
Supplementary Material for the Paper
“Inference and Sampling of K33-free Ising Models”

1 Technical Proofs
Lemma 1 proof. Let E′ ∈ PM(G∗). Call e ∈ E saturated, if it intersects an edge from E′ ∩ E∗I .
Each Fisher city is incident to an odd number of edges in E′ ∩ E∗I . Thus, each face of G has an
even number of unsaturated edges. This property is preserved, when two faces/cycles are merged
into one by evaluating respective symmetric difference. Therefore, one gets that any cycle in G has
an even number of unsaturated edges.

For each i define xi := −1ri , where ri is the number of unsaturated edges on the path connecting
v1 and vi. The definition is consistent due to aforementioned cycle property. Now for each
e = {v, w} ∈ E, xv = xw if and only if e is saturated. To conclude, we constructed X such that
E′ =M(X). Such X is unique, because parity of unsaturated edges on a path between v1 and vi
uniquely determines relationship between x1 and xi, and x1 is always +1.

Lemma 2 proof. Let X ′ = (x′1, ..., x
′
N ) ∈ C+, M(X ′) = E′. The statement is justified by the

following chain of transitions:

P(M(S) = E′) = P(S = X ′) + P(S = −X ′)

=
2

Z
exp

 ∑
e={v,w}∈E

Jex
′
vx
′
w


=

2

Z
exp

 ∑
e∗∈E′∩E∗I

2Jg(e∗) −
∑
e∈E
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=

2

Z
exp

(
−
∑
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) ∏
e∗∈E′∩E∗I

ce∗

=
2

Z
exp

(
−
∑
e∈E

Je

) ∏
e∗∈E′

ce∗

=
1

Z∗

∏
e∗∈E′

ce∗

Lemma 3 proof. The Algorithm 1 reduces sampling on G to a series of samplings on G1, ..., Gh.
Given the algorithm and inference formula in Lemma 3, the statement is obvious for h = 1. Let

h = 2. Let v be an articulation point shared by G1 and G2. Denote G1 = (V1, E1), G2 = (V2, E2).
Without loss of generality assume that v has index 1 in V, V1 and V2. Let Ci+ = {+1}×{−1,+1}|Vi|.
Then one derives:

Z = 2
∑
X∈C+

exp

 ∑
e={v,w}∈E

Jexvxw


= 2

∑
X∈C+

[
exp

 ∑
e={v,w}∈E1

Jexvxw

 · exp
 ∑
e={v,w}∈E2

Jexvxw

]

= 2
∑

X1∈C1+

exp

 ∑
e={v,w}∈E1

Jexvxw

 · ∑
X2∈C2+

exp

 ∑
e={v,w}∈E2

Jexvxw


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Algorithm 1 Sampling from P(S = X)

1: Input: A tree of G1, ..., Gh.
2: Draw X1, ..., Xh from ZFI models on G1, ..., Gh.
3: ProcessComponent(1, -1).
4: Combine X1, ..., Xh into X.
5: Output: X.
6:
7: Procedure ProcessComponent
8: Input: index i, parent index p.
9: v = articulation point of Gi and Gp.

10: if unequal spins of Xi and Xp at v then
11: Xi := −Xi

12: for j in i’s neighbors do
13: if j 6= p then
14: ProcessComponent(j, i).
15: end Procedure

=
1

2
Z1Z2

where Zi is the PF of the ZFI model induced by Gi. As far as sampling is concerned, denote by
Pi(Si = Xi) a probability distribution induced by the i-th ZFI model. Then, since P2(s1 = x1) =

1
2 :

P(S = X) =
1

Z

∑
X∈C+

exp

 ∑
e={v,w}∈E

Jexvxw


= 2

1

Z1
exp

 ∑
e={v,w}∈E1

Jexvxw

 · 1

Z2
exp

 ∑
e={v,w}∈E2

Jexvxw


= 2P1(S1 = X1)P2(S2 = X2)

= P1(S1 = X1)
P2(S2 = X2)

P2(s1 = x1)

= P1(S1 = X1)P2(S2 = X2|s1 = x1)

Assume that a method for sampling Si from Pi is available. Then, draw X1 by sampling S1

from P1. To sample S2 conditional on s1 = x1 from P2, draw X ′2 = (x′1, ...) from P2(S2 = X ′2). If
x′1 = x1, then X2 = X ′2, otherwise X2 = −X ′2. This is consistent with Algorithm 1.

For graphs of h > 2 the statement of lemma follows naturally by induction.
Theorem 2 proof. Since G is normal and minor-free, it holds that |E| = O(N) [13]. Find all

biconnected components and for each construct a triconnected component tree in O(N + |E|) =
O(N).

As described above, the time (number of steps) of inference or sampling is a sum of inference or
sampling times of each triconnected component of G. Let the set of all G’s triconnected components
(that is, a union over all biconnected components) to consist of k1 planar triconnected components
of size N1, ..., Nk1 with Mp

1 , ...,M
p
k1

edges respectively, k2 multiple bonds of M b
1 , ...,M

b
k2

edges and

k3 K5 graphs. Then the complexity of inference or sampling is O(
∑k1
i=1N

3
2
i +

∑k2
i=1M

b
i + k3).

The edges of G are partitioned among biconnected components. Inside each biconnected
component apply second part of Lemma 4 to obtain that

∑k1
i=1M

p
i +

∑k2
i=1M

b
i + 10k3 = O(|E|) =

O(N). This gives that
∑k2
i=1M

b
i + k3 = O(N) and

∑k1
i=1M

p
i = O(N). Since triconnected

components are connected graphs, we get that Ni = O(Mp
i ) for all 1 ≤ i ≤ k1 and hence∑k1

i=1Ni = O(N). From convexity of f(x) = x
3
2 it follows that

∑k1
i=1N

3
2
i = O(N

3
2 ) and finally that

O(
∑k1
i=1N

3
2
i +

∑k2
i=1M

b
i + k3) = O(N

3
2 ).

Lemma 7 proof. A simple example illustrates that genus of a biconnected K33-free graph can
grow linearly with its size. First, notice that K5 is a nonplanar graph, but it can be embedded in
toroid (Fig. 1(a)), therefore genus of the graph is unity. Consider a cycle of length 2n, enumerate
edges in the order of cycle traversal from 1 to 2n. Attach K5 graph to each odd edge of the cycle
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(see Fig. 1(b)). The resulting graph G is of size 5n, it is biconnected and K33-free (see Figure 1(c)).
Remove an arbitrary even edge from the cycle. It results in a graph whose biconnected components
are n K5 graphs and n edges, so its genus is n. Since edge removal can only decrease genus, we
conclude that G’s genus is at least n.

(a)

...

...

(b)

...

...

(c)

Figure 1: (a) K5’s embedding on a toroid - glue sides with the same label together. (b) G - a
"necklace" of n K5 graphs. (c) G’s triconnected components. Dashed lines are virtual edges and
dotted lines identify identical virtual edges. Triconnected components consist of a cycle, triple
bonds and K5 graphs. Hence, by Lemma 6 G is K33-free.

2 Counting PMs of Planar Ĝ in O(N̂
3
2 ) time

This section addresses inference part of Theorem 1.

2.1 Pfaffian Orientation
Let Ĝ be an oriented graph. Its cycle of even length (built on an even number of vertices) is said to
be odd-oriented, if, when all edges along the cycle are traversed in any direction, an odd number of
edges are directed along the traversal. An orientation of Ĝ is called Pfaffian, if all cycles C, such
that PM(Ĝ(V̂ − C)) 6= ∅, are odd-oriented.

We will need Ĝ to contain a Pfaffian orientation, moreover the construction is easy.

Theorem 4. Pfaffian orientation of Ĝ can be constructed in O(N̂).

Proof. This theorem is proven constructively, see e.g. [15, 14], or [12], where the latter construction
is based on specifics of the expanded dual graph.

Construct a skew-symmetric sparse matrix K ∈ RN̂×N̂ (→ denotes orientation of edges):

Kij =


ce if {vi, vj} ∈ Ê, vi → vj

−ce if {vi, vj} ∈ Ê, vj → vi

0 if {vi, vj} /∈ Ê
(1)

The next result allows to compute PF Ẑ of PM model on Ĝ in a polynomial time.

Theorem 5. detK > 0, Ẑ =
√
detK.

Proof. See, e.g., [15] or [8].

2.2 Computing detK

LU-decomposition of a matrix A = LU , found via Gaussian elimination, where L is a lower-
triangular matrix with unit diagonals and U is an upper-triangular matrix, would be a standard
way of computing detA, which is then equal to a product of the diagonal elements of U . However,
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this standard way of constructing the LU decomposition applies only if all A’s leading principal
submatrices are nonsingular (See e.g. [6], Section 3.5, for detailed discussions). And already the
first, 1× 1, leading principal submatrix of K is zero/singular.

Luckily, this difficulty can be resolved through the following construction. Take Ĝ’s arbitrary
perfect matching E′ ∈ PM(Ĝ). In the case of a general planar graph E′ can be found via e.g.
Blum’s algorithm [1] in O(

√
N̂ |Ê|) = O(N̂

3
2 ) time, while for graphs G∗, G∗v and G

∗
v appearing

in this paper E′ can be found in O(N) from a spin configuration using M mapping (e.g. E′ =
E∗I = M({+1, ...,+1}) ∈ PM(G∗)). Modify ordering of vertices, V̂ = {v1, v2, ..., vN̂}, so that
E′ = {{v1, v2}, ..., {vN̂−1, vN̂}}. Build K according to the definition (1). Obtain K from K by
swapping column 1 with column 2, 3 with 4 and so on. This results in detK = |detK|, where the
new K is properly conditioned.

Lemma 8. K’s leading principal submatrices are nonsingular.

Proof. The proof, presented in [15] for the case of unit weights ce, generalizes to arbitrary positive ce.

Notice, that in the general case (of a matrix represented in terms of a general graph) complexity
of the LU-decomposition is cubic in the size of the matrix. Fortunately, nested dissection technique,
discussed in the following subsection, allows to reduce complexity of computing Ẑ to O(N̂

3
2 ).

2.3 Nested Dissection
The partition P1, P2, P3 of set V̂ is a separation of Ĝ, if for any v ∈ P1, w ∈ P2 it holds that
{v, w} /∈ Ê. We refer to P1, P2 as the parts, and to P3 as the separator.

Lipton and Tarjan (LT) [10] found an O(N̂) algorithm, which finds a separation P1, P2, P3 such
that max(|P1|, |P2|) ≤ 2

3N̂ and |P3| ≤ 2
3
2

√
N̂ . The LT algorithm can be used to construct the so

called nested dissection ordering of V̂ . The ordering is built recursively, by first placing vertices
of P1, then P2 and P3, and finally permuting indices of P1 and P2 recursively according to the
ordering of Ĝ(P1) and Ĝ(P2) (See [9] for accurate description of details, definitions and analysis of
the nested dissection ordering). As shown in [9] the complexity of finding the nested dissection
ordering is O(N̂ log N̂).

Let A be a N̂ × N̂ matrix with a sparsity pattern of Ĝ. That is, Aij can be nonzero only if
i = j or {vi, vj} ∈ Ê.

Theorem 6. [9] If V̂ is ordered according to the nested dissection and A’s leading principal
submatrices are nonsingular, computing the LU-decomposition of A becomes a problem of the O(N

3
2 )

complexity.

Notice, however, that we cannot directly apply the Theorem to K, because the sparsity pattern
of K is asymmetric and does not correspond, in general, to any graph.

Let G∗∗ = (V ∗∗, E∗∗) be a planar graph, obtained from Ĝ, by contracting each edge in E′,
|V ∗∗| = |E′| = 1

2N̂ . Find and fix a nested dissection ordering over V ∗∗ (it takes O(N̂ log N̂) steps)
and let the {v1, v2}, . . . , {vN̂−1, vN̂} enumeration of E′ correspond to this ordering. Split K into
2× 2 cells and consider the sparsity pattern of the nonzero cells. One observes that the resulting
sparsity pattern coincides with the sparsity patterns of K and G∗∗. Since LU-decomposition can
be stated in the 2× 2 block elimination form, its complexity is reduced down to O(N̂

3
2 ).

This concludes construction of an efficient inference (counting) algorithm for planar PM model.

3 Sampling PMs of Planar Ĝ in O(N̂
3
2 ) time (Wilson’s Algo-

rithm)

This section addresses sampling part of Theorem 1. In this section we assume that degrees of Ĝ’s
vertices are upper-bounded by 3. This is true for G∗, G∗v and G

∗
v - the only PM models appearing in

the paper. Any other constant substituting 3 wouldn’t affect the analysis of complexity. Moreover,
Wilson wilson shows that any PM model on a planar graph can be reduced to bounded-degree
planar model without affecting O(N̂

3
2 ) complexity.
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3.1 Structure of the Algorithm
Denote a sampled PM as M , P(M) = Ẑ−1

∏
e∈M ce. Wilson’s algorithm first applies LT algorithm

of [10] to find a separation P1, P2, P3 of Ĝ (max(|P1|, |P2|) ≤ 2
3N̂ , |P3| ≤ 2

3
2

√
N̂). Then it iterates

over v ∈ P3 and for each v it draws an edge of M , saturating v. Then it appears that, given this
intermediate result, drawing remaining edges of M may be split into two independent drawings
over Ĝ(P1) and Ĝ(P2), respectively, and then the process is repeated recursively.

It takes O(N̂
3
2 ) steps to sample edges attached to P3 at the first step of the recursion, therefore

the overall complexity of the Wilson’s algorithm is also O(N̂
3
2 ).

Subsection 3.2 introduces probabilities required to draw the aforementioned PM samples.
Subsections 3.3 and 3.4 describe how to sample edges attached to the separator, while Subsection
3.5 focuses on describing the recursion.

3.2 Drawing Perfect Matchings
For some Q ∈ Ê consider the probability of getting Q as a subset of M :

P(Q ⊆M) =
1

Ẑ

∑
M ′∈PM(Ĝ)
Q⊆M ′

( ∏
e∈M ′

ce

)

=
1

Ẑ

(∏
e∈Q

ce

)
·

∑
M ′∈PM(Ĝ)

( ∏
e∈M ′\Q

ce

)
(2)

Let V̂Q = ∪e∈Qe and Ĝ\Q = Ĝ(V̂ \ V̂Q). Then the set {M ′ \Q |M ′ ∈ PM(Ĝ)} coincides with
PM(Ĝ\Q). This yields the following expression

P(Q ⊆M) =
Ẑ\Q

Ẑ

(∏
e∈Q

ce

)
where

Ẑ\Q =
∑

M ′′∈PM(Ĝ\Q)

( ∏
e∈M ′′

ce

)

is a PF of the PM model on Ĝ\Q induced by the edge weights ce.
For a square matrix A let Ar1,...,rlc1,...,cl

denote the matrix obtained by deleting rows r1, ..., rl and
columns c1, ..., cl from A. Let [A]r1,...,rlc1,...,cl

be obtained by leaving only rows r1, ..., rl and columns
c1, ..., cl of A and placing them in this order.

Now let V̂Q = {vi1 , ..., vir}, i1 < ... < ir. A simple check demonstrates that deleting vertex from
a graph preserves the Pfaffian orientation. By induction this holds for any number of vertices
deleted. From that it follows that Ki1,...,ir

i1,...,ir
is a Kasteleyn matrix for Ĝ\Q and then

Ẑ\Q = PfKi1,...,ir
i1,...,ir

=
√
detKi1,...,ir

i1,...,ir

resulting in

P(Q ⊆M) =

√
detKi1,...,ir

i1,...,ir

detK
·
(∏
e∈Q

ce

)
Linear algebra transformations, described in [15], suggest that if A is non-singular, then

detAr1,...,rlc1,...,cl

detA
= ±det[A−1]c1,...,clr1,...,rl

This observation allows us to express probability (2) as

P(Q ⊆M) =
√
|det[K−1]i1,...,iri1,...,ir

| ·
(∏
e∈Q

ce

)
Now we are in the position to describe the first step of the Wilson’s recursion.
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3.3 Step 1: Computing Lower-Right Submatrix of K−1

Find a separation P1, P2, P3 of Ĝ. The goal is to sample an edge from every v ∈ P3.
Let T be a set of vertices from P3 and their neighbors, then |T | ≤ 3|P3| because each vertex

in Ĝ is of degree at most 3. Let T ∗∗ ⊆ V ∗∗ be a set of the contracted edges (recall G∗∗ definition
from Subsection 2.3), containing at least one vertex from T , |T ∗∗| ≤ |T |. Then T ∗∗ is a separator
of G∗∗ such that

|T ∗∗| ≤ |T | ≤ 3|P3| ≤ 3 · 2 3
2

√
N̂ ≤ 3 · 22

√
|V ∗∗| (3)

where one uses that, |V ∗∗| = N̂
2 . Find a nested dissection ordering (Subsection 2.3) of V ∗∗ with

T ∗∗ as a top-level separator. This is a correct nested dissection due to Eq. (3).
Utilizing this ordering, construct K. Compute L and U - LU-decomposition of K (O(N̂

3
2 ) time).

Let t = 2|T ∗∗| ≤ 3 · 2 5
2

√
N̂ and let I be a shorthand notation for (N̂ − t+ 1, ..., N̂). Using L and

U , find D = [K
−1

]II , which is a lower-right K
−1

’s submatrix of size t× t.
It is straightforward to observe that the i-th column of D, di, satisfies

[L]II ×
(
[U ]II × di

)
= ei,

where ei is a zero vector with unity at the i-th position. Therefore constructing D is reduced to
solving 2t triangular systems, each of size t× t, resulting in O(t3) = O(N̂

3
2 ) required steps.

3.4 Step 2: Sampling Edges in the Separator
Now, progressing iteratively, one finds v ∈ P3 which is not yet paired and draw an edge emanating
from it. Suppose that the edges, e1 = {vj1 , vj2}, ..., ek = {vj2k−1

, vj2k}, are already sampled. We
assume that by this point we have also computed LU-decomposition Ak = [K−1]j1,...,j2kj1,...,j2k

= LkUk
and we will update it to Ak+1 when the new edge is drawn. Then

P(e1, ..., ek ∈M) =
√
|detAk|

k∏
j=1

cej (4)

Next we choose j2k+1 so that vj2k+1
is not saturated yet. We iterate over vj2k+1

’s neighbors
considered as candidates for becoming vj2k+2

. Let vj to become the next candidate, denote
ek+1 = {vj2k+1

, vj}. For n ∈ N let α(n) = n+ 1 if n is odd and α(n) = n− 1 if n is even. Then the
identity

K−1 = [K
−1

]
α(1),α(2),...,α(N̂)

1,2,...,N̂
, (5)

follows from the definition of K. One deduces from Eq. (5)

Ak+1 = [K−1]
j1,...,j2k+1,j
j1,...,j2k+1,j

= [K
−1

]
α(j1),...,α(j2k+1),α(j)
j1,...,j2k+1,j

Constructing T ∗∗ one has j1, ..., j2k+1, j, α(j1), ..., α(j2k+1), α(j) > N̂ − t. It means that Ak+1

is a submatrix of D with permuted rows and columns, hence Ak+1 is known.
We further observe that

Ak+1 =

[
Ak y
r d

]
=

[
Lk 0
R 1

] [
Uk Y
0 z

]
= Lk+1Uk+1.

Therefore to update Lk+1 and Uk+1, one just solves the triangular system of equations RUk = r
and LkY = y, where R>, r>, Y, y are of size 2k× 2 (this is done in O(k2) steps), and then compute
z = d−RY which is of the size 2× 2, then set, u = det z.

The probability to pair vj2k+1
and vj is

P(ek+1 ∈M | e1, ..., ek ∈M) =
P(e1, ..., ek+1 ∈M)

P(e1, ..., ek ∈M)

=

√
|detAk+1|

∏k+1
j=1 cej√

|detAk|
∏k
j=1 cej
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=
cek+1

√
|u||detAk|√
|detAk|

= cek+1

√
|u|

Therefore maintaining Uk+1 allows us to compute the required probability and draw a new edge
from vj2k+1

. By construction of Ĝ, vj2k+1
has only 3 neighbors, therefore the complexity of this

step is O(
∑|P3|
k=1 k

2) = O(N̂
3
2 ) because |P3| ≤ 2

3
2

√
N̂ .

3.5 Step 3: Recursion
Let Msep = {e1, e2, ...} be a set of edges drawn on the previous step, and V̂sep be a set of vertices
saturated by Msep, P3 ⊆ V̂sep. Given Msep, the task of sampling M ∈ PM(Ĝ) such that Msep ⊆M
is reduced to sampling perfect matchingsM1 andM2 over Ĝ(P1\Vsep) and Ĝ(P2\Vsep), respectively.
Then M =M1 ∪M2 ∪Msep becomes the result of the perfect matching drawn from (2).

Even though only the first step of the Wilson’s recursion was discussed so far, any further step
in the recursion is done in exactly the same way with the only exception that vertex degrees may
become less than 3, while in Ĝ they are exactly 3. Obviously, this does not change the iterative
procedure and it also does not affect the complexity analysis.

4 Random Graph Generation
As our derivations cover the most general case of planar and K33-free graphs, we want to test them
on graphs which are as general as possible. Based on Lemma 6 (notice, that it provides necessary
and sufficient conditions for a graph to be K33-free) we implement a randomized construction of
K33-free graphs, which is assumed to cover most general K33-free topologies.

Namely, one generates a set of K5’s and random planar graphs, attaching them by edges to a
tree-like structure. For simplicity, we slightly relax the condition that random planar components
should be triconnected (because it is not clear how to generate such graphs efficiently) and simply
require the components to be biconnected. This can be interpreted as constructing T , where some
neighbor planar nodes are merged (merging planar graphs results in another planar graph). We
refer to such non-unique decomposition T ′ as partially merged. Inference and sampling algorithm
suggested in Section 5 is applied with no changes to the partially merged decomposition. Our
generation process consists of the following two steps.

1. Planar graph generation. This step accepts N ≥ 3 as an input and generates a normal
biconnected planar graph of size N along with its embedding on a plane. The details of the
construction are as follows.

First, a random embedded tree is drawn iteratively. We start with a single vertex, on each
iteration choose a random vertex of an already “grown” tree, and add a new vertex connected
only to the chosen vertex. Items I-V in Fig. 2 illustrate this step.

Then we triangulate this tree by adding edges until the graph becomes biconnected and all
faces are triangles, as in the Subsection 4.1 (VI in Figure 2). Next, to get a normal graph, we
remove multiple edges possibly produced by triangulation (VII in Fig. 2). At this point the
generation process is complete.

2. K33-free graph generation. Here we take N ≥ 5 as the input and generate a normal
biconnected K33-free graph G in a form of its partially merged decomposition T ′. Namely,
we generate a tree T ′ of graphs where each node is either a normal biconnected planar graph
or K5, and every two adjacent graphs share a virtual edge.

The construction is greedy and is essentially a tree generation process from Step 1. We start
with K5 root and then iteratively create and attach new nodes. Let N ′ < N be a size of the
already generated graph, N ′ = 5 at first. Notice, that when a node of size n is generated, it
contributes n− 2 new vertices to G.

An elementary step of iteration here is as follows. If N −N ′ ≥ 3, a coin is flipped and the
type of new node is chosen - K5 or planar. If N −N ′ < 3, K5 cannot be added, so a planar
type is chosen. If a planar node is added, its size is drawn uniformly in the range between 3
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and N −N ′ + 2 and then the graph itself is drawn as described in Step 1. Then we attach a
new node to a randomly chosen free edge of a randomly chosen node of T ′. We repeat this
process until G is of the desired size N . Fig. 3 illustrates the algorithm.

To obtain an Ising model fromG, we sample pairwise interactions for each edge ofG independently
from N (0, 0.12).

Notice that the tractable Ising model generation procedure is designed in this section solely for
the convenience of testing and it is not claimed to be sampling models of any particular practical
interest (e.g. in statistical physics or computer science).

Figure 2: Steps of planar graph generation. I-V refers to random tree construction on a plane, VI
is a triangulation of a tree, VII is a result after multiple edges removal.

Figure 3: Generation of K33-free graph G and its partially merged decomposition T ′. Starting with
K5 (I), new components are generated and attached to random free edges (II-V). VI is a result
graph G obtained by merging all components in T ′.

5 Future Work
We conclude by discussing some future research directions:

• The class of models considered in the manuscript can be extended even further towards
K33-free generalizations of (a) the so-called outerplanar graphs, which can then be used for
approximate inference and efficient learning in the spirit of [5] and [7] respectively; and (b)
graphs embedded in the surfaces of O(1) genus [11, 4, 2, 3].

• This manuscript was motivated by a larger task of using efficient inference and learning
over the most general K33-graphs for constructing more general (and thus, hopefully, more
powerful) alternatives to traditional Neural Networks for efficient learning.
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