could also completely avoid for-
getting by preventing changes to previous task weights (see
for example Rusu et al., 2016; Mallya & Lazebnik, 2018;
Fernando et al., 2017).

On the other hand, another class of methods for continual
learning is allowing the model to expand. Dynamically
expandable networks (Lee et al., 2017a) select whether to
expand or duplicate layers based on certain criteria for a
new task. However, the model for the new task is forced to
use the old structure from previous tasks. Similar strategies
are adopted in progressive networks (Rusu et al., 2016). Our
proposed learn-to-grow framework is more flexible, thanks
to the structure optimization via NAS. PathNet (Fernando
et al., 2017) selects paths between predefined modules, and
tuning is allowed only when an unused module is selected.
Our method does not have any restriction on tuning parame-
ters from previous tasks.

Our method also relates to neural architecture search (Stan-
ley & Miikkulainen, 2002; Zoph & Le, 2016; Baker et al.,
2017; Liu et al., 2018), as we employ search methods
to implement the structure optimization. In particular,
DARTS (Liu et al., 2018) is used for efficiency, where a
continuous relaxation for architecture search is proposed.

6. Conclusion
In this paper, we present a simple yet effective learn-to-grow
framework for overcoming catastrophic forgetting in contin-
ual learning with DNNs, which explicitly takes into account
continual structure optimization via differentiable neural
architecture search. We introduce three intuitive options for
each layer in a give model, that is to “reuse”, “adapt”
or “new” it in learning a new task. In experiments, we ob-
served that the explicit learning of model structures leads
to sensible structures for new tasks in continual learning
with DNNs. And, catastrophic forgetting can be either com-
pletely avoided if no fine-tuning is taken for the “reuse”
layers, or significantly alleviated even with fine-tuning. The
proposed method is thoroughly tested in a series of datasets
including the permuted MNIST dataset, the visual decathlon
dataset and the split CIFAR-100 dataset. It obtains highly
comparable or better performance in comparison with state-
of-the-art methods.
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